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Abstract: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) are novel oral anti-hyperglycemic
drugs that demonstrate cardiovascular and metabolic benefits for patients with type 2 diabetes
(T2D), heart failure (HF), and chronic kidney disease (CKD). There is limited knowledge of real-
world data to predict adherence to SGLT-2i in an ambulatory setting. The study aims to predict
SGLT-2i adherence in patients with T2D and/or HF and/or CKD by building a prediction model
using electronic prescription claims data presented within EPIC datasets. This is a retrospective
study of 174 adult patients prescribed SGLT-2i at UC San Diego Health ambulatory pharmacies
between 1 January 2020 to 30 April 2021. Adherence was measured by the proportion of days covered
(PDC). R packages were used to identify regression and non-linear regression predictive models to
predict adherence. Age, gender, race/ethnicity, hemoglobin A1c, and insurance plan were included
in the model. Diabetes control based on hemoglobin A1c (HbA1c) and the glomerular filtration
rate (GFR) was also evaluated using Welch t-test with a p-value of 0.05. The best predictive model
for measuring adherence was the simple decision tree. It had the highest area under the curve
(AUC) of 74% and accuracy of 82%. The model accounted for 21 variables with the main node
predictors, including glycated hemoglobin, age, gender, and insurance plan payment amount. The
adherence rate was inversely proportional to HbA1c and directly proportional to the plan payment
amount. As for secondary outcomes, HbA1c values from baseline till 90 days post-treatment duration
were consistently higher in the non-compliant group: 7.4% vs. 9.6%, p < 0.001 for the PDC ≥ 0.80
and PDC < 0.80, respectively. Baseline eGFR was 55.18 mL/min/1.73m2 vs. 54.23 mL/min/m2 at
90 days. The mean eGFR at the end of the study (minimum of 90 days of treatment) was statistically
different between the groups: 53.1 vs. 59.6 mL/min/1.73 m2, p < 0.001 for the PDC ≥ 0.80 and
PDC < 0.80, respectively. Adherence predictive models will help clinicians to tailor regimens based
on non-adherence risk scores.

Keywords: adherence; ambulatory care; SGLT-2 inhibitors; diabetes; models; statistical;
administrative claims; healthcare

1. Introduction

Sodium-glucose co-transporter 2 inhibitors (SGLT-2i) lower blood glucose concentra-
tions by blocking glucose reabsorption in the kidneys. In addition to their glycemic effect,
many large clinical trials have demonstrated reductions in hospitalization for heart failure
(HF), cardiovascular death, all-cause mortality, and slowed the progression of chronic
kidney disease (CKD) [1]. National guidelines recommend the use of SGLT-2i in patients
with type 2 diabetes (T2D), particularly with HF or CKD [2]. New guidelines expanded
the role of SGLT2is medications in preserved and reduced heart failure ejection fraction [3].
Based on the results of EMPA-KIDNEY trial, the SGLT2 inhibitor empagliflozin was also
FDA approved a new indication for the treatment of adults with chronic kidney disease
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(CKD) regardless of diabetes diagnosis [4,5]. Despite the robust evidence and guideline
recommendations, the prescribing of SGLT-2i remains low in real-world practice [6].

Medication adherence is defined as the “active, voluntary and collaborative involve-
ment of the patient in a mutually acceptable course of behavior to produce a therapeutic
result” [7]. Appropriate prescription drug use is a public health challenge. This is specifi-
cally a challenge among patients with chronic diseases.

Adherence to medication is a multifaceted topic influenced by a diverse range of
patient and system factors. These factors encompass age, gender, socioeconomic status, dis-
ease state, pill burden, as well as other systemic considerations like affordability, insurance
coverage, and FDA-approved indications [8–10].

Many conceptual models have been developed to help understand the impact of the
above factors and their contribution to medication adherence. The conceptual framework
guiding this research was based on components of the adaptable framework presented by
Kai Qi and colleagues [11]. The conceptual figure adopted from the systematic review is
presented in Figure 1.
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Figure 1. Conceptual model for contributing factors to medication adherence [11].

Based on the conceptual model, variables related to patient and condition factors such
as age, gender, race, ethnicity are defined as adherence independent variables. Comorbid
conditions such asT2D, HF and CKD are also known to play a role in medication adherence.

Another important variable that is listed within the conceptual model is the healthcare
system factor. Eaddy et al. demonstrated that an increasing patient share of medication
costs was significantly associated with a decrease in adherence [12]. Another study showed
that co-insurance changes may lead to decreased adherence to proven effective therapies,
particularly for overpriced agents with higher patient cost share [13]. Co-insurance adjust-
ments may disproportionately affect adherence to proven effective disease management.
Other barriers to medication adherence include lack of insurance coverage and formu-
lary restrictions [14]. The above studies emphasized the delicate balance between cost
considerations and optimal patient care and provided insights on the need to incorporate
the financial factors within the variables determining patient acquisition and consequent
adherence to chronic medication regimens.

As for the outcome variable in question, adherence to medications have generally
been studied as a binary measure (adherent/nonadherent). The use of proportion of
days covered metric (PDC) was one of the outcome variables that have been widely
used. The cut-off value of PDC was extensively researched [15,16]. This cut-off value was
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defined as PDC of 0.8–0.9 in most studies which was accompanied by clinical laboratory or
physiological measures.

Based on the above independent variables, several studies were conducted to evaluate
machine learning in adherence studies. Such studies were conducted to evaluate and
predict patient’s adherence patterns and to implement a model to proactively identify
patients at higher risk of non-adherence. Zullig, et al. evaluated predictive modeling
using statins’ adherence using Medicare part A, B and D claims to evaluate if predictive
analytics can proactively determine which patients are at risk of nonadherence, thus
allowing for timely engagement in adherence-improving interventions [17]. Another
predictive modeling study was conducted by Gu, et al. where the researchers applied
various ensemble learning and deep learning models to predict medication adherence
among patients’ self-administering injectable medication at home. The prediction model
was based on the use of smart sharp disposal bins data to evaluate patient’s adherence to
the injectable drug. Thus building an algorithm to identify high risk of non-adherence [18].

As a relatively newer class, SGLT-2i adherence has not been studied extensively, and
there is a need for tools that can help to predict adherence patterns in chronic conditions.
Our scientific question is whether we can predict SGLT2i adherence in T2D, HF, and CKD
patients. Thus, herein, the study’s primary aim is to build a model to predict SGLT-2i
adherence in ambulatory care setting using electronic medical records (EMR) in EPIC
Datasets along with patient’s prescription filling history.

The secondary aim is to evaluate diabetes control by comparing glycated hemoglobin
between the compliant and non-compliant group defined by proportion of days covered
(PDC > 0.8 and <0.8) throughout the study, the definition of compliance cut-off will be
reviewed within the methods section. Chronic kidney disease progression was evaluated
based on estimated glomerular filtration rate (eGFR) value among both groups.

2. Materials and Methods
2.1. Study Design

This is a retrospective observational study, collected data within the timeline between
1 January 2020, and 30 April 2021, of adult patients receiving a prescription for SGLT-2i at
UC San Diego Health ambulatory pharmacies.

2.2. Participants

Adult patients defined as 18 years and older with a diagnosis of T2D, CKD, or HF (by
ICD10 coding) prescribed any SGLT-2i with a minimum of 1 insurance claim within the
study period were included. SGLT-2i included: canagliflozin, dapagliflozin, empagliflozin,
ertugliflozin, as monotherapy or in a combination drug formulation. Patients with a solid
organ transplant or those receiving dialysis were excluded. This study was approved by
University of California-San Diego Health Systems institutional review board (210767), and
a waiver of consent was approved.

2.3. Data Collection and Outcomes

Data collected included an extensive array of patient-related information such as age,
gender, race/ethnicity, diagnosis, comorbidities, medication, copay, laboratory values, and
insurance plan payment from the electronic health record (EHR). Duplicate data entries and
irrelevant insurance claims were removed. Insurance claims were grouped based on index
duration time per patient: 30-day index (0–30 days covered), 60-day index (31–60 days
covered), and 90-day index (61–90 days covered). Prescription filling duration was grouped
based on the duration of dispensed medication with individualized index date to aggregate
three main data times: baseline to 30 days, 60 days and 90+ days of SGLT-2i dispensed
medication record. Patients with a new start and who have been using SGLT-2 chronically
were included. The rational was based on clinical evidence that adherence trajectory has
been linked with the initial 3–4 months of medication filling and the use of the dependent
and independent variables within machine learning can predict the importance of each
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variable across the different data points [19] Baseline laboratory values were captured at
the date of prescription filled +/−3 months. Incorporating temporal dimension to the
dataset, baseline values above were included to reflect patient’s health status at initiation
of therapy. The primary outcome for measuring adherence amongst study subjects was
the proportion of days covered (PDC) based on pharmacy insurance claims. The PDC is
used to estimate medication adherence by calculating the proportion of days in which a
patient has access to the medication, over a given period of interest. PDC was calculated
over the study period defined as the period of interest. PDC was calculated manually and
cross checked with EPIC autogenerated PDC value for each patient:

PDC = number of days covered by the pharmac supplied medication/number of days a medication is needed

PDC was treated as a binomial variable with a cut point of ≥0.8 to divide the cohort
into two groups: high (≥0.8) and low (<0.8) adherence groups. The determination of
adherence and non-adherence categories based on PDC thresholds of >0.8 and <0.8 were
made in accordance with studies published in adherence research [20]. Even though recent
data has shown that a higher PDC cut-off value (>0.8) been recommended for a stricter
HbA1c target (≤7%), our targeted PDC was set to 0.8 to match chronic conditions adherence
values besides T2D.

2.3.1. Statistical Analysis

Descriptive statistics were used to summarize demographic and clinical characteristics
of the cohort. Categorical data was summarized using percentages. Continuous data was
summarized using the mean with standard deviation or median with interquartile range,
depending on the distribution of the data.

2.3.2. Predictors

The following predictor variables were screened: age, race/ethnicity, gender, comor-
bidities, glycosylated hemoglobin, glomerular filtration rate, medication, copay assistance
amount, amount payer plan paid, and insurance plan type. Welch’s t-test was used to
compare continuous variables between the two-adherence groups, and a p-value of <0.05
was considered statistically significant.

2.3.3. Predictive Model

We examined backward and forward feature selection, and lasso regression, and
constructed a Classification and Regression Tree (CART) model. Decision tree methods
with k-fold cross-validation (k = 10). To construct our predictive model, we adopted a
comprehensive approach that included LASSO (Least Absolute Shrinkage and Selection
Operator), CART (Classification and Regression Trees), and both backward and forward
feature selection methods to identify the most effective predictive model. The LASSO
technique served as a regularization method, assisting in feature selection by penalizing the
absolute size of regression coefficients. This helps mitigate overfitting and selects a subset
of relevant patient features. On the other hand, the CART model facilitated the generation
of decision trees through recursive partitioning, capturing intricate relationships within
the data and offering interpretability in clinical settings. We evaluated the model perfor-
mance using measures such as the Receiver Operating Characteristic/Area Under Curve
(ROC/AUC), accuracy, sensitivity, and specificity. Data was split into training and testing,
with allocation of 75% for training and the remaining 25% for testing. The partitioning
of the dataset into training and testing subsets was accomplished using a randomization
approach in R Studio. Specifically, we employed the randomization functions available in
R Studio to ensure an unbiased and representative allocation of data for model training
and subsequent performance evaluation. Accuracy was calculated for each model using
the test data. All analyses were conducted in R Studio (version 2022.07.0).
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2.3.4. Software

The study was conducted using R-packages (4.2.1) including MASS (7.3-60.0.1), caTools
(1.18.2), stats (3.6.2), ReadXl (1.4.3), GG plot 2 (3.5.0), Caret (6.0-94), GLMNET (4.1-8), Leaps (3.1),
ROCR (1.0-11), Desctools (0.99.54), Dplyr (1.1.4), olsrr (0.5.3), and Rpart.plot packages (3.1.2).

2.3.5. Comparative Analysis

To further evaluate the directional relationship among the predictors in relation to the
outcome (PDC) a linear regression analysis was conducted in R studio using LM package.
The linear regression model was specified with the Proportion of Days Covered (PDC) as
the dependent variable and relevant predictors identified in the exploratory analysis. These
predictors included demographic variables (e.g., age, gender), clinical factors (e.g., baseline
A1c levels), socioeconomic status indicators (e.g., insurance coverage, copayments), and
other relevant variables influencing medication adherence.

Model Fitting: The LM package in R Studio was utilized to fit the linear regression
model to the data. The lm() function was used to specify the model formula, with the
dependent variable PDC regressed on the selected predictors. The lm() function estimates
the coefficients for each predictor, indicating the strength and direction of their relationship
with the outcome variable.

Assessment of Model Fit: The adequacy of the linear regression model was assessed
using diagnostic measures such as R-squared (R2) and adjusted R-squared (adjusted R2).

Interpretation of Results: The coefficients estimated by the linear regression model
provide insights into the direction and magnitude of the relationship between each predictor
and medication adherence (PDC). Positive coefficients indicate a positive relationship, while
negative coefficients suggest a negative relationship. The significance of each predictor was
assessed based on p-values, with lower p-values indicating stronger evidence against the
null hypothesis of no effect.

Random effect was employed in the analysis to help mitigate the potential bias intro-
duced by the inherent correlation between observations within each patient.

3. Results
3.1. Cohort Characteristics

A total of 174 patients with 489 insurance claims were included in the analysis. One
hundred and six claims were within the first 30 days, 73 in 60 days, and 310 in 90 days
fills (Figure 2). The demographic and clinical characteristics of the patient cohort are
summarized in Table 1. The median age was 58 years (IQR), and a higher dominance of
the male gender was observed. A vast majority of patients taking SGLT-2i had diabetes
(83.6%) and the lowest representation of patients taking SGLT-2i was patients with heart
failure and CKD. In the total cohort, the baseline HbA1c was 8% and the baseline eGFR
was 54 mL/min/1.73 m2.

Using a PDC threshold of 0.8 for adherence, 88 (51%) were considered adherent. The
adherent group had a lower eGFR (50.3 vs. 57 mL/min/1.73 m2, p < 0.001) compared to
the non-adherent group.

HbA1c values from baseline till 90 days post-treatment duration were consistently
higher in the non-compliant group: 7.4% vs. 9.6%, p < 0.001 for the PDC ≥ 0.80 and
PDC < 0.80, respectively.

Baseline eGFR was 55.18 mL/min/1.73 m2 vs. 54.23 mL/min/m2 at 90 days. The
mean eGFR at the end of the study (minimum of 90 days of treatment) was statistically
different between the groups: 53.1 vs. 59.6 mL/min/1.73 m2, p < 0.001 for the PDC ≥ 0.80
and PDC < 0.80, respectively.

Eighty-seven percent of patients were commercially insured. Assistance programs’
use (such as manufacturer coupons and health system patient assistance programs) didn’t
exceed 2% of the total cohort. There was a higher representation of private vs. federal
insurance claims within this suburban community. A mean copay (patient responsibility to
pay) was $9.76, and the insurance plan paid a mean of $509 per insurance claim.
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Table 1. Cohort characteristics in adherent and non-adherent patient groups.

Variable Total Cohort
(n = 174) PDC ≥ 0.8 (n = 88) PDC < 0.8 (n = 86) p-Value

Age, median (IQR) 58 (51–66) 59 (48–68) 58 (52–65) 0.78

Sex, n (%)
Female 39 (22.4%) 24 (27.3%) 15 (17.4%)

0.12Male 135 (77.6%) 64 (72.7%) 71 (82.6%)

Ethnicity, n (%)
Hispanic 55 (31.6%) 24 (27%) 31 (36%)

0.21Non-Hispanic 119 (68.3%) 64 (73%) 55 (64%)

Race, n (%)
White 74 (42.5%) 42 (47.7%) 32 (37.2%)

0.099
African American 20 (11.5%) 13 (14.7%) 7 (8.1%)
American Indian 2 (1.1%) 0 (0%) 2 (2.3%)
Asian 13 (7.5%) 4 (4.5%) 9 (10.5%)
Mixed 65 (37.4%) 29 (32.9%) 36 (41.8%)

Prescribing Indication, n (%)
Diabetes Mellitus 151 (86.8%) 69 (78.4%) 82 (95.3%)

0.12Heart Failure 66 (37.9%) 40 (4.5%) 26 (30.2%)
Kidney Disease 21 (12.1%) 10 (11.4%) 11 (12.5%)
Baseline HbA1c (SD) 8.04 (2.39) 7.1 (1.5) 8.98 (2.3) <0.001
Baseline eGFR (SD) 53.6 (7.4) 50.3 (11.1) 57 (6.4) <0.001

It’s worth noting that the percentage of patients with federally funded insurance
differs between the two groups based on their medication adherence. Among patients
with PDC ≥ 0.8, only 4% have federally funded insurance, while among patients with
PDC < 0.8, the percentage increases to 12%.

The Adherent group had a mean copay of $12.56 vs. $5.07 for the non-adherent group.
As for insurance payment, the adherent group had a mean of $547.30 vs. 430.23 for the
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non-adherent group. The adherent group had an average high assistant pay vs. non
adherent at $4.97 vs. $2.81 which was non-significant.

As for insurance plans, the adherent group had a higher representation of commercial
insurance (303 vs. 125 claims for the non-adherent group). With similar representation of
federally funded insurance claims among adherent and non-adherent groups (14 vs. 18, re-
spectively). Please refer to Table 2 for detailed information about SGLT-2i insurance claims.

Table 2. SGLT-2i Insurance claims and payments.

Medication/Insurance Plan Type Total Claims
(n = 489)

PDC ≥ 0.8
(n = 338)

PDC < 0.8
(n = 151) p Value

Dapagliflozin, n (%) 107 (21.9%) 82 (24%) 25 (17%) <0.0001

Canagliflozin, n (%) 22 (4.5%) 22 (7%) 0 (0%)

Empagliflozin, n (%) 349 (71.3%) 229 (68%) 120 (79%)

Empagliflozin/metformin, n (%) 5 (1%) 5 (1%) 0 (0%)

Ertugliflozin, n (%) 6 (1.2%) 0 (0%) 6 (4%)

Insurance Plan Type, n (%)

Commercial, n (%) 428 (87.5%) 303 (90%) 125 (83%) <0.001

Commercial with Assistance, n (%) 20 (4.1%) 16 (5%) 4 (3%)

Federally Funded, n (%) 32 (6.5%) 14 (4%) 18 (12%)

Federally Funded with Assistance,
n (%) 3 (0.6%) 3 (1%) 0 (0%)

Assistance Program, n (%) 6 (1.2%) 2 (1%) 4 (3%)

Patient Copay, mean (SD) $9.76
(26.17) $12.27 ($30.31) $4.15 ($10.81) <0.001

Payor Plan Pay, mean (SD) $509.22
(282.45)

$547.3
($305.38) $423.99 ($197.99) <0.001

Assistance Pay, mean (SD) $3.92 (16.45) $4.97 ($18.18) $1.6 ($11.34) 0.255

3.2. Predictive Modeling
Feature Selection

Best variables were selected with a significant p value < 0.05. The selection was based
on the lowest Akaike information criterion (AIC). In addition, we calculated the C(p), RMSE,
and rsquare. Forward selection model results in selecting a total of 8 variables based on
different metrics. The backward selection model resulted in selecting a total of 18 variables
excluding 5 variables based on the same metrics above.

To select among the models above we calculated based on area under the curve (AUC)
in Receiver operating characteristic curve (ROC).

Among all the tested predictive models, classification and regression tree (CART)
model had the highest accuracy and area under the curve (AUC) compared to backward,
forward, and lasso predictive models (AUC = 74%, accuracy = 82%).

The Lasso and CART model both provided a close AUC value (74%) (Table 3). Lasso
had a higher sensitivity score of 94%. However, since accurately identifying non-adherent
patients and overall prediction accuracy are more important, the CART model’s higher
specificity and accuracy outperforms the Lasso model (Figure 3).

Table 3. Summary of Lasso and CART model measures.

Predictive Model Accuracy Sensitivity Specificity AUC

Lasso 76% 94% 25% 74%
CART 82% 85% 69% 74%
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Figure 3. Receiver Operating Characteristic (ROC) curves comparing the performance of Lasso and
CART methods. The diagonal line, representing the performance of a random classifier, serves as
a baseline for comparison. The ROC curve for the Lasso method, denoted by the red line, exhibits
an accuracy of 76%, while the ROC curve for the CART method, depicted in blue, achieves a
higher accuracy of 82%. The ROC curves illustrate the trade-off between the True Positive Rate
(sensitivity) and the False Positive Rate, with curves further away from the diagonal indicating
superior performance.

CART analysis resulted in 21 variables included within the final model and an AUC
of 74% (Figure 3). Based on the final model, glycated hemoglobin concentration was one
of the most important predictors. An inverse relationship exists between baseline HbA1c
value and adherence as measured by PDC. The final model’s accuracy, specificity, and
sensitivity were 82%, 69%, and 85%, respectively.

To further evaluate the directional relationship among the predictors in relation to the
outcome (PDC) a linear regression analysis was conducted in R studio using LM package.
The resulted analysis confirmed the relevance of each predictor on PDC illustrated in
(Appendix A: Table A1). It is important to note that HbA1c shows a strong negative
correlation with PDC. The higher initial HbA1c has a very strong correlation for a lower
compliance rate. This is also confirmed with the decision tree where HbA1c value of 8.9 is
a deciding node to different routes of compliance scores (Figure 4).
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Another important predictor to note is the amount paid by the plan payor. There was a
positive correlation of higher plan payment with a better compliance (statistically significant).

Male gender was negatively correlated with PDC. Being a male puts the patient into a
lower compliance group. There was a positive correlation of adherence in relationship to
specific SGLT2is agents as empagliflozin/metformin and canagliflozin with a significant
p value < 0.05.

4. Discussion

This study examined predictors of SGLT-2i adherence in patients by analyzing phar-
maceutical insurance claims derived from an electronic health record dataset. Predictive
modeling can be a crucial method to help improve patient care and provide a proactive
approach to resolve any potential adherence issues and its consequent complications. The
utilization of insurance claims offers an opportunity to investigate the additional financial
aspect and it’s impact on patient’s adherence patterns. Such a proactive approach has been
the key to improving patient overall health and has positive financial impact that is worth
further investigation and implementation [21].

This study investigated several key predictors of SGLT-2i adherence, some variables
played an important role in building the predictive model. Notably, HbA1c, age, plan
payment amount, race/ethnicity, and gender emerged as important predictors of adherence.

A major variable in the model was HbA1c value. HbA1c is a critical marker of glycemic
control, and it appeared in the model as a significant predictor of patient’s adherence.
Similarly, Wu et al. found that the last HbA1c value, age, and cost of hypoglycemic drugs,
were important predictors among 16 predictors of adherence to diabetes treatment [22]. The
HbA1c value can be used to identify patients at risk for lower adherence, empowering the
pharmacist to assign more intensive follow-up and comprehensive medication management.
Nichols et al. showed that the average decrease in HbA1c concentrations was 0.6% vs.
0.4% in newly diagnosed patients with diabetes who had a PDC ≥ 0.80 and PDC < 0.80,
respectively [23]. This emphasizes the tangible clinical benefits associated with robust
medication adherence in context of glycemic control [24].

The predictive model showed a correlation between the insurance payment amount
and adherence where the higher percentage the insurance paid was associated with a
higher adherence rate. The share of cost and adherence patterns were investigated by
Aziz, et al. in a systematic review [25]. The interesting finding however was that although
medication adherence was improved with the reduction of cost-sharing such as lower
copayment, higher drug coverage, and prescription cap, patients with full-medication
subsidies payment scheme (received medication at no cost) were also found to have
poor adherence to their medication. Cost sharing, insurance formulary tiers and patient
assistance programs may need to be further investigated as barriers or facilitators of
medication acquisitions and subsequent adherence implications [26].

Another variable that the decision tree identified was age. Age was presented as a
decision tree node in multiple nodes and was related to medication adherence predictions.
Specifically, the lower age group exhibited a higher predictive Proportion of Days Covered
(PDC) value, indicating better adherence. However, the relationship between age and
adherence has yielded mixed results in various studies. For instance, a retrospective study
by Habib et al. found a strong correlation between higher age, higher socioeconomic status,
and improved adherence [27].

One interesting finding is the lower 90 days post-treatment mean eGFR rate in the
compliant group vs. non-compliant. This could be related to the retrospective nature
of the study. Another explanation could be related to the initial eGFR SGL-T2i “dip”
where initially, the eGFR decreases as part of the long-term nephroprotective mechanism.
Kidney protection has been proven in several randomized controlled trials [28–31]. Their
preservation of kidney function is thought to be mainly mediated through the reduction in
glomerular hypertension mediated through tubule-glomerular feedback. Due to the small
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sample size, missing data in eGFR lab values, and the lack in adjustment for comorbidities;
the results may not depict the full picture of kidney protection effect.

Overall, the study has some limitations that are worth stating. One of the study design
choices was the use of proportion of days covered (PDC). We choose proportion of days
covered (PDC) as a binary outcome since this is a clinically relevant outcome in clinical
practice. Specifically, a PDC cutoff of equal or more than 0.8 is defined as adherent for
medications in clinical practice. Nevertheless, PDC has its own inherent limitations. PDC
may fail to explain certain treatment gaps. For example, PDC may not explain a treatment
holiday, patient taking samples or receiving medications from a different pharmacy. There
is not a second validation method to account for such scenarios with PDC alone.

The study sample size is small and is based solely at the ambulatory pharmacies
from a single institution. This scope may limit the generalizability of findings, which
may not reflect all the commercially available insurances in different geographical areas,
different race/ethnicity groups, or socio-economic status. The monocentric nature of
our study may challenge the extrapolation of results to broader and more heterogeneous
patient populations.

The retrospective study design creates limitations. Historical data introduces certain
limitations that can be described by the standard of care measurement bias, loss to follow-up
and missing data.

The data collection study period may impose a temporal limitation. Since the data
collection period ran from 1 January 2020, till 30 April 2021, this data may not fail to reflect
the most current adherence patterns and predictors. An important limitation pertains to the
relatively short follow-up measurement period. Longer follow-up periods could provide a
more comprehensive understanding of adherence behaviors over time. Such adherence pat-
terns evolve over time and are influenced by various factors. Future research with a longer
follow-up period would contribute to a better understanding of medication adherence.

The observational and retrospective nature of the study was able to establish correla-
tion but not causation. Unmeasured confounding variables may influence the results. Thus,
future research should collect prospective data and analyze the impact of such variables on
adherence patterns to improve external validation of the predictive model.

It is worth noting that the study collection period happened to occur within COVID-19
pandemic. It is plausible that this could have impacted medication adherence patterns.
Factors as changes to patients’ routines and economic challenges may have an impact. The
reason for non-adherence was hard to investigate in a retrospective manner and as such it
was challenging to evaluate the unique circumstances imposed by the global health crisis.
This pandemic may have positively or negatively impacted the adherence patterns. All
pharmacies included in this study offered free delivery of medications and an assistance
program to overcome financial burdens.

It is important to existing literature on medication adherence had implemented sev-
eral strategies to mitigate low adherence including but not limited to technology-based
interventions (as electronic pill organizers, smartphone applications, etc., . . .), addressing
socioeconomic barriers and enhancing patient-provider communication. Such tools can be
used proactively to implement an early prevention plan to boost adherence.

A future study can evaluate the impact of race, health education, access, and health
disparities among communities in regard to medication adherence. Conducting a multi-
national study from different institutions may help increase the generalizability of the
predictive adherence model.

A prospective study design may also help collect enough data points and resolve the
issue of missing data that we faced in the retrospective design.

5. Conclusions

The utilization of sodium-glucose co-transporter 2 inhibitors has emerged as promising
therapeutic agents for patients with type 2 diabetes, heart failure and chronic kidney disease,
offering glycemic control and cardiovascular benefits.
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This retrospective study, conducted at UC San Diego Health ambulatory pharmacies,
aimed to predicted SGLT-2i adherence using electronic medical records and demographic
variables. While this study provided insights regarding adherence patterns, it is crucial to
consider its implications for clinical practice and future research.

HbA1c, age, gender, and payor plan payments are important predictors of medication
adherence for diabetes care. Using these variables, the community pharmacist can identify
at-risk patients and design comprehensive medication management programs to improve
adherence and diabetes outcomes. Higher adherence will reduce comorbidities, decrease
hospitalizations, and reduce overall healthcare costs, specifically in chronic conditions,
including diabetes mellitus, heart failure, and kidney failure [32]. Thus, a predictive
analytics approach could be used to demonstrate how event-based data can form the basis
for identifying patients who are at risk for future non-adherence and, consequently, more
complications [33].

Improving medication adherence remains a critical goal in optimizing the care of
patients with chronic conditions. This study represents a step toward improving that goal.

The trajectory of future research is to elaborate and identify at risk of non-adherence
patients’ variables to prevent complications. Beyond the immediate clinical implications,
the broader impact of enhanced adherence, predictive modeling can be implemented to
improve personalized preventative care.
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Appendix A

Table A1. Linear regression analysis: Final model predictors vs. PDC outcome.

Estimate Std. Error t Value Pr (>|t|)

(Intercept) 9.04 × 10−1 4.06 × 10−1 2.228 0.026353
Age 2.73 × 10−3 2.07 × 10−3 1.319 0.187991

HbA1c −4.96 × 10−2 1.09 × 10−2 −4.548 6.97 × 10−6

PayorPlanPay 3.04 × 10−4 8.01 × 10−5 3.79 0.000171
SexM −1.04 × 10−1 4.73 × 10−2 −2.205 0.027934

Race_Asian 2.87 × 10−1 3.01 × 10−1 0.954 0.340608
Race_White 1.38 × 10−1 2.97 × 10−1 0.466 0.641451

Federal −3.32 × 10−1 2.56 × 10−1 −1.299 0.194441
Race_Mixed 8.23 × 10−2 3.02 × 10−1 0.273 0.785327
Commercial −3.35 × 10−1 2.42 × 10−1 −1.385 0.166883

Eth_NonHispanic 1.08 × 10−1 6.96 × 10−2 1.552 0.121452
Race_AfricanAmerican 1.89 × 10−1 2.98 × 10−1 0.634 0.526556

Diabetes −5.76 × 10−2 6.94 × 10−2 −0.831 0.4066
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Table A1. Cont.

Estimate Std. Error t Value Pr (>|t|)

Empagliflozin 8.02 × 10−2 5.85 × 10−2 1.371 0.171036
Ertugliflozin −8.56 × 10−1 1.95 × 10−1 −4.386 1.43 × 10−5

AssistancePay 2.56 × 10−3 1.36 × 10−3 1.877 0.061142
PatPay 1.96 × 10−3 8.46 × 10−4 2.319 0.020844

Assistance_Prog −4.48 × 10−1 2.99 × 10−1 −1.496 0.135427
Empagliflozin/metformin 9.33 × 10−1 2.58 × 10−1 3.621 0.000326

Canagliflozin 4.59 × 10−1 1.15 × 10−1 3.985 7.85 × 10−5

Commercial_Assis −1.88 × 10−1 2.67 × 10−1 −0.702 0.482787
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