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Abstract: Fluorescence in situ hybridization (FISH), a molecular cytogenetic technique that enables
the visualization and identification of specific DNA sequences within chromosomes, has emerged
as a pivotal tool in plant breeding programs, particularly in the case of Veronica species. Veronica, a
genus with a complex reproductive system, often poses challenges in accurately identifying hybrids
because of its tendency to hybridize, which leads to intricate genetic variation. This study focused
on the use of FISH as a prescreening method to identify true hybrids in Veronica breeding programs.
FISH analysis was first performed on the parents to identify their 45S and 5S rDNA signals, along
with their respective chromosome numbers. The signals were then compared with those of the twenty
progenies with reference to their supposed parents. Five true hybrids, seven self-pollinated progenies,
and eight false hybrids were identified through FISH. The findings highlight the significance of FISH
as a screening method that contributes significantly to the efficiency of Veronica breeding programs
by ensuring the preservation of desired genetic traits and minimizing the inadvertent inclusion of
misidentified hybrids. To conclude, this study underscores the vital role of FISH in enhancing the
precision and success of breeding programs and opens new avenues for improved breeding strategies
and crop development.

Keywords: Veronica; FISH; cytogenetics; rDNA; marker-assisted breeding

1. Introduction

Fluorescence in situ hybridization (FISH) is an important molecular cytogenetic tool
widely used to distinguish complementary DNA sequences using fluorescently labeled
probes [1,2]. Along with the chromosome karyotype, FISH data provide the basic informa-
tion needed for successful crossbreeding, which includes ploidy level, species chromosome
characteristics, and parental origin [3]. FISH analysis helps determine the ploidy level
and detect aneuploidy, which are important factors affecting pollen fertility and crossing
efficiency in roses [4]. Likewise, results from this technique make it easier to visually
authenticate hybrids and help track the origins of specific chromosomes, as applied in lily
breeding [5]. Owing to its efficient detection and accuracy, the use of FISH analysis for
ornamental plants, which have high demand and ornamental significance, is invaluable.

Currently, interest in the use of Veronica species as indoor and landscape plants is at a
peak. Veronica, a large genus of the Plantaginaceae family with over 450 species, is highly
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adaptable to various ecological conditions and horticulturally valued for its prolonged
flowering and easy maintenance. Their long flowering period varies from spring to fall,
and they come in a wide array of colors, including white, pink, purple, and blue [6,7].
Between 2018 and 2019, there was an eight-fold increase in the average trading volume
of Veronica flowers and an almost 50% increase in its unit price [8]. Owing to its desirable
ornamental characteristics and increased market demand, an increasing number of studies
have been conducted on its classification, morphology, propagation, and breeding [9–11].

Several domestic and wild Veronica species have been used as parents for plant breed-
ing programs for Veronica species with desirable characteristics. In Korea, certain native
taxa have been evaluated for their growth and flowering characteristics and have at least 40
to over 110 spikes per plant with minute florets ranging from 7 to 10 mm in diameter [11].
Because Veronica is self-compatible, many progenies are produced in one crossing and
have a mixture of inbred, false, and true hybrids; thus, self-pollination is a possibility and
inevitable [12,13]. A similar situation was observed in closely comparable spiked flowers
of Plantago species [14].

Although there are traditional screening methods, such as direct investigation using
gross morphological or physical characteristics, there are some cases where these methods
may not be sufficient, as hybrids may resemble both parents [15]. In breeding programs,
successful interspecific hybridization has been screened using traditional approaches cou-
pled with high-throughput methods such as flow cytometry [16] and single-nucleotide
polymorphism markers [17]. However, despite their advantages, these methods can only
provide limited information for visibly identifying chromosome structure and organiza-
tion. An alternative screening method that provides essential information for interspecific
hybrids is the use of molecular cytogenetic tools such as karyotyping and FISH [18].

FISH is a well-established molecular cytogenetic technique that primarily focuses on
chromosomal-level phylogeny investigation [19]. FISH not only locates a target sequence
but also enables qualitative and quantitative analysis by employing labeled nucleic acid
probes in conjunction with chromosomes, interphase nuclei, or DNA fibers [20]. This
technique has found extensive applications in the identification of specific chromosomal
regions and analysis of their composition, spatial positioning, and dynamic changes in
chromatin during the cell cycle [19–21]. Moreover, FISH has been widely employed to
elucidate the physical map, structure, and evolution of the genome and study interspecies
relationships [3,5,20]. Ribosomal DNA (rDNA), comprised of 45S and 5S, has been shown
to be the most widely used markers, which present a high copy number and are tandemly
arranged with different chromosomal distributions [21,22].

FISH analysis was conducted to determine the cytogenetic features of native Korean
Veronica taxa, including the chromosome number and rDNA distribution patterns [23]. To
date, FISH data have been used to cytogenetically characterize wild species and cultivars
to support evolutionary and phylogenetic studies of Veronica spp. [13,24]. We hypothesized
that the identification of true hybrids might be based on rDNA distribution patterns that
are accurately and visibly identifiable in chromosome spreads. By determining the 5S and
45S loci of the parents and progenies, we were able to differentiate true hybrids from self-
pollination and false offspring produced via breeding programs. Only a limited number
of studies have used rDNA-FISH analysis as a screening method; hence, we conducted
this study.

2. Results

To determine the true hybrids, FISH analysis was first performed on the parents to
identify their 45S and 5S rDNA signals, along with their respective chromosome numbers.
The signals were then compared with those of the 20 progenies with reference to their
supposed parents. The FISH results for the parents as well as the results of crossing studies
producing true, self-pollinated, and false hybrids are presented in Table 1.
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Table 1. FISH analyses of parent Korean native Veronica species and cultivars, and the results of
crossing studies producing true hybrids, self-pollinated Veronica species, and false Veronica hybrids.

Plant Sample Species/Cultivars Chromosome
Number (2n)

FISH Signals

5S rDNA 45S rDNA

Parents

Veronica pyrethrina Nakai 34 2 12
Veronica dahurica Steven 34 2 10

Veronica pusanensis Y. N. Lee 34 2 10
Veronica kiusiana var. glabrifolia 34 2 12

Veronica nakaiana Ohwi 34 2 8
Veronica spicata ‘Ulster Blue Dwarf’ 68 4 18

Veronica longifolia ‘Blue Shades’ 68 4 28
Veronica spicata f. nana ‘Blauteppich’ 34 2 12

Veronica ‘Veronica Blue’ 68 4 28

Classification Code Supposed Parents (Mo × Fa) Chromosome
Number (2n)

FISH Signals

5S rDNA 45S rDNA

True hybrids

Ve-31 V. pyrethrina Nakai × V. pusanensis Y. N. Lee 34 2 11
Ve-55-1 V. pusanensis Y. N. Lee × V. pyrethrina Nakai 34 2 11
Ve-57-1 V. pusanensis Y. N. Lee × V. kiusiana var. glabrifolia 34 2 11
Ve-86 V. kiusiana var. glabrifolia × V. dahurica Steven 34 2 11
Ve-88 V. kiusiana var. glabrifolia × V. pusanensis Y. N. Lee 34 2 11

Self-pollinated
progenies

Ve-48 V. pusanensis Y. N. Lee × V. longifolia ‘Blue Shades’ 34 2 10
Ve-56 V. pusanensis Y. N. Lee × V. kiusiana var. glabrifolia (S2) 34 2 10

Ve-59-2 V. dahurica Steven × V. spicata f.nana ‘Blauteppich’ 34 2 10
Ve-65-2 V. dahurica Steven × V. pyrethrina Nakai 34 2 10
Ve-77 V. kiusiana var. glabrifolia × V. spicata f. nana ‘Blauteppich’ 34 2 12
Ve-91 V. nakaiana Ohwi × V. spicata f. nana ‘Blauteppich’ 34 2 8

Ve-153 V. ‘Ulster Blue Dwarf’ × V. kiusiana var. glabrifolia 68 4 18

False hybrids

Ve-33 V. pyrethrina Nakai × V. spicata f. nana ‘Blauteppich’ 34 2 10
Ve-38 V. pyrethrina Nakai × V. spicata ‘Ulster Blue Dwarf’ 34 2 10

Ve-65-1 V. dahurica Steven × V. pyrethrina Nakai 68 4 20
Ve-75 V. kiusiana var. glabrifolia × V. spicata f. nana ‘Blauteppich’ 34 2 16
Ve-87 V. kiusiana var. glabrifolia × V. pusanensis Y. N. Lee 34 2 16
Ve-109 V. ‘Veronica Blue’ × V. kiusiana var. glabrifolia 68 4 16
Ve-131 V. spicata f. nana ‘Blauteppich’ × V. pyrethrina Nakai 34 2 16
Ve-132 V. spicata f. nana ‘Blauteppich’ × V. pyrethrina Nakai 34 2 15

2.1. Parents

There were nine parents of the screened progenies, of which five were native Korean
species (Figure 1A) and four were cultivars (Figure 1B). All Korean native species as well
as one cultivar, Veronica spicata f. nana ‘Blauteppich’, showed diploid complements 2n = 34,
while the other three cultivars were tetraploids with 2n = 68 (Figure 1). FISH analysis
revealed that diploid species and cultivars possessed a pair of 5S rDNA loci, whereas
tetraploid parents possessed two pairs of 5S rDNA loci. In contrast, a variable number of
45S rDNA loci were observed in these species and cultivars. Four pairs of 45S rDNA loci
were identified in Veronica nakaiana Ohwi. Veronica dahurica Steven and Veronica pusanensis
Y. N. Lee possessed five pairs of 45S rDNA loci, whereas Veronica pyrethrina Nakai, Veronica
kiusiana var. glabrifolia, and V. spicata f. nana ‘Blauteppich’ had six pairs. The tetraploid
cultivars, Veronica spicata ‘Ulster Blue Dwarf’, and Veronica ‘Veronica Blue’, as well as
Veronica longifolia ‘Blue Shades’, were observed to have nine and fourteen pairs of 45S rDNA
loci, respectively.
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Figure 1. Parent Veronica species. (A) Korean native species, namely: (1) V. pyrethrina Nakai; (2) V. dahurica
Steven; (3) V. pusanensis Y. N. Lee; (4) V. kiusiana var. glabrifolia; (5) V. nakaiana Ohwi and (B) cultivars, namely:
(1) V. spicata ‘Ulster Blue Dwarf’; (2) V. longifolia ‘Blue Shades’; (3) V. spicata f. nana ‘Blauteppich’;
and (4) V. ‘Veronica Blue’. 5S and 45S rDNA signals are indicated by the green and red fluorescence,
respectively. Scale bar = 10 µm, 400× magnification.

2.2. True Hybrids

The results of the hybridization studies, which produced five true hybrids, are shown
in Figure 2. The parents used for crossing were all diploid, with one pair of 5S rDNA loci
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and either five or six pairs of 45S rDNA loci (Figure 2). The results showed that all five
progenies had diploid complements with 2n = 34, similar to their parents. A pair of 5S
rDNA loci and 11 45S rDNA FISH signals was detected in all hybrids. The FISH signals of
5S and 45S rDNA in the chromosomal complement corresponded to the average number
of rDNA signals in both parents. The female parents of Ve-31, Ve-86, and Ve-88 possessed
six pairs of 45S rDNA loci, whereas the male parents had five pairs of 45S rDNA loci. In
contrast, Ve-55-1 and Ve 57-1 whose female parent is V. pusanensis Y. N. Lee, contain five
pairs of 45S rDNA loci, while the male parents both have six pairs of 45S rDNA FISH
signals. All progenies had the expected number of eleven 45S rDNA sites.
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pair of 5S rDNA loci, except for Ve-153, which was tetraploid (2n = 68) with two pairs of 
5S rDNA loci (Figure 3). Ve-48 and Ve-56, whose female parent was V. pusanensis Y. N. 
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Figure 2. Progenies screened as true hybrids: (1) Ve-31 (V. pyrethrina Nakai × V. pusanensis Y. N. Lee);
(2) Ve-55-1 (V. pusanensis Y. N. Lee × V. pyrethrina Nakai); (3) Ve-57-1 (V. pusanensis Y. N. Lee × V.
kiusiana var. glabrifolia); (4) Ve-86 (V. kiusiana var. glabrifolia × V. dahurica Steven); and (5) Ve-88
(V. kiusiana var. glabrifolia × V. pusanensis Y. N. Lee). 5S and 45S rDNA signals are indicated by the
green and red fluorescence, respectively. Scale bar = 10 µm, 400× magnification.

2.3. Self-Pollinated Progenies

The seven crossing studies that resulted in the self-pollinated Veronica species are
shown in Figure 3. All self-pollinated progenies were diploids (2n = 34), possessing one
pair of 5S rDNA loci, except for Ve-153, which was tetraploid (2n = 68) with two pairs of 5S
rDNA loci (Figure 3). Ve-48 and Ve-56, whose female parent was V. pusanensis Y. N. Lee,
possessed five pairs of 45S rDNA loci. Ve-59-2 and Ve-65-2, with V. dahurica Steven as their
female parent, also had five pairs of 45S rDNA loci. Ve-77 had a similar number as its
parents, with six pairs of 45S rDNA loci. Ve-91 had four pairs of 45S rDNA loci, similar
to its female parent, V. nakaiana Ohwi. Nine pairs of 45S rDNA signals were detected in
Ve-153, similar to its female parent, V. ‘Ulster Blue Dwarf’.



Plants 2024, 13, 1264 6 of 12

Plants 2024, 13, x FOR PEER REVIEW 6 of 12 
 

 

as its parents, with six pairs of 45S rDNA loci. Ve-91 had four pairs of 45S rDNA loci, 
similar to its female parent, V. nakaiana Ohwi. Nine pairs of 45S rDNA signals were de-
tected in Ve-153, similar to its female parent, V. ‘Ulster Blue Dwarf’. 

 
Figure 3. Progenies screened as self-pollinated: (1) Ve-48 (V. pusanensis Y. N. Lee × V. longifolia ‘Blue 
Shades’); (2) Ve-56 (V. pusanensis Y. N. Lee × V. kiusiana var. glabrifolia (S2)); (3) Ve-59-2 (V. dahurica 
Steven × V. spicata f. nana ‘Blauteppich’); (4) Ve-65-2 (V. dahurica Steven × V. pyrethrina Nakai); (5) 
Ve-77 (V. kiusiana var. glabrifolia × V. spicata f. nana ‘Blauteppich’); (6) Ve-91 (V. nakaiana Ohwi × V. 
spicata f. nana ‘Blauteppich’); and (7) Ve-153 (V. spicata ‘Ulster Blue Dwarf’ × V. kiusiana var. glabri-
folia). 5S and 45S rDNA signals are indicated by the green and red fluorescence, respectively. Scale 
bar = 10 µm, 400× magnification. 

2.4. False Hybrids 
Eight false hybrids were produced in crossing studies, as shown in Figure 4. Proge-

nies are hypothesized to be false hybrids when their chromosome number or rDNA loci 
is different from the average chromosome number and rDNA loci of both parents or dif-
ferent from the corresponding number of chromosomes or rDNA loci in one of their par-
ents. All progenies were diploid (2n = 34), except for Ve-65-1 and Ve-109, which were tet-
raploid (2n = 68) (Figure 4). All diploid progenies possessed one pair of 5S rDNA loci, 
whereas tetraploid progenies had two pairs of 5S rDNA loci. The number of 45S rDNA 
sequences varied among the progenies. Ve-87, whose supposed parents were similar to 
the true hybrid Ve-88, was observed to have 16 45S rDNA sites in contrast to the 11 FISH 
signals found in Ve-88. Eight pairs of 45S hybridization signals were detected in Ve-75, 
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Figure 3. Progenies screened as self-pollinated: (1) Ve-48 (V. pusanensis Y. N. Lee × V. longifolia ‘Blue
Shades’); (2) Ve-56 (V. pusanensis Y. N. Lee × V. kiusiana var. glabrifolia (S2)); (3) Ve-59-2 (V. dahurica
Steven × V. spicata f. nana ‘Blauteppich’); (4) Ve-65-2 (V. dahurica Steven × V. pyrethrina Nakai);
(5) Ve-77 (V. kiusiana var. glabrifolia × V. spicata f. nana ‘Blauteppich’); (6) Ve-91 (V. nakaiana Ohwi
× V. spicata f. nana ‘Blauteppich’); and (7) Ve-153 (V. spicata ‘Ulster Blue Dwarf’ × V. kiusiana var.
glabrifolia). 5S and 45S rDNA signals are indicated by the green and red fluorescence, respectively.
Scale bar = 10 µm, 400× magnification.

2.4. False Hybrids

Eight false hybrids were produced in crossing studies, as shown in Figure 4. Progenies
are hypothesized to be false hybrids when their chromosome number or rDNA loci is
different from the average chromosome number and rDNA loci of both parents or different
from the corresponding number of chromosomes or rDNA loci in one of their parents. All
progenies were diploid (2n = 34), except for Ve-65-1 and Ve-109, which were tetraploid
(2n = 68) (Figure 4). All diploid progenies possessed one pair of 5S rDNA loci, whereas
tetraploid progenies had two pairs of 5S rDNA loci. The number of 45S rDNA sequences
varied among the progenies. Ve-87, whose supposed parents were similar to the true hybrid
Ve-88, was observed to have 16 45S rDNA sites in contrast to the 11 FISH signals found in
Ve-88. Eight pairs of 45S hybridization signals were detected in Ve-75, with the same parent
as the self-pollinated progeny, Ve-77, which possessed only six pairs of 45S rDNA signals.
Ve-65-1 and Ve-65-2 (self-pollinated progeny) had the same parents; however, the former
was found to be tetraploid with ten pairs of 45S rDNA loci compared to the latter, which
was diploid with only five pairs of 45S rDNA loci. Ve-131 and Ve-132 had the same parents
but possessed different 45S rDNA loci at 16 and 15, respectively. Ve-38 and Ve-109, which
resulted from a supposed cross-hybridization between a diploid and a tetraploid parent,
did not possess the expected triploid chromosome number but were diploid and tetraploid,
respectively, and had different 45S rDNA signals in contrast with their supposed parents.
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Figure 4. Progenies screened as false hybrids: (1) Ve-33 (V. pyrethrina Nakai × V. spicata f. nana
‘Blauteppich’); (2) Ve-38 (V. pyrethrina Nakai × V. spicata ‘Ulster Blue Dwarf’); (3) Ve-65-1 (V. dahurica
Steven × V. pyrethrina Nakai); (4) Ve-75 (V. kiusiana var. glabrifolia × V. spicata f. nana ‘Blauteppich;
(5) Ve-87 (V. kiusiana var. glabrifolia × V. pusanensis Y. N. Lee); (6) Ve-109 (V. ‘Veronica Blue’ × V.
kiusiana var. glabrifolia); (7) Ve-131 (V. spicata f. nana ‘Blauteppich’ × V. pyrethrina Nakai); and (8)
Ve-132 (V. spicata f. nana ‘Blauteppich’ × V. pyrethrina Nakai). 5S and 45S rDNA signals are indicated
by the green and red fluorescence, respectively. Scale bar = 10 µm, 400× magnification.

3. Discussion

In plant breeding programs, new experimental hybrids are produced by crossing two
parent crops. In many plant species such as lilies [25], crossbreeding is a fundamental breed-
ing strategy in which hybrid affinity is crucial for success. The production of false hybrids
is a frequent outcome of hybridization, making it difficult to determine the authenticity
of the hybrid [26]. Following cross-hybridization, distinguishing true hybrids is not only
vital in developing a breeding program but also essential in enhancing hybrid varieties.
However, current approaches to hybrid identification, whether through morphological or
molecular means, are both laborious and costly and require specialized knowledge, skills,
and specific laboratory equipment [27].
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Since the number of chromosomes and karyotypes of a species or cultivar is gener-
ally stable, the conventional cytogenetic method of karyotype analysis has been useful in
rapidly classifying plant species and verifying alien disomic addition lines in breeding
through the identification of some basic cytological parameters [28–30]. However, it cannot
distinguish individual chromosomes with similar morphology, size, and parental origin
from a pair of chromosomes, such as Veronica species with small and similarly sized chro-
mosomes [6]. FISH, which maps repetitive or single-copy sequences on the chromosomes,
serves as an important tool in plant cytogenetics. 5S and 45S rDNA, which are highly
conserved tandem repeat sequences, are generally used as cytogenetic markers for routine
FISH analyses of plant species [31–33]. These genetic markers display variability in both
intraspecific and interspecific hybrids, as indicated by differences in the intensity, number,
and location of hybridization signals [34]. Hybrids can be confirmed cytogenetically based
on chromosomal traits using in situ hybridization techniques at the earliest growth stage.
FISH is instrumental in detecting hybrids with probes employed as markers to determine
the number and position of rRNA genes on chromosomes [35].

In Veronica progenies screened as true hybrids, the FISH signals of 5S and 45S rDNA
in their chromosome complements were the average for both parents. FISH has also been
utilized to validate hybridization status and investigate genetic diversity in progenies
or developed hybrids in other important horticultural plants, such as sweet potato [36],
Passiflora [37], and Thinopyrum elongatum [38]. The first attempt to use FISH with 25S
rDNA as a probe proved to be sufficient for hybrid status verification in some Lilium
hybrids [35]. In a study by Wang et al. [5], Asiatic hybrid lilies with different ploidy levels
were crossbred. Consequently, FISH analysis was successfully conducted on the offspring
using 45S rDNA as a probe to visually confirm the authenticity of the hybrid and trace the
origins of specific chromosomes. In addition, FISH karyotype analyses using 5S and 45S
rDNA probes in xBrassicaraphanus line BB#5, a hybrid of Brassica rapa and Raphanus sativus,
showed a combined rDNA pattern for the two parental species [33]. In first-generation (F1)
hybrids, the 45S rDNA loci inherited from each parent are often conserved and undergo
differential transcriptional silencing [39–41].

FISH analyses of Veronica hybrids screened as self-pollinated showed similar chromo-
some numbers as the female parents, as well as their 5S and 45S rDNA FISH signals. Ve-56
had parents similar to the true hybrid Ve-57-1; however, the number of 45S rDNA sites
detected was not the expected average of both parents but was comparable to that of the
female parent, V. pusanensis Y. N. Lee, and Ve-48. Hybridization between the tetraploid
V. ‘Ulster Blue Dwarf’ and the diploid V. kiusiana var. glabrifolia resulted in a tetraploid
progeny (Ve-153) with rDNA signals similar to those of the female parent instead of the
expected triploid hybrid with 2n = 51. Ve-59-2 and Ve-65-2 had similar numbers of hy-
bridization signals as their female parent, V. dahurica Steven. Ve-91, a cross-hybridization
between V. nakaiana Ohwi and V. spicata f. nana ‘Blauteppich’, had eight 45S rDNA FISH sig-
nals similar to those of its female parent. Some Veronica species, such as Veronica cymbalaria
Bodard and Veronica persica Poir, have automatic self-crossing abilities [42]. Furthermore,
V. spicata subspecies were described as self-compatible, protogynous, and entomophilous
species, and were found to be self-pollinated when grown in strict isolation [43]. Veron-
ica is self-compatible; thus, self-pollination during cross-hybridization is possible [12,13].
In tomatoes, less hybridization occurs because of the large number of self-pollinating
plants [44].

False hybrids may arise from misclassification or misidentification of parent plants.
Eight false or misidentified hybrids were classified using rDNA-FISH analysis, three of
which had parents similar to the identified true and self-pollinated Veronica species; how-
ever, their chromosomal characteristics were different. The 45S rDNA signal distribution of
these hybrids did not correspond to the average rDNA loci of both parents or at least to the
rDNA loci similar to one of their parents, thus characterizing them as false hybrids.

In interspecific hybrid breeding programs, a reliable method for identifying parental
species and verifying true hybrids is necessary to ensure the production of desired materi-
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als and achieve the expected genetic gains [45]. FISH using 5S and 45S rDNA probes in
metaphase chromosomes, as confirmed in this study, allows for a quick and clear deter-
mination of the genomic composition of hybrid plants [46,47], making it a suitable tool to
identify hybrids in breeding programs and to analyze the genomes of the genus Veronica.

4. Materials and Methods
4.1. Plant Materials

Young roots were harvested from the plant materials of the Korean Veronica wild
species and the cultivars that served as parents (Table 2).

Table 2. Veronica taxa used as parents in the breeding program.

No. Veronica Taxa

Korean native species
1 Veronica pyrethrina Nakai
2 Veronica dahurica Steven
3 Veronica pusanensis Y. N. Lee
4 Veronica kiusiana var. glabrifolia
5 Veronica nakaiana Ohwi

Cultivars
1 Veronica spicata ‘Ulster Blue Dwarf’
2 Veronica longifolia ‘Blue Shades’
3 Veronica spicata f. nana ‘Blauteppich’
4 Veronica ‘Veronica Blue’

Similarly, twenty (20) progenies (Table 3) were obtained from the Useful Plant Re-
sources Center of the Korea National Arboretum, Republic of Korea.

Table 3. Progenies developed from cross breeding with their respective population code.

No. Code Supposed Parents (Mo × Fa)

1 Ve-31 V. pyrethrina Nakai × V. pusanensis Y. N. Lee
2 Ve-33 V. pyrethrina Nakai ×V. spicata f. nana ‘Blauteppich’
3 Ve-38 V. pyrethrina Nakai × V. spicata ‘Ulster Blue Dwarf’
4 Ve-48 V. pusanensis Y. N. Lee × V. longifolia ‘Blue Shades’
5 Ve-55-1 V. pusanensis Y. N. Lee × V. pyrethrina Nakai
6 Ve-56 V. pusanensis Y. N. Lee × V. kiusiana var. glabrifolia (S2)
7 Ve-57-1 V. pusanensis Y. N. Lee × V. kiusiana var. glabrifolia
8 Ve-59-2 V. dahurica Steven × V. spicata f. nana ‘Blauteppich’
9 Ve-65-1 V. dahurica Steven × V. pyrethrina Nakai
10 Ve-65-2 V. dahurica Steven × V. pyrethrina Nakai
11 Ve-75 V. kiusiana var. glabrifolia × V. spicata f. nana ‘Blauteppich’
12 Ve-77 V. kiusiana var. glabrifolia × V. spicata f. nana ‘Blauteppich’
13 Ve-86 V. kiusiana var. glabrifolia × V. dahurica Steven
14 Ve-87 V. kiusiana var. glabrifolia × V. pusanensis Y. N. Lee
15 Ve-88 V. kiusiana var. glabrifolia × V. pusanensis Y. N. Lee
16 Ve-91 V. nakaiana Ohwi × V. spicata f. nana ‘Blauteppich’
17 Ve-109 V. ‘Veronica Blue’ × V. kiusiana var. glabrifolia
18 Ve-131 V. spicata f. nana ‘Blauteppich’ × V. pyrethrina Nakai
19 Ve-132 V. spicata f. nana ‘Blauteppich’ × V. pyrethrina Nakai
20 Ve-153 V. spicata ‘Ulster Blue Dwarf’ × V. kiusiana var. glabrifolia

4.2. Chromosome Preparation

Modified fixation and chromosome preparation were performed following the meth-
ods described by Ha et al. [23]. Properly cleaned and washed harvested root tips were
treated with 2 mM 8-hydroxyquinoline for 5 h at 18 ◦C. Carnoy’s solution (3:1, acetic
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acid: ethanol, v/v) was used to fix the roots overnight at 25 ◦C. The root tips were then
transferred to a 70% ethanol solution at 4 ◦C to preserve the materials.

The fixed root tips were placed in distilled water prior to enzyme mixture (1% cellulose,
cytohelicase, and pectolyase) treatment at 37 ◦C for 90 min. The enzyme-treated roots
were transferred to a 1.5 mL tube containing Carnoy’s solution and vortexed for 20 s.
Homogenized root meristems were placed on ice for 5 min and centrifuged at 13,000 rpm
to collect the pellets. The supernatant was discarded, and the pellet was immediately
resuspended in an acetic acid–ethanol (9:1) solution. The final suspension was pipetted on
an 80 ◦C pre-warmed glass slide in a humid chamber and air-dried at room temperature.

4.3. Fluorescence In Situ Hybridization

FISH was performed using the modified procedure described by Lim et al. [48].
Pre-labeled probes (PLOPs) of 5S and 45S rDNA sequences were used following the
methods described by Waminal et al. [49]. The FISH hybridization mixture consists of
50% formamide, 10% dextran sulfate, 20× saline sodium citrate (SSC) buffer, 50 ng/µL of
each PLOP, and nuclease-free water with a 40 µL total volume. The mixture was spread
onto prepared chromosomal slides and denatured on a slide heater at 80 ◦C for 5 min. The
slides were then incubated at room temperature in a humid chamber for 30 min. After
hybridization, the slides were washed sequentially with 2× SSC at room temperature for
10 min, 0.1× SSC at 42 ◦C for 25 min, and 2× SSC at room temperature for 5 min and
then dehydrated in a series of ethanol concentrations of 70%, 90%, and 100% at room
temperature for 3 min each. The slides were counterstained with Vectashield (H-1000,
Vector Laboratories, Newark, CA, USA) with 1 µg/mL−1 4′,6-diamidino-2-phenylindole
(Roche, Indianapolis, IN, USA) and observed under a fluorescence microscope (Olympus
BX53, Olympus, Tokyo, Japan) with a built-in CCD camera (CoolSNAP™ cf, Photometrics,
Tucson, AZ, USA) using an oil lens (×100 magnification).

5. Conclusions

The study results demonstrated the effectiveness of FISH in distinguishing true hybrids
from plants produced through other genetic mechanisms. These findings highlight the
critical role of FISH as a rapid prescreening method that greatly enhances the efficiency of
Veronica breeding programs by maintaining the desired genetic characteristics and reducing
the inconvenience and consequences of incorporating misidentified hybrids.
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