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Abstract: Circulating cell-free DNA (cfDNA) refers to small fragments of DNA molecules released
after programmed cell death and necrosis in several body fluids such as blood, saliva, urine, and
cerebrospinal fluid. The discovery of cfDNA has revolutionized the field of non-invasive diagnostics
in the oncologic field, in prenatal testing, and in organ transplantation. Despite the potential of
cfDNA and the solid results published in the recent literature, several challenges remain, represented
by a low abundance, a need for highly sensitive assays, and analytical issues. In this review, the
main technical advances in cfDNA analysis are presented and discussed, with a comprehensive
examination of the current available methodologies applied in each field. Considering the potential
advantages of cfDNA, this biomarker is increasing its consensus among clinicians, as it allows us
to monitor patients’ conditions in an easy and non-invasive way, offering a more personalized care.
Nevertheless, cfDNA analysis is still considered a diagnostic marker to be further validated, and
very few centers are implementing its analysis in routine diagnostics. As technical improvements are
enhancing the performances of cfDNA analysis, its application will transversally improve patients’
quality of life.

Keywords: cell-free DNA; next-generation sequencing; digital PCR; liquid biopsy; non-invasive
diagnostics

1. Introduction

In recent decades, the field of molecular biology has experienced a significant step
forward with the emergence of circulating cell-free DNA (cfDNA) as a versatile biomarker
with relevant clinical implications. CfDNA, consisting of double-stranded DNA fragments
released into the bloodstream following cellular apoptosis and necrosis, represents a signif-
icant advance in the detection and monitoring of various physiological and pathological
conditions. These conditions range from cancer to post-transplant monitoring and prenatal
diagnosis, making cfDNA analysis a crucial tool in modern medicine.

This manuscript aims to explore the significance of cfDNA analysis, highlighting its
new insights and contributions to the existing literature. By providing a comprehensive
overview of its diverse origins, clinical applications, and technical challenges, it aims to
serve as a contribution in the understanding and use of cfDNA as a biomarker.

At its core, cfDNA analysis represents a non-invasive and innovative approach, often
referred to as “liquid biopsy”. This term underscores its ability to provide diagnostic and
prognostic information by analyzing genetic material obtained from bodily fluids, primarily
blood plasma or serum. This revolutionary technique holds significant promise in various
fields, including oncology, prenatal screening, and transplantation medicine.

Through a detailed examination of recent advancements, this review aims to clarify the
crucial roles of cfDNA in disease detection, treatment monitoring, and patient management.
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Through a structured analysis of key themes and methodologies, this review aims
to serve as a valuable resource for researchers, clinicians, and healthcare professionals
engaged in cfDNA analysis.

By providing insights into the evolving landscape of cfDNA research and its poten-
tial implications for personalized medicine, this manuscript is a valuable resource for
researchers, clinicians, and healthcare professionals engaged in cfDNA analysis. Ultimately,
by advancing our understanding of cfDNA and its clinical applications, this manuscript
contributes to the ongoing dialogue on this revolutionary biomarker, paving the way for
better diagnostic and therapeutic strategies in modern medicine.

2. Circulating Cell-Free DNA

CfDNA is represented by double-stranded extracellular DNA fragments released into
the bloodstream after the apoptosis and necrosis processes in physiological and pathological
situations. It was first described in 1948 [1] when Mandel and Matais detected the presence
of DNA in plasma samples from healthy and affected individuals. CfDNA originates
from many sources within the body and can be isolated from various body fluids such
as blood, urine, effusions, and cerebrospinal fluid [2]. In healthy conditions, it derives
mainly from blood cells [3,4], but it can arise from inflammatory cells, tumor cells, fetal
cells crossing the placenta during pregnancy, or can be released from graft cells after solid
organ transplantation [5]. Human plasma DNA consists of a mixture of DNA fragments
of different sizes, mostly ranging between 100 and 200 base pairs [6,7], with a peak at
166 bases; this peculiar length was related to the nucleosomal structure [8,9], as during
the cell death process, proteins associated with DNA seem to protect short fragments
from degradation. However, smaller (<100 bases) or larger fragments of several kilobases
have also been reported [10–12] and associated, respectively, to mitochondrial and necrotic
origin [9,13]. The CfDNA concentration in blood widely ranges between undetectable and a
high concentration (up to 100 ng/mL) in healthy subjects [9,13], but it is known that its levels
can be affected by many individual conditions, such as age, BMI, circadian rhythm [13],
exercise [4], inflammation [5], infections [14–16], and pharmacologic treatment [5], that
tend to increase cfDNA presence.

3. cfDNA Applications in Clinical Care

Since the discovery of cfDNA, its potential applications in various fields have been con-
tinuously explored. The application of cfDNA analysis, which is defined as “liquid biopsy”,
is used to monitor pathological conditions in oncologic, prenatal, and transplantation fields
in a non-invasive and revolutionary method [9].

3.1. Oncologic Applications

In oncology, the presence of the circulating tumor cfDNA (ctDNA) and the anal-
ysis of its genetic alterations allows the detection of cancer disease, the monitoring of
treatment response, and the detection of minimal residual disease, enabling personalized
treatment strategies [17,18]. Currently, the most common use of ctDNA analysis is ther-
apy selection and stratification of patients based on the likelihood of response to targeted
therapies [19–22] by searching for specific mutation markers for resistance or sensitivity,
such as tyrosine kinase inhibitors, programmed death inhibitors-1 [23], programmed death
ligand-1 [24], and cytotoxic T lymphocyte-associated protein 4 [25]. Through ctDNA anal-
ysis, it is, therefore, possible to differentiate and predict immune checkpoint blockade
response patterns [26,27], characterize the tumor heterogeneity [28], and detect resistance
for targeted therapy and chemotherapy early [29–32].

Another important and recent use of ctDNA is the approximation of tumor bur-
den [33,34] enabled as the ctDNA quantity is directly associated with the number of tumor
cells present in the body.
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Methylation markers have also been proposed for the detection of early cancer, with
the advantage of discriminating the tissue of origin of the cfDNA based on the tissue-
specific methylation pattern [35,36].

3.2. Prenatal Screening

In prenatal testing, the analysis of fetal cfDNA in maternal blood has revolutionized
the field, allowing non-invasive prenatal testing (NIPT) that can investigate chromosomal
abnormalities and fetal aneuploidies as an alternative to more invasive methods such as
karyotyping and FISH on fetal blood, chorionic villus sampling, or amniocentesis [37].
Non-invasive prenatal screening can be performed from 5 to 7 weeks [38], looking for
pathological variations with a targeted or genome-wide approach. In addition, it is possible
to noninvasively determine fetal sex, genotype fetal blood group D antigen, and detect
variants involved in paternally inherited or de novo disorders [39].

To date, a low fetal fraction is the most important cause of negative results in cfDNA
screening and is reported as a cause of test failure in up to 6.1% of tests performed [40,41].
This poor fetal cfDNA concentration may result from an increased maternal fraction due to
the conditions of the mother [4,13], both physiological, such as intense physical exercise,
age, BMI, or the circadian rhythm, and pathological, such as in the case of concomitant
inflammation [5] or infection [14–16]. All these conditions tend to cause a stronger release
of background DNA from the mother, resulting in an apparent failure to detect the fetal
DNA fraction and in the test’s failure.

3.3. Transplantation

Clinical studies have highlighted the potential of detecting and quantifying the frac-
tion of donor-derived cell-free DNA (dd-cfDNA), i.e., the portion of cfDNA derived from
the transplanted organ, to monitor transplant status and detect rejection earlier and with
greater sensitivity than traditional methods, such as graft biopsy, allowing early interven-
tion and improved transplantation outcomes [42–44]. Dd-cfDNA has been shown to be a
potential biomarker of acute rejection, well correlating with biopsy-proven rejection, and
more generally, it is a signal of graft damage, post-transplant complications, and infection.
Differences in the percentage of dd-cfDNA between graft types have been observed, reflect-
ing the effective size and the organ-specific cell turnover [45], similar to results reported for
ctDNA changes associated with tumor burden.

Dd-cfDNA is discriminated from recipient cfDNA by exploiting widespread genetic
polymorphisms in the genome. The first published approaches to detect dd-cfDNA relied
on a panel of short-tandem repeats (STRs), variable-number tandem repeats (VNTRs), single
nucleotide (SNPs), or insertion–deletion polymorphisms (INDELs) chosen as polymorphic
enough to distinguish all possible donor–recipient pairs and therefore were defined as “tar-
geted approaches” [46,47] as they target pre-selected sequences in the genome. A particular
method to discriminate the portion of dd-cfDNA present in the bloodstream is based on
the donor and recipient Human Leukocyte Antigen (HLA) typing [48,49]. Since transplant
centers generally check the HLA loci to identify the best match for transplantation, this
information is therefore available and can be used to discriminate donor cfDNA from that
of the recipient.

More recent NGS techniques do not require genotyping and are commonly called
“random approaches” since after the sequencing phase, specific donor, and recipient poly-
morphisms are selected based on the genomic profile of both subjects [50,51].

The identification of cfDNA tissue source may represent a valid alternative for graft
versus host disease (GVHD) non-invasive detection. Acute GVHD remains an important
complication after allogeneic hematopoietic cell transplantation (HCT) [52]. Currently, there
are no validated non-invasive biomarkers that are used in routine clinical applications for
acute GVHD. Candidate molecules were cytokines and peptides involved in the systemic
inflammation and pathophysiology of GVHD, but their performance resulted in limited
and poorly specific [52]. As the liver, skin, and intestine are the most involved organs in



Biomolecules 2024, 14, 498 4 of 13

the disease, a significant increase in cfDNA deriving from these tissues can be informative
of the development of the pathology [53].

Each tissue is characterized by an epigenetic signature that allows for the identification
of the DNA origin through the analysis of its methylation profile [54]. Advanced molecular
analyses as whole-genome bisulfite sequencing allow for the correct identification and
quantification of the cfDNA source, enabling the non-invasive monitoring of GVHD [55].
This approach has been tested by Pellan Cheng and colleagues [56], who analyzed a pilot
cohort of HCT recipients, and the result of their proof-of-principle study showed the
potential of cfDNA to assist in personalizing care after HCT.

4. Technical Issues for High-Quality cfDNA Analysis
4.1. The Relevance of Correct Sampling

Performing a liquid biopsy means, in practice, the retrieving of cfDNA from a
body fluid, mostly peripheral blood. However, the rapid turnover and short half-life
of cfDNA [9,13] require proper sampling, considering the relatively low concentration
of this marker. Most studies were performed using EDTA BD vacutainer [57,58], which
does not preserve blood cells from apoptosis and release genomic DNA, affecting the
quantity and quality of cfDNA itself [16,59] if the plasma is not rapidly separated from the
corpuscular part [13]. To prevent cfDNA degradation and its dilution into genomic DNA,
ad hoc collection tubes are available from different companies (Qiagen, Hilden, Germany,
Roche, Basel, Switzerland, and Streck, La Vista, NE, USA), which were successfully used in
some studies [60,61]. Their main advantage is that tubes keep cfDNA stable and free from
genomic contamination for up to 14 days, improving the performance of the following
research studies, drug discovery, and assay development.

To improve the purity of cfDNA, it is essential to effectively separate plasma from
other blood fractions containing cells which can potentially contaminate the sample. A
two-step centrifugation procedure is commonly employed when working with cfDNA, as
it allows for the removal of cellular debris still present in the plasma specimen after the
initial centrifugation [13]. However, the recommended centrifugation protocol is typically
provided in the tube datasheet.

Additionally, the selection of the appropriate extraction method is crucial for ensuring
high-quality cfDNA. The majority of commercial kits for cfDNA analysis recommend the
use of validated options to achieve optimal results in terms of both quantity and purity
of the cfDNA. Among the plethora of available extraction kits, a significant proportion
involve capturing cfDNA fragments using magnetic beads to separate them from genomic
DNA contaminants, followed by repeated washing steps to effectively isolate nucleotides
from proteins and lipids.

Nevertheless, prior to conducting molecular tests, it is highly advisable to precisely
quantify the samples using a fluorometric instrument and verify the expected fragment
size using automated electrophoresis systems. These systems can readily detect genomic
contamination by analyzing a small volume of cfDNA.

4.2. Technical Comparison of cfDNA Analysis Methods

Advancements in technology, particularly the advent of quantitative PCR (qPCR) and
next-generation sequencing (NGS), significantly enhanced the detection sensitivity and
precision of cfDNA analysis. Methods for cfDNA analysis are generally divided into NGS
and non-NGS approaches (Figure 1).
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Figure 1. List of the NGS-based and non-NGS methods for cfDNA analysis described in the review.
The different methodologies are divided according to their technological approaches. The main
methods are highlighted in blue, while derived methods are indicated by arrows. References are
listed by application field [27,29,33–35,39,46,47,51,56,57,62–84]. NGS: Next-generation Sequencing;
TAm-Seq: Tagged-amplicon Deep Sequencing; CAPP-Seq: Cancer Personalized Profiling by Deep
Sequencing; WGBS-Seq: Whole Genome Bisulfite Sequencing; WES: Whole Exome Sequencing; WGS:
Whole Genome Sequencing; qPCR: quantitative PCR; ARMS-PCR: Amplification Refractory Mutation
System PCR; PNA Clamp PCR: Peptide Nucleic Acid Clamp PCR; COLD-PCR: Co-amplification
at Lower Denaturation Temperature-based PCR; dPCR: digital PCR; BEAMing: Beads, Emulsion,
Amplification, Magnetics PCR.

4.2.1. NGS-Based Methods

NGS-based approaches have the potential to simultaneously sequence thousands of
targets. Considering the Illumina technology, its high accuracy and flexibility made it the



Biomolecules 2024, 14, 498 6 of 13

most spread platform for cfDNA analysis compared to competitors, such as Ion Torrent,
Oxford Nanopore, and Pacific Biosciences, which are still limited by their technical features
that do not apply properly with short cfDNA fragments [85,86].

In the NGS workflow, DNA samples are amplified targeting hundreds or thousands of
single nucleotide polymorphisms (SNPs) [33,46,87,88] selected depending on the applica-
tion field, then DNA fragments are tagged by adaptors and indexed before being sequenced
with an elevated depth that permits sensitive results after bioinformatics analyses. Assay
types can vary according to the aim of the analysis, moving from tagged-amplicon deep
sequencing (TAm-Seq), if the target sequence has been previously characterized [62,63], to
personalized profiling by deep sequencing, such as CAPP-Seq applied in oncology [62,64],
to whole genome bisulfite sequencing (WGBS-Seq) for DNA methylation analysis [65,66],
and to whole exome (WES) or genome sequencing (WGS), which provide a comprehensive
evaluation of tumor mutations, identifying potential oncogenes and tumor suppressor
genes, deleterious alterations, and variants of unknown significance [62,67]. However,
WES and WGS are limited by low sensitivity, excessive time and cost, and difficulties in the
interpretation of results [2].

For accurate detection of low-abundance targets, such as in the case of liquid biopsy in
which the fraction of target DNA within a cfDNA sample is potentially poorly represented,
deep sequencing is necessary to provide the required sensitivity [89]. Recent improvements
in sequencing instrumentation offer options with extremely high coverage depth for large
portions of the entire genome in a single sample [90]. Although the cost of performing
NGS has decreased considerably [91], this method can have a relatively consistent cost
with a long turnaround time (often at least 3 days) and with variable sensitivity. Indeed,
when assays are designed to cover several genetic targets, the comprehensive nature of
NGS can provide value in efficiency and cost reduction, while NGS is more expensive and
time-consuming when analyzing a small number of variants or samples [92]. Moreover,
NGS does not always provide an absolute quantification of cfDNA meant as the total
number of DNA copies [42–44,50,93–97].

4.2.2. Non-NGS Methods

Real-time or qPCR, microarrays, and digital PCR (dPCR) are included in non-NGS
methods and offer a faster and less expensive detection option compared to NGS. These
methods are generally used to detect and quantify the presence of known specific mutations
or polymorphisms in cfDNA samples [14,68–71]. However, to enhance assay sensitivity,
improved PCR approaches were developed. To identify single base changes or short dele-
tion, the amplification refractory mutation system (ARMS-PCR) exploits sequence-specific
PCR primers that allow amplification of DNA only when the target is contained within the
sample, thus lowering the limit of detection in comparison with conventional PCR [71,72].
The same results can be obtained by peptide nucleic acid (PNA) clamp PCR, which prevents
the nucleic acid amplification of wild-type DNA, increasing the amplification of the mutant
DNA [73,74]. Another alternative is the co-amplification at lower denaturation temperature-
based PCR (COLD-PCR), which results in the enhancement of both known and unknown
minority alleles during PCR, irrespective of the mutation type and position. This method is
based on the exploitation of the critical temperature at which mutation-containing DNA is
preferentially melted over the wild type [71].

To increase the number of targets that can be examined simultaneously, PCR can be
coupled with mass spectrometry. After amplification, PCR products are analyzed with
mass spectrometry, searching for dozens of target mutations in a single reaction with great
sensitivity [75].

Besides encouraging results, qPCR efficiency may be affected by variations in am-
plification. Furthermore, qPCR measures the fluorescence accumulation of the amplified
product and requires normalization to a standard curve or to a reference, resulting in a
relative quantification. The main difference between qPCR and dPCR is that, unlike con-
ventional amplification, the reaction in dPCR is partitioned into thousands of sub-reactions,
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allowing absolute quantitation and high sensitivity. DPCR was first described in 1992 by
Sykes et al., who changed standard amplification with the integration of limiting dilution,
end-point PCR, and Poisson statistics [98]. While partitioning the samples in thousands of
independent amplification reactions, dPCR reach higher accuracy and an absolute quantifi-
cation of the target, which is determined by Poisson statistics. The evolution of the Sykes
method was achieved by Vogelstein and Kinzler who added the detection of the target
through fluorescent probes to the partitioning of the sample [99]. Current dPCR technology
uses reagents and workflows similar to those used for most standard TaqMan probe-based
assays with a smaller sample requirement, reducing cost and preserving precious samples.
The methods described by Sykes, Vogelstein, and Kinzler have been improved and are
commercially available as different platforms. dPCR amplification can be performed on a
microfluidic chip [100], microarrays [101], or spinning microfluidic discs [102] or can be
based on oil–water emulsions [76]. Moreover, dPCR technology enables high-throughput
analysis with a reduced cost compared with other methods while maintaining great sensi-
tivity and accuracy. Moreover, because cfDNA is poorly concentrated in plasma, repeated
testing on different sample aliquots may not be possible. DPCR can overcome this limit,
since it allows for an accurate detection and quantitation without separate calibration reac-
tions [103], resulting in a reagent and sample saving. Compared with commercial qPCR
assays [94], dPCR assays achieve a better limit of detection as well as a more accurate result.

However, dPCR shows practical drawbacks. The number of targets that can be
detected is significantly lower compared to NGS-based methods due to the possibility
of a multiplex from two to a maximum of six fluorophores using the most innovative
instruments. Moreover, limitations in droplet-to-droplet volume uniformity can influence
the quantification accuracy and reproducibility, but fluidics-based dPCR may offer an
opportunity to overcome this limitation [77,104]. Then, PCR efficiency can vary due to
different amplicon lengths [105], as longer amplicons are amplified less efficiently, which
might result in underestimation of the true cfDNA value [78]. Similarly, Dauber et al.
demonstrated that the cfDNA concentration was five times higher when using smaller
amplicons compared with larger amplicons [68]. Therefore, the use of short amplicons
is recommended for the accurate quantification of cfDNA to avoid underestimation of
the target.

NGS and dPCR techniques were demonstrated to produce similar results in different
application fields. The comparison on kidney transplant recipient samples highlighted no
significant differences in the detection of cfDNA, with a significant association between the
measurements obtained with both methods [106]. Moreover, lower limits of quantification
were similar and in line with what is already reported in the literature [107], even though
NGS method resulted more sensitive in the lower range than the dPCR method [106]. The
quantification of mixed chimerism after hematopoietic stem cell transplantation appeared
to be feasible with both methodologies conserving high performances in terms of sensitivity,
reproducibility, and linearity [108]. Conversely, dPCR performed better in the detection of
KRAS mutation in the oncologic field, with high sensitivity and specificity [79], and a limit
of quantification 10-fold lower compared to NGS [80].

A great advantage of dPCR is the possibility to obtain the absolute concentration of
the target, expressed as copies/µL or copies/mL, which is not influenced by fluctuations in
the background cfDNA, derived from the patient. Indeed, NGS results can be expressed
only in a cfDNA percentage that can be biased and underestimated as a consequence of
physiological or pathological conditions of the subject (e.g., concomitant infections, BMI,
exercise, etc.) [4,5,13–16]. The use of cfDNA as a concentration has also been shown to be
superior to the ratio as a biomarker for allograft rejection [81].

In contrast with amplification-based methods, an imaging single-DNA-molecules
method for high-precision cfDNA detection was developed. In the VANADIS assay
(PerkinElmer, Waltham, MA), DNA fragments are labeled with fluorescent oligonucleotides
specific for precise genetic targets, then circularized and copied multiple times before being
placed on a 96-well nanofilter microplate and analyzed by imaging [82]. This assay is now
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applied to prenatal screening with high accuracy [83,84]. Since this method does not require
DNA amplification and sequencing, it is easily implemented in any laboratory, scalable,
and fully automated.

5. Conclusions

Given the potential applications of cfDNA, this biomarker is increasing the general
agreement among clinicians in the oncology, prenatal, and transplantation fields. Despite
the encouraging results, however, the cfDNA analysis is not a reality as it is exploited in a
relatively small number of centers, and it is still considered a research marker to be further
validated. Challenges persist in cfDNA analysis, highlighted by the scarcity of biomarkers,
the necessity for developing highly sensitive methodologies, and the analytical complexities
linked to processing and interpretation. Nevertheless, ongoing research endeavors strive to
overcome these obstacles, potentially enhancing the clinical utility of cfDNA and facilitating
its integration into routine diagnostic practices.

Novel and more powerful technologies are improving the sensitivity and the per-
formances of cfDNA analysis, making its application easy, feasible, and attracting. NGS
and dPCR, which are the main players in liquid biopsy, serve distinct purposes. NGS is
a powerful tool for large-scale sequencing and genomics studies, while dPCR excels in
quantifying specific cfDNA targets with exceptional precision and sensitivity. Considering
the costs, NGS can be cost-effective for high-throughput sequencing projects but may be
expensive for small-scale studies, while dPCR is generally more cost-effective for targeted,
low-throughput applications. Therefore, the choice between these techniques should be
based on the specific research goals and the scale of the project.

It is true that currently it is not entirely clear whether cfDNA can be considered
a reliable diagnostic tool compared to standard methods. Regulations and regulatory
agencies may vary significantly from country to country, which can influence the adoption
and use of cfDNA in clinical practice [109,110].

In addition, the lack of standardized guidelines for the validation and reporting of
cfDNA methods is a significant challenge in the field. While some progress has been
made in prenatal diagnosis, there remains a need for comprehensive guidelines across
various applications of cfDNA analysis [111]. Establishing such guidelines would not only
enhance the reliability and reproducibility of cfDNA-based tests but also facilitate their
wider adoption in clinical practice.

However, there is growing evidence suggesting the potential of cfDNA as a diagnostic
marker in various clinical contexts, such as oncology, prenatal screening, and transplan-
tation medicine. While further research and validation of cfDNA as a diagnostic tool are
needed, advances in technology and understanding of cfDNA biology are contributing to
making it increasingly promising as an integral part of disease diagnosis and monitoring.
With additional studies and international collaborations, we may be able to better clarify
the role and efficacy of cfDNA in different clinical settings and harmonize regulations to
promote uniform adoption of this innovative technology.

In conclusion, the introduction of liquid biopsy offers new insights into disease de-
tection and treatment response monitoring in the evolving field of precision medicine. In
the future, cfDNA could be applied transversely to achieve a more personalized medicine,
improving patients’ quality of life.
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