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Abstract: In our previous study, we proposed a perfectly secure Shannon cipher based on the so-called
matrix power function. There we also introduced a concept of single round symmetric encryption,
i.e., we used the matrix power function together with some rather simple operations to define a
three-step encryption algorithm that needs no additional rounds. Interestingly enough, the newly
proposed Shannon cipher possesses the option of parallelization—an important property of efficiently
performing calculations using several processors. Relying on our previous proposal, in this study
we introduce a concept of a one round block cipher, which can be used to encrypt an arbitrary large
message by dividing it into several blocks. In other words, we construct a block cipher operating in
cipher block chaining mode on the basis of the previously defined Shannon cipher. Moreover, due to
the perfect secrecy property of the original algorithm, we show that our proposal is able to withstand
the chosen plaintext attack.

Keywords: chosen plaintext attack; CBC mode; symmetric encryption; matrix power function; perfect
secrecy

MSC: 94A60

1. Introduction

Since ancient times, people have used symmetric cryptography to encrypt data. Over
many centuries, this branch of modern cryptography has greatly evolved. Nowadays, all
the symmetric ciphers either operate on fixed-length blocks of bits or create a keystream
to be combined with the initial plaintext. These approaches to data encryption are called
block ciphers and stream ciphers, respectively.

The concept of a symmetric cipher is generally defined as a triplet (Gen(), Enc(), Dec()),
where Gen() is a key generation function, Enc() and Dec() are encryption and decryption
functions, respectively [1]. The major requirement of a symmetric encryption scheme is
the following:

Dec(k, Enc(k, µ)) = µ,

i.e., decryption function correctly restores the message µ using the same key k. Any properly
working symmetric cipher must satisfy this requirement. Proving the correctness of any
symmetric cipher relies on verifying identity (1).

So far, the majority of the widely used block ciphers use at least several rounds to
encrypt the secret data. Usually, operations used in these ciphers (e.g., AES) are fairly
simple (some of them even linear) and could be easily inverted if a single round was
executed. Hence, the security of these algorithms relies on the combination of fairly simple
steps performed multiple times.
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There are two common approaches to the design of symmetric block cipher. One
of them is the Feistel network developed in the last quarter of the 20th century [2]. No-
ticeable ciphers, such as DES, Camelia, Blowfish, and CAST-128, were constructed using
this technique. The general idea behind the Feistel network is to divide the block to be
encrypted into two equal parts L0, R0 and manipulate them using some round function F
and round sub-keys K0, K1, . . . , Kn to calculate the ciphertext, which is usually defined as a
concatenation of Rn+1 and Ln+1. Depending on the complexity of the scheme the number
of rounds is chosen carefully and can vary from being quite small (e.g., 8) to several dozens
(e.g., 64 or 72). The more rounds the greater security—that is the general rule.

An alternative approach is designing the substitution-permutation (SP) network. The
Rijndael block cipher known as the AES is perhaps the most popular example of this type.
It superseded the DES and became the standard recommended by NIST for data encryption
in 2002 [3]. The most common version of AES uses a 128-bit block and 10, 12, or 14 rounds
depending on the key size. Another example is the Kuznyechik symmetric block cipher
developed in 2015 [4]. It was later standardized by the Russian government and replaced
the previously used scheme based on the Feistel network. The SP network is usually
designed by defining the so-called substitution boxes (S-boxes) and permutation boxes
(P-boxes). These boxes are commonly introduced via mathematical functions and logical
operations, e.g., shifting operation and the bitwise addition (XOR).

However, since the operations themselves are rather simple, the cryptanalysis of
these block ciphers is a non-stopping field of research. Over recent years many attacks
on the developed ciphers were published, e.g., [5–7], one of the more notable ones was
proposed by Courtois whose goal was to break the AES cipher [8]. It was later proven to
be impractical.

In the most general form any good cipher should act as a one-way function (OWF),
i.e., calculating the argument x of the function f given its value f (x) without knowing
some secret key should be an impossible task. To put it simply the ciphertext c should look
completely random to any adversary even if he knows the original message µ. In fact, a
fundamental relation between OWFs and pseudorandom generators was revealed by Yao
in [9], where he proved that OWFs exist if, and only if, the pseudorandom generators exist.

In the realm of the symmetric ciphers, one particular example stands out. This simple
technique developed by Vernam in 1917 is now commonly referred to as the one-time
pad. The reason behind this is the property of perfect secrecy, which guarantees that no
information about the encrypted plaintext is leaked by the ciphertext. Formally perfect
secrecy can be defined as follows (however, there are other equivalent definitions) [1,10]:

Definition 1. The symmetric cipher ε = (Enc(k, µ), Dec(k, c)) is perfectly secure if for any fixed
values µ0, c0 the following probabilities are equal:

Pr(c = c0|µ = µ0) = Pr(c = c0).

This definition is due to Shannon who has also shown that the one-time pad is perfectly
secure [11]. Together the result by Yao and this definition explain why it is essential for a
secure cipher to possess good properties of randomness. Notably, the link between OWF
and pseudorandom generators is reflected in the avalanche effect and the bit independence
criterion. Some work in this area was previously performed in [12] for our scheme.

Interestingly enough, the one-time pad uses a single round and a simple XOR oper-
ation to encrypt a plaintext µ. Though the idea of using this technique is theoretical (at
least for the most part) we can see that the keys of modern symmetric block cipher are no
shorter than the block size, thus staying true to the original idea by Vernam. For example,
AES encrypts 128-bit block using 128, 192, or 256-bit keys [3]. Our cipher follows the same
pattern, i.e., the secret key is longer than the size of a block.

The main goal is to propose a symmetric cipher based on the conjectured one-way func-
tion (OWF). During our previous research, we proved that a certain realization of asymmetric
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encryption based on our function is NP-complete [13]. It is conjectured that such crypto-
graphic primitives could be resistant to algebraic analysis and quantum cryptanalysis.

Despite the fact that we are currently working on a symmetric encryption scheme
we think that its security may prove to be a hard nut to crack. In particular, we aim
to make our block cipher perfectly secure while also achieving several other important
properties which allow our proposal to be used as a basis for the cipher block chaining
(CBC) mode. At the same time in Section 3, we introduce modifications of the initial cipher
making it more flexible. Furthermore, by generalizing algebraic structures we gain a higher
encryption speed of our proposal. We prove the perfect secrecy property of our block cipher
in Section 5.

In Section 6 we prove that our block cipher is secure against CPA. As demonstrated
by Boneh and Shoup in [10] this fact is directly linked to the perfect secrecy property of
the presented Shannon cipher. Due to made modifications we also inspect their influence
on the perfect secrecy property. We end our paper by presenting conclusions and a list
of references.

2. Our Previous Work

Our first attempt at designing a symmetric block cipher was made in 2007 when our
research group published a paper [14]. There we have proposed a technique to construct
an S-box based on at that time newly defined matrix power function (MPF)—a non-linear
matrix mapping Matm(R)×Matm(R) 7→ Matm(S), where S is a multiplicative semigroup,
R is a ring of integers and Matm(·) denotes a ring of m×m matrices with entries selected
from the specified algebraic structure. We denote the MPF in the following way:

XWY = E,

where X, Y ∈ Matm(R) and W, E ∈ Matm(S). Usually, in our research, we refer to X, Y
as power matrices. We also refer to W as a base matrix and to E as the matrix exponent.
Furthermore, we call Matm(S) a platform semigroup and Matm(R) a power ring. Each
entry of matrix exponent E is calculated in the following way:

eij =
m

∏
k=1

m

∏
l=1

w
xikyl j
kl .

We can see from the latter expression that MPF bears a strong resemblance to classical
matrix multiplication. In fact, explicit expressions of the entries of matrix E in the case of
2× 2 matrices are presented below:

e11 = wx11y11
11 wx11y21

12 wx12y11
21 wx12y21

22 ;

e12 = wx11y12
11 wx11y22

12 wx12y12
21 wx12y22

22 ;

e21 = wx21y11
11 wx21y21

12 wx22y11
21 wx22y21

22 ;

e22 = wx21y12
11 wx21y22

12 wx22y12
21 wx22y22

22 .

Properties similar to the ones of matrix multiplication also hold for MPF if the plat-
form semigroup S is commuting. However, this may not be the case for the non-abelian
platform semigroups.

Note that here and onwards all the matrices are denoted by uppercase bold letters
whereas all the scalars and bitstrings are denoted by lowercase italic letters. All the sets are
denoted by uppercase blackboard bold letters, e.g., S,R, etc.

However, we had to apply restrictions on the plaintext matrix form to avoid the
potentially harmful property of MPF, i.e., the base matrix W cannot contain any zero entries,
since otherwise the MPF value matrix E is a zero matrix. Here, we plan to eliminate this
constraint while also avoiding zero entries in the base matrix. Furthermore, we use a more
general approach to construct a valid block cipher.
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Recently in our paper [15] we introduced a new block cipher and proposed a concept
of single round symmetric encryption based on the MPF mapping. However, there we
used low cardinality algebraic structures. For this reason, our cipher lacked the flexibility
necessary for the implementation of our scheme in practice. Furthermore, our investigation
in [12] has shown that the statistical properties of the proposed scheme leave much to
be desired for the parameters introduced in [15]. However, that very same investigation
revealed that extra flexibility in the main parameters significantly improves the statistical
properties of our scheme. As such we consider the paper [15] a first draft for constructing a
symmetric block cipher. To be self-contained we present the encryption and decryption
algorithms of our original proposal.

Let M be the initial message converted to matrix form. To encrypt the initial mes-
sage we use a secret key—a pair of matrices (X, Y), where X, Y ∈ Matm(Z3), X does not
contain any zero entries and Y is invertible. The encryption algorithm consists of the
following steps:

S1 = X + M;
S2 = F(X)� YF(S1)

Y;
S = S3 = F−1(S2) + X,

(1)

where F(X) : Matm(Z3) 7→ Matm(G3) is a publicly known one-to-one mapping which re-
places entries of matrix X with elements from G3—a Sylow subgroup of Z7. Clearly, F−1(S2)
is the inverse transformation. We use � to denote Hadamard product of two matrices.

Recall that the Hadamard product is simply the entry-wise multiplication of two
matrices, much like the addition operation. As such the properties of the Hadamard
product are similar to the regular matrix addition with the neutral element equal to the unit
matrix 1, i.e., each entry of this matrix is equal to 1. Moreover, we can define the inverse of
a matrix A in Hadamard sense as a matrix B, such that A� B = 1. We denote B = AH .

Let us also briefly revise the notion of the Sylow subgroup. For simplicity, let us
focus on the multiplicative ring of integers Zp, where p = kq + 1, p and q are primes
and gcd(k, q) = 1. Then, the group Gq is called a Sylow subgroup if the multiplicative
order of its generator g equals q, i.e., gq ≡ 1 mod p. In fact, due to the Lagrange theorem
since q is prime, every element of Gq generates the whole group apart from 1. Sylow
subgroups can also be defined in a more general case as well, but our research does not
require considering it.

The decryption algorithm is simply a reversal of each presented step and is as follows:

D1 = S− X;

D2 = Y−1
(

F(D1)� F(X)H
)Y−1

;

M = D3 = F−1(D2)− X,

(2)

where F(X)H is the inverse matrix in a Hadamard sense. It can be easily shown that
D1 = S2 and D2 = F(S1). Hence, the proposed cipher works correctly. Explicit proof of
correctness is presented in [15].

A beneficial feature of MPF which distinguishes our scheme from others is that it is a
highly non-linear function. For this reason, differential and linear cryptanalysis is assumed
to be inefficient.

In our previous publication, we proved that the proposed Shannon cipher is perfectly
secure; hence, it does not leak any information about the secret data.

In this paper we take the second major step, i.e., we present a block cipher based on
our previous scheme which operates in CBC mode.

3. Modifications of the Initial Cipher

In this section, we consider some important modifications of the cipher presented
in [15]. The first major change we make is the introduction of a prime integer q which
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denotes the size of the Sylow group Gq. Recall that the essential property of this group is
that every element g ∈ Gq such that g 6= 1 generates the whole group. This property of
the Sylow group Gq means that for a uniformly chosen α ∈ Zq and a fixed element a ∈ Gq
we have:

Pr(gα = a) =
1
q

,

where we used the notation Pr(x = x0) to denote the probability that a random variable x
equals a fixed value x0.

We use Gq as a platform group and Zq as a power ring of the MPF. Consequently,
we define a one-to-one mapping f : Zq 7→ Gq and its matrix analogue F as an entry-wise
application of f . Then by our construction, we have:

Pr(x = x0) = Pr( f (x) = f (x0)),

where x ∈ Zq is a random variable and x0 ∈ Zq is a fixed value. Obviously f (x) and f (x0)
are respectively a random variable and a fixed value in a Sylow group Gq. Hence the
mapping f as well as its inverse f−1 : Gq 7→ Zq preserves all the probabilities.

Furthermore, in step 2 of our cipher we introduce an extra matrix Z with entries
randomly chosen from the platform group Gq. In other words, Step 2 of our cipher now
looks as follows:

S2 = Z� YF(S1)
Y,

where matrices S1 and Y as well as mapping F are defined as above. Hence, the secret key
is now ~K = {X, Y, Z}.

By applying these modifications we are able to enlarge the set of possible messages
while keeping the matrix order m fairly small. However, for practical purposes we may
want to limit the entries of matrix M by the number 2blog2 qc, i.e., by the largest power of 2,
which does not exceed q. We do not consider this limitation here and leave the investigation
of its effect for our future research.

Furthermore, because matrix Z is chosen independently from other matrices, the
reintroduced matrix S2 sufficiently contributes to the proof of perfect secrecy property of
the block cipher.

It is also important to note that it is possible to implement extra precautions which
can contribute to the overall security of our block cipher. One of these precautions is the
procedure of transformation of the initial message to its matrix form. Although important,
this procedure does not in any way affect the proof we present in Section 5.

4. CBC Mode of Our Cipher

Using the previously defined scheme for a single message in this section, we present
the CBC mode of our cipher. Because we can encrypt at most m2 · t bits, where t = blog2 qc,
we split the giant bit string into parts of length m2 · t. We also add junk symbols at the end
of the last part, if needed. Moreover, we split each of the obtained parts into smaller chunks
as discussed above to perform a transformation of the original plaintext to its matrix form.

Let us denote the matrix form of each plaintext part by Mi and the obtained ciphertext
matrix by Ci with C0 denoting the publicly known initialization matrix. Each block Mi
is encrypted using the key ~K = {X, Y, Z}, where X ∈ Matm(Zq\0), Y ∈ Matm(Zq) and
Z ∈ Matm(Gq). We can encrypt the whole message µ divided into blocks by executing the
following scheme:

S1i = Mi + Ci−1;
S2i = Z� YF(S1i)

Y;
Ci = S3i = F−1(S2i) + X,

(3)
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where S1i, S2i and S3i are intermediate matrices obtained during the encryption of the i-th
block Mi. Hence the encryption function is:

Enc(Mi, (X, Y, Z)) = F−1(Z� YF(Mi + Ci−1)
Y) + X.

Each encrypted block Ci is converted to a bit string by concatenating the obtained
entries in their bit representations. Hence, the final result, i.e., the ciphertext of the original
massive message, is the following bit string:

c = c011 ‖ c012 ‖ . . . ‖ c01m ‖ c021 ‖ c022 ‖ . . . ‖ c0mm ‖
‖ c111 ‖ . . . ‖ c1mm ‖ . . . ‖ cNmm, (4)

where N is the number of blocks and ‖ stands for the concatenation operation. Hence we
see that the obtained ciphertext consists of N + 1 blocks of size m2t each.

The decryption algorithm is similar to the previously presented encryption procedure
and consists of the following steps:

D1i = Ci − X;

D2i =
Y−1

(F(D1i)� ZH)Y−1
;

Di = D3i = F−1(D2i)− Ci−1,

where D1i, D2i and D3i are intermediate matrices obtained during the decryption of the
i-th block Ci. Hence the decryption function is:

Dec(Ci, (X, Y, Z)) = F−1(Y−1
(F(Ci − X)� ZH)Y−1

)− Ci−1.

Now we prove the correctness of the decryption algorithm.
Clearly, all the blocks (i.e., Ci’s) can be obtained from the ciphertext (4) by splitting it

into N parts of length m2 · t. Then, it is easy to see that by subtracting X from the i-th block
Ci we obtain matrix F−1(S2i). Because F(F−1(S2i)) is clearly equal to S2i, we can multiply
this matrix by ZH in the Hadamard sense to cancel matrix Z and hence we have:

F(D1i)� ZH = F(F−1(S2i))� ZH = S2i � ZH =

= Z� YF(S1i)
Y � ZH = YF(S1i)

Y � 1 = YF(S1i)
Y.

Because F(D1i) = F(F−1(S2i)) = S2i. However, due to properties of MPF, by raising
the obtained result to power matrix Y−1 on both sides we obtain:

Y−1
(YF(S1i)

Y)Y−1
= Y−1YF(S1i)

YY−1
= I F(S1i)

I = F(S1i).

Therefore, we see that:

D2i =
Y−1

(F(D1i)� ZH)Y−1
= F(S1i).

Then, Because F−1(F(S1i)) = S1i, by subtracting Ci−1 we obtain the block Mi—a
matrix form of a part of the original plaintext as desired.

5. Perfect Secrecy of the Block Cipher

Referencing the definition of the perfect secrecy property proposed by Boneh and
Shoup (2), we formulate the following important result:
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Proposition 1. The block cipher with the proposed Algorithm (3) is perfectly secure, i.e., the
following properties hold:

Pr(S1i = S0
1i) = Pr(S1i = S0

1i|Mi = M0
i ) =

(
1
q

)m2

;

Pr(S2i = S0
2i) = Pr(S2i = S0

2i|Mi = M0
i ) =

(
1
q

)m2

;

Pr(S3i = S0
3i) = Pr(S3i = S0

3i|Mi = M0
i ) =

(
1
q

)m2

.

(5)

Note that because there are many lower indices involved in notation, throughout this
section we use an upper index 0 to indicate some fixed value (matrix or a single entry)
defined in the appropriate set or an algebraic structure as was performed in expression (5).

As mentioned previously, the matrix X does not contain any zero entries. We use
notation Zq\0 to denote a set of integers between 1 and q− 1, i.e., Zq\0 = Zq\{0}. Note that
we do not perform any operations with the elements of Zq\0. Hence, our motivation for
the chosen notation is to distinguish this set from a widely known multiplicative group of
integers Z∗q , i.e., we do not confuse the reader with the multiplicative or any other nature of
the set Zq\0.

Before elaborating the main proof, we emphasize some initial relationships between
matrices of the cipher (3). Initialization matrix C0 is independent of key and message
matrices, with mutually independent entries. Key matrices X, Y, Z and their entries are
mutually independent. Entries of C0 and X are uniformly distributed in Zq. Entries of Y
are uniformly distributed in Zq\0. Entries of Z are uniformly distributed in Gq.

Proof. The proof of the proposition is essentially based on the idea presented in [15]. We
split the proof into three steps. We show that entries of matrices S1, S2 and S3 of each block
are uniformly distributed in an appropriate structure, that they are independent of message
matrix M and that all the entries are mutually independent.

All initial assumptions and proved statements on the independence of matrices are
used without explicit emphasis to avoid lots of repetitive statements. The proof of each
matrix’s independence is presented in a separate subsection to retain the structure of
the section.

Proving the independence, we rely on one of the main formula of probabilities: if
two variables X and Y are independent, then Pr(X|Y) = Pr(X,Y)

Pr(Y) = Pr(X), i.e., Pr(X, Y) =
Pr(X) · Pr(Y). In a further proof of independence, we refer to the latter formula.

For the simplicity of proving the above-listed independence, let us take the first block
of the cipher (3). The proof of its independence is closely related to the proof of Theorem 1
in [15], but in our case, we have an extended structure from the set of three elements to
the set which consists of q elements. Probabilities of the first block are used in the proof of
further blocks. Therefore, we present the detailed proof here.

Rewrite Equation (3) of the first (initial) block for each entry of matrices
(i, j = 1, . . . , m):

s11,ij = m1,ij + c0,ij;

s21,ij = zij ·
m

∏
k=1

m

∏
l=1

( f (s11,kl))
yikyl j ;

c1,ij = s31,ij = f−1(s21,ij) + xij.
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5.1. S11 Independence

Knowing that entries of the initialization matrix are uniformly distributed random
variables independent of M, for fixed s0

11,ij ∈ Zq we have:

Pr(s11,ij = s0
11,ij) = Pr(c0,ij = s0

11,ij −m1,ij) =

=
1
q ∑

m0∈Zq

Pr(m1,ij = m0)︸ ︷︷ ︸
= 1

=
1
q

, (6)

i.e., entries s11,ij are uniformly distributed in Zq. The summation of the probabilities to all
possible values gives us the total probability, which is equal to 1. This fact is noted in the
Equation (6). This notation will be used in the further part of the proof.

It is easy to see, that

Pr(s11,ij = s0
11,ij, m1,ij = m0

1,ij) =

= Pr(c0,ij = s0
11,ij −m0

1,ij, m1,ij = m0
1,ij) =

=
1
q

Pr(m1,ij = m0
1,ij) =

= Pr(s11,ij = s0
11,ij)Pr(m1,ij = m0

1,ij), (7)

i.e., entries s11,ij are independent of entries m1,ij. Then we have

Pr(∩m
i,j=1{s11,ij = s0

11,ij}) =

= Pr(∩m
i,j=1{c0,ij + m1,ij = s0

11,ij}) =

= ∑
m0

ij∈Zq

Pr(∩m
i,j=1{c0,ij = s0

11,ij −m0
1,ij︸ ︷︷ ︸

∈ Zq

},

∩m
i,j=1{m1,ij = m0

1,ij}) =
(1

q

)m2

·

· ∑
m0

1,ij∈Zq

Pr(∩m
i,j=1{m1,ij = m0

1,ij})

︸ ︷︷ ︸
= 1

=
(1

q

)m2

. (8)

i.e., entries s11,ij are independent of each other.

5.2. S21 Independence

Before proving the uniformity of matrix S21, we need the following corollary, which
can be easily verified using the results of Lemma 2 and Lemma 3 in [15].

Corollary 1. Let random variables w1, w2, . . . , wn be independent and uniformly distributed in
Gq, v1, v2, . . . , vn be independent and uniformly distributed in Zq\0, then the product wv1

1 · w
v2
2 ·

· · · · wvn
n is uniformly distributed in Gq.

Because entries of S11, Z and X are independent and uniformly distributed in the
appropriate structure, Corollary 1 implies that entries of S21 are uniformly distributed
in Gq:

Pr(s21,ij = s0
21,ij) =

1
q

(9)

and independent of M1:
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Pr(s21,ij = s0
21,ij,∩

m
i,j=1{m1,ij = m0

ij}) =

= Pr(zij

m

∏
k=1

m

∏
l=1

( f (s11,kl))
yikyl j = s0

21,ij,∩
m
i,j=1{m1,ij = m0

1,ij}) =

∑
c0

0,kl∈Zq

∑
y0

kl∈Zq\0

Pr(zij = s0
21,ij(

m

∏
k=1

m

∏
l=1

( f (c0
0,kl + m0

1,kl))
y0

iky0
l j)−1

︸ ︷︷ ︸
∈ Gq

,

∩m
i,j=1{m1,ij = m0

1,ij},∩
m
k,l=1{c0,kl = c0

0,kl},∩
m
k,l=1{ykl = y0

kl}) =

=
1
q
· Pr(∩m

i,j=1{m1,ij = m0
1,ij}) · ∑

c0
0,kl∈Zq

Pr(∩m
k,l=1{c0,kl = c0

0,kl})︸ ︷︷ ︸
= 1

·

· ∑
y0

kl∈Zq\0

Pr(∩m
k,l=1{ykl = y0

kl})︸ ︷︷ ︸
= 1

=
1
q
· Pr(∩m

i,j=1{m1,ij = m0
1,ij}) =

= Pr(s21,ij = s0
21,ij)Pr(∩m

i,j=1{m1,ij = m0
ij}). (10)

Entries of S21 are independent of each other:

Pr(∩m
i,j=1{s21,ij = s0

21,ij}) =

= Pr(∩m
i,j=1{zij

m

∏
k=1

m

∏
l=1

( f (s11,kl))
yikyl j = s0

ij}) =

= ∑
s0

11,kl∈Zq

∑
y0

ij∈Zq\0

Pr
(
∩m

i,j=1 {zij = s21,ij
( m

∏
k=1

m

∏
l=1

( f (s0
11,kl))

y0
iky0

l j
)−1

︸ ︷︷ ︸
∈ Gq

},

∩m
k,l=1{s11,kl = s0

11,kl},∩
m
i,j=1{yij = y0

ij}
)
=
(1

q

)m2

, (11)

where S11 and Z are independent:

Pr(s11,ij = s0
11,ij, zij = z0

ij) = ∑
m0

1,ij∈Zq

Pr(c0,ij = s0
11,ij −m0

1,ij︸ ︷︷ ︸
∈ Zq

,

zij = z0
ij, m1,ij = m0

1,ij) =
1
q

Pr(zij = z0
ij) =

= Pr(s11,ij = s0
11,ij)Pr(zij = z0

ij). (12)

5.3. S31 = C1 Independence

Entries of C1 = S31 are uniformly distributed in Zq:

Pr(s31,ij = s30) = Pr( f−1(s21,ij) = s30 − xij) =
1
q ∑

x0
ij∈Zq

Pr(xij = x0
ij)

︸ ︷︷ ︸
= 1

=
1
q

, (13)

because, similarly as in (10), S21 is independent of X:
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Pr(s31,ij = s30) = Pr( f−1(s21,ij) = s30 − xij) =

=
1
q ∑

x0
ij∈Zq

Pr(xij = x0
ij)

︸ ︷︷ ︸
= 1

=
1
q

, (14)

because, similarly as in (10), S21 is independent of X:

Pr(s21,ij = s0
21,ij,∩

m
i,j=1{xij = x0

ij}) =

= Pr
(
zij

m

∏
k=1

m

∏
l=1

( f (s11,kl))
yikyl j = s0

21,ij,

∩m
i,j=1{xij = x0

ij}
)
= ∑

m0
1,ij∈Zq

∑
c0

0,kl∈Zq

∑
y0

ij∈Zq\0

Pr
(

zij =

= s0
21,ij(

m

∏
k=1

m

∏
l=1

( f (c0
0,kl + m0

1,kl))
y0

iky0
l j)−1,

∩m
i,j=1{xij = x0

ij},∩
m
i,j=1{yij = y0

ij},∩
n
i,j=1{m1,ij = m0

1,ij},

∩n
k,l=1{c0,kl = c0

0,kl}
)
=

1
q

Pr(∩m
i,j=1{xij = x0

ij}) =

= Pr(s21,ij = s0
21,ij)Pr(∩m

i,j=1{xij = x0
ij}). (15)

C1 is independent of M1, because:

Pr(s31,ij = s0
31,ij,∩

m
i,j=1{m1,ij = m0

1,ij}) =

= Pr( f−1(s21,ij) + xij = s0
31,ij,∩

n
i,j=1{m1,ij = m0

1,ij}) =

= ∑
x0

ij∈Zq

Pr(s21,ij = f (s0
31,ij − x0

ij),∩
m
i,j=1{m1,ij = m0

1,ij},

∩n
i,j=1{xij = x0

ij}) =

=
1
q

Pr(∩m
i,j=1{m1,ij = m0

1,ij}) =

Pr(s31,ij = s0
31,ij)Pr(∩m

i,j=1{m1,ij = m0
1,ij}). (16)

Finally, according to (15), we have that entries s31,ij are independent of each other:

Pr(∩m
i,j=1{s31,ij = s0

31,ij}) = Pr(∩m
i,j=1{ f−1(s21,ij)+

+xij = s0
31,ij}) = ∑

x0
ij∈Zq

Pr(∩m
i,j=1{ f−1(s21,ij) =

= s0
31,ij − x0

ij︸ ︷︷ ︸
∈ Zq

},∩m
i,j=1{xij = x0

ij}) =
m

∏
i,j=1

Pr( f−1(s21,ij) =

= s0
31,ij − x0

ij) =
(1

q

)m2

. (17)

The process of proving the main three independencies for each block is iterative. The
proof of the perfect security of the second block relies on the same idea and technique as
was shown for the first block. Because the expressions of the formulas are more complex
and much longer, we place the proof of the second block in Appendix A.
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Let us summarize the results. From the analysis of the first CBC mode block, we
obtain that:

B1.1 Entries of S11 are uniformly distributed in Zq (6), independent of M1 (7) and
mutually independent (8);

B1.2 Entries of S21 are uniformly distributed in Gq (9), independent of M1 (10), M2
(A3), X (15) and mutually independent (11);

B1.3 Entries of S31 = C1 are uniformly distributed in Zq (14), independent of M1 (16),
M2 (A7), M3 (A19), X (A13), Z (A6), Y (A9) and mutually independent (17).

From the analysis of the second CBC mode block (see Appendix A), we obtain that:

B2.1 Entries of S12 are uniformly distributed in Zq (A1), independent of M2 (A2), X, Y
(A11), Z (A12) and mutually independent (A4);

B2.2 Entries of S22 are uniformly distributed in Gq (A5), independent of M2 (A8), M3
(A18) X (A14) and mutually independent (A10);

B2.3 Entries of S32 = C2 are uniformly distributed in Zq (A15), independent of M2
(A16), M3 (A20), X, Y (A23), Z (A22) and mutually independent (A17).

From the results of B1.1–B1.3, we obtain that the first block of the CBC mode (3) is
perfectly secure. B2.1–B2.3 imply that the second block of the CBC mode (3) is perfectly
secure. i.e., Euquation (5) holds for the first two blocks in CBC mode with Algorithm (3).

To prove that each of the n blocks of the CBC mode with our cipher is perfectly secure,
we need the method of mathematical induction. According to it, we now generalize the
results of B1.1–B1.3 and B2.1–B2.3 and assume that the N-th block of the mode is perfectly
secure, i.e., the following assumptions hold:

BN.1 Entries of S1N are uniformly distributed in Zq, independent of MN , X, Y, Z and
mutually independent;

BN.2 Entries of S2N are uniformly distributed in Gq, independent of MN , MN+1, X
and mutually independent;

BN.3 Entries of S3N = CN are uniformly distributed in Zq, independent of MN ,
MN+1, MN+2, X, Y, Z and mutually independent.

Under the assumptions BN.1–BN.3, in the next section we show that the (N + 1)-th
block of the mode is perfectly secure, i.e., the latter assumptions hold for the (N + 1)-th
block, too.

5.4. S1,N+1 Independence

Without loss of generality, to shorten the equalities and keeping in mind that each
formula can be written for an entry of the matrix, the next equations are presented in
matrix form.

Following the same idea as in matrices S11 (6) and S12 (A1), we obtain that entries of
matrix S1,N+1 are uniformly and independently distributed in Zq:

Pr(S1,N+1 = S0
1,N+1) = Pr(CN + MN+1 = S0

1,N+1) =

= ∑
M0

N+1∈Zq

Pr(CN = S0
1,N+1 −M0

N+1, MN+1 = M0
N+1) =

=
(1

q

)m2

∑
M0

N+1∈Zq

Pr(MN+1 = M0
N+1)︸ ︷︷ ︸

total probability = 1

=
(1

q

)m2

. (18)
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Analogously as in (7) and (A2), we easily verify the independence between S1,N+1
and MN+1:

Pr(S1,N+1 = S0
1,N+1, MN+1 = M0

N+1) =

= ∑
S0

2,N∈Gq

Pr(X = S0
1,N+1 −M0

N+1−

−F−1(S0
2,N), MN+1 = M0

N+1, S2,N = s0
2,N) =

=
(1

q

)m2

Pr(MN+1 = M0
N+1)·

· ∑
S0

2,N∈Gq

Pr(S2,N = S0
2,N)︸ ︷︷ ︸

=1

=
(1

q

)m2

Pr(MN+1 = M0
N+1) =

= Pr(S1,N+1 = S0
1,N+1)Pr(MN+1 = M0

N+1). (19)

5.5. S2,N+1 Independence

Similarly to (9) and (A5), s2,N+1;ij are all uniformly distributed in Gq. Hence, by
Corollary 1 we have:

Pr(s2,N+1;ij = s0
2,N+1;ij) =

1
q

. (20)

Finally, by Equations (11) and (A10), entries of S22 are mutually independent:

Pr(S2,N+1 = S0
2,N+1) = Pr(Z�Y F(S1,N+1)

Y = S0
ij) =

= ∑
C0

N∈Zq

∑
Y0∈Zq\0

∑
M0

N+1∈Zq

Pr
(
Z = S0

2,N+1�

�(Y0
F(C0

N + M0
N+1)

Y0
)−1, CN = C0

N , Y = Y0,

MN+1 = M0
N+1

)
=
(1

q

)m2

. (21)

As in (10) and in (A8), S2,N+1 and MN+1 are independent:

Pr(S2,N+1 = S0
2,N+1, MN+1 = M0

N+1}) =

= ∑
C0

N∈Zq

∑
Y0∈Zq\0

Pr(Z = S0
2,N+1 � (Y0

F(C0
N + M0

N+1)
Y0
)−1,

MN+1 = M0
N+1, CN = C0

N , Y = Y0) =

=
(1

q

)m2

· Pr(MN+1 = M0
N+1) · ∑

C0
N∈Zq

Pr(CN = C0
N)·

· ∑
Y0∈Zq\0

Pr(Y = Y0) =

= Pr(S2,N+1 = S0
1,N+1)Pr(MN+1 = M0

N+1}). (22)
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5.6. S3,N+1 = CN+1 Independence

Entries of CN+1 are uniformly and independently distributed in Zq (similarly as in
Equations (6) and (A15)):

Pr(S3,N+1 = S0
3,N+1) = Pr(F−1(S2,N+1) = S0

3,N+1 − X) =

= ∑
C0

N∈Zq

∑
Y0∈Zq\0

∑
X0∈Zq

∑
M0

N+1∈Zq

Pr(Z = F(S0
3,N+1 − X0)·

·(Y0
F(C0

N,kl + M0
N+1)

Y0
)−1, CN = C0

N , Y = Y0, MN+1 = M0
N+1,

X = X0) = Pr(zij = z0
ij) =

(1
q

)m2

. (23)

Finally, according to (16) and (A16), CN+1 is also independent of MN+1:

Pr(S3,N+1 = S0
3,N+1, MN+1 = M0

N+1) = ∑
X0∈Zq

∑
C0

N∈Zq

∑
Y0∈Zq\0

Pr(Z =

= F(S0
3,N+1 − X0)(Y0

F(C0
N + M0

N+1)
Y0
)−1, CN = C0

N , Y = Y0,

MN+1 = M0
N+1, X = X0) =

=
(1

q

)m2

Pr(MN+1 = M0
N+1) =

= Pr(S3,N+1 = S0
3,N+1)Pr(MN+1 = M0

N+1). (24)

Now, we can write the conclusions on the (N + 1)-th block:

B(N+1).1 Entries of S1,N+1 are uniformly distributed in Zq (18), independent of MN+1 (19)
and mutually independent (18);

B(N+1).2 Entries of S2,N+1 are uniformly distributed in Gq (20), independent of MN+1 (22)
and mutually independent (21);

B(N+1).3 Entries of S3,N+1 = CN+1 are uniformly distributed in Zq (23), independent
of MN+1 (24) and mutually independent (23).

B(N+1).1–B(N+1).3 imply the perfect security of each of the CBC mode (3) blocks.
Proposition 1 implies one more important property of the proposed CBC cipher. The

following corollary states, that each block of (3) is independent of previous blocks, i.e.,
information of the previous blocks does not affect the probability of the current block.

Corollary 2. If the block cipher is proposed by algorithm (3), then the following properties hold:

Pr(Ci = C0
i | ∩

i−1
j=1 {Cj = C0

j }) = Pr(Ci = C0
i ), i = 1, . . . , N.

The proof of Corollary 2 follows directly from the proof of Proposition 1 by applying
the same principle of mathematical induction.

6. Resistance of the CBC Mode to the Chosen Plaintext Attack

In this section, we show that due to the perfect secrecy property of the original block
cipher, the proposed CBC mode can withstand the chosen plaintext attack. To achieve this
goal, we consider the initial block cipher as a random permutation in the matrix space
and afterwards show that any effective adversary does not have a significant advantage of
winning the defined attack game, which formalizes the CPA security of the CBC mode of
our cipher. This provides an additional level of resistance against algebraic cryptanalysis
based on the OWF.

The basic idea behind the proof is to perform an in-depth analysis of the CBC mode
by inspecting the encryption of the whole massive plaintext while also considering the
encryption of a single block. The purpose of this analysis is to show that both approaches
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do not let any efficient adversary discover any useful information he can use to harm the
secrecy of the encrypted data.

Each of the presented approaches can be described by an attack game played between
an adversaryA (an algorithm seeking security issues) and a challenger—a machine replying
to queries sent by A. This technique of proof is highly inspired by the one described in [10].
We think that it clearly demonstrates the essence of the security proof and also find it easy
to follow. Note also that throughout this paper all the adversaries are denoted by uppercase
calligraphic letters.

Let us examine our block cipher ε as a random permutation. Relying on the fact
that the message space and the ciphertext space are the same size (in fact, it is the same
space), we denote by C = Rand(M) a random one-to-one mapping, which maps a matrix
M ∈ Matm(Zq) to a matrix C ∈ Matm(Zq). Consider the following Attack Game aimed
at the pseudo-randomness of the encryption algorithm (1), i.e., this game determines if
an adversary A can distinguish between a random permutation and an actual encryption
function [10]:

Attack Game 1. For the block cipher ε =
{

Enc(~K, M), Dec(~K, C)
}

given by algorithm (1) we
define two experiments. Then for a value b ∈ {0, 1} we have an Experiment b:

• The challenger selects a function Eb as follows:

Eb =

{
Enc(K, M), if b = 0;
Rand(M), otherwise.

• The adversary A submits a sequence of queries i.e., plaintexts in their matrix form Mi, where
i = 1, 2, . . .;

• For the i-th query the challenger computes Ci = Eb(Mi) and sends all the Ci’s to an adversary.
• A outputs b̂ ∈ {0, 1}

Denote by Wb the random event that in Experiment b A outputs 1. Then A’s advantage is
defined as

BCadv[A, ε] = |Pr(W1)− Pr(W0)|.

Proposition 2. For all efficient adversaries A their advantage BCadv[A, ε] in Attack Game 1 is
negligible.

Proof. Let us assume that the adversaryA sends m2 queries, i.e., matrices M1, M2, . . . , Mm2 ,
to its challenger. Since the adversary can choose these queries adaptively, we assume
that these matrices are linearly independent. However, due to this assumption matrices
M1, M2, . . . , Mm2 form a basis of the set Matm(Zq), which is the domain and codomain of
both functions Enc(~K, M), and Rand(M). Hence the adversary can construct any matrix
M ∈ Matm(Zq) since this set is spanned by the linear combinations of the basis matrices.
In other words, we have:

M =
m2

∑
j=1

αjMj. (25)

According to the rules of the Attack Game 1 the challenger replies with the re-
sponse matrices Ci = Eb(Mi), where i = 1, 2, . . . , m2. Since both functions Enc(~K, M)
and Rand(M) are one-to-one (by their definitions), all response values are distinct, and
since the set Matm(Zq) is the codomain of both these functions, all the responses can be
expressed as follows:

Ci =
m2

∑
j=1

βijMj, (26)
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where i = 1, 2, . . . , m2. Furthermore, if more queries are made, then all of them together
with all of the obtained responses can be expressed in a similar way.

Let us now consider Experiment 0. Relying on the perfect secrecy property of the
block cipher ε, we can see that each ciphertext is equally likely, i.e.,

Pr(Enc(~K, Mi) = C0
i ) =

(1
q

)m2

,

where C0
i is some fixed matrix. Furthermore, for any query matrix M the coefficients αj

in (25) are statistically independent from the coefficients βij in (26). Note, also, that for
any response value Ci the coefficients βij are statistically independent from coefficients βkj,
where k < i due to Corollary 2.

However, this behaviour of the encryption function is indistinguishable from a random
permutation. In other words, an adversary can win the considered Attack Game if he can
somehow tell apart the secret key ~K = {X, Y, Z} from the set of all possible keys K.
Otherwise, both functions Enc(~K, M), and R and (M) look the same to the adversary.
Hence, he can do no better than to randomly pick the secret key ~K from the set K. For this
reason, the advantage the adversary has in the considered Attack Game can be estimated
as follows:

BCadv[A, ε] ≤ 1
|K| , (27)

where |K| is the size of the set K. To calculate this value we recall the constrains on the key
matrices X, Y, Z:

• Matrix X does not contain any zero entries and, hence, it comes from the set of (q - 1)m2

possible matrices;
• Matrix Y has to be invertible and, hence, there are a total of ∏m

i=1(q
m − qi−1) possible

choices;
• Matrix Z does not have any additional constrains and hence all qm2

possibilities are
allowed.

It can now be seen that the expression (27) can be rewritten in the following way:

BCadv[A, ε] ≤ 1
(q2 − q)m2 ∏m

i=1(qm − qi−1)
.

Evidently, this advantage is negligible.

Note that Attack Game 1 is used to consider the original block cipher. The following
Attack Game can be formulated for a newly defined CBC mode. This game, together with
the previously presented Attack Game 1, is essential in the proof of the resistance of the
CBC mode of our cipher to the chosen plaintext attack.

Attack Game 2. For the probabilistic cipher ε′ =
{

Enc(~K, µ), Dec(K, c)
}

given by Algo-
rithm (3), we define two experiments. Then for a value b ∈ {0, 1}, we have Experiment b:

• The challenger selects a random key ~K = {X, Y, Z};
• The adversary A submits a sequence of queries i.e., plaintext pairs (µi0, µi1) of equal lengths,

where i = 1, 2, . . . , Q;
• For the i-th query the challenger computes Ci = Enc(~K, µib), where b ∈ {0, 1} is the

experiment indicator, and sends all the Ci’s to an adversary.
• A outputs b̂ ∈ {0, 1}

Denote by Wb the random event that in Experiment b A outputs 1. Then A’s advantage is
defined as

CPAadv[A, ε′] = |Pr(W1)− Pr(W0)|.
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Note that any probabilistic cipher is considered to be CPA secure ifA’s advantage in At-
tack Game 2 is negligible. We formalize this fact for our cipher in the following proposition:

Proposition 3. Consider probabilistic cipher ε′ =
{

Enc(~K, µ), Dec(~K, c)
}

given by Algorithm (3).
For all efficient adversaries A, their advantage in Attack Game 2 is expressed as follows:

CPAadv
[
A, ε′

]
=

2Q2l2

N
, (28)

where Q is the number of queries in Attack Game 2 and l is the total amount of blocks needed to
encrypt a plaintext µib.

Proof. Let us define the following adversaries:

• A is an adversary which plays the Attack Game 2;
• B is an adversary interacting withAwho plays Attack Game 1 with his own challenger.

Our aim is to show that a collaboration of these adversaries does not have any signifi-
cant advantage in winning the defined Attack Game 2.

Obviously, the amount of blocks is poly-bounded and can be calculated as follows:

l = d |µ|
m2t
e,

where de is the ceiling function. Additionally, note that the denominator of the fraction
in (28) equals dlog2 |M|e and hence the size of message space of the CBC mode M and is
super-poly. Hence, our strategy for this proof is similar to the one described in Theorem 5.4
of [10].

Note that prior to encrypting the first block of the plaintext µib, a challenger randomly
selects an initialization vector C0 and hence the intermediate block Si1 consists of random
uniformly distributed entries. Hence, by the construction of our scheme, the advantage
CPAadv∗[A, ε′] of adversary A to win a bit-guessing version of the Attack Game 2 is
given by:

CPAadv∗
[
A, ε′

]
= |Pr(W0)−

1
2
|.

Moreover, multiple queries involving the same message µ result in distinct ciphertext due to
perfect secrecy property of the block cipher and the randomness of the initialization vector.
In other words, because picking the same initialization vector is practically an impossible
event, the ciphertexts are distinct due toEnc(~K, Mj) being a one-to-one mapping for any
block Mj. In fact, as was previously proven, the value of Enc(~K, Mj) is indistinguishable
from a random permutation and hence BCadv[B, ε] is negligible. Evidently, this includes
the first block as well.

All that remains is to define Games 2 and 3 as in Theorem 5.4 of [10] and evaluate the
appropriate results. To shorten our paper we omit these steps.

However, because both the total amount of blocks l and the total amount of queries
Q are poly-bounded whereas the size of the message space is super-poly, the advantage
CPAadv[A, ε′] is negligible and hence the CBC mode of the original Shannon cipher is
CPA secure.

As an example, we explore the CPAadv∗[A, ε′] of the CBC mode ε′ defined by (3) when
the value of q = 2039 and m = 8. Then, we have:

CPAadv
[
A, ε′

]
=

2Q2l2

(l + 1)203964 +
2

(20392 − 2039)64 ∏8
i=1(20398 − 2039i−1)

≈

≈ 2Q2l2

(l + 1)203964 + 2−2110.
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Note that the BCadv[B, ε] ≈ 2−2110 is negligible even compared to the first fraction in
the above expression and, hence, does not have much of an impact on the CPAadv[A, ε′].
Ignoring BCadv[B, ε] we obtain the following result:

Q2l2

(l + 1)
<

203964

2
CPAadv

[
A, ε′

]
.

Then, assuming CPAadv[A, ε′] = 2−112 and that an adversary can submit 2112 queries,
each query could contain approximately 2366 blocks. In other words, the size of the message
is practically unlimited.

In general, ignoring the BCadv[B, ε] and approximating the expression l2

l+1 ≈ l in
order to have CPAadv[A, ε′] < 2−112 we obtain a following result:

Q2l < 2−113qm2
. (29)

Exploring values of q presented in [12] and limiting the message to 232 blocks we
present the minimal values of the matrix size and the maximal number of queries allowed
to achieve the desired adversary advantage in Table 1:

Table 1. Minimal matrix size and maximal number of queries to achieve CPAadv[A, ε′] < 2−112 for
distinct values of q.

q m Q

3 10 107
11 7 4891
53 6 ≈230.6

2039 4 44,736
16,776,899 3 ≈235.5

The presented values in Table 1 should be interpreted as follows: for a given value of
q (say, 3) any smaller value of m gives an adversary an advantage CPAadv[A, ε′] > 2−112

even if Q = 1. For given values of q and m (say, 3 and 10) the presented value of Q is the
maximum number of queries the adversary can send before his advantage surpasses the
value 2−112. In other words, when the adversary sends Q + 1-st query (108-th, if q = 3
and m = 10) he obtainss CPAadv[A, ε′] > 2−112. All the results presented in Table 1 were
calculated using inequality (29), where l = 232.

Note that in our investigation we used Sophie Germain primes q relatively close but
smaller than powers of 2. We can see that the maximal amount of queries can be reasonably
small. This issue can be easily fixed by slightly increasing the matrix size. As we previously
saw, setting q = 2039 and m = 8 practically makes all efforts of any efficient CPA adversary
irrelevant. Moreover, we can also settle for a tolerable CPA advantage, say 2−80, which
greatly increases the number of queries required to surpass the chosen value.

7. Conclusions

In this paper, we proposed a new block cipher based on the previously defined
Shannon cipher which operates in CBC mode. The construction of our block cipher relies
on the link between perfect secrecy and pseudo-random number generators described by
Yao in [9]. Moreover, we modified our initial proposal in such a way that the perfect secrecy
property remains intact. This fact together with Theorem 5.4 in [10] allowed us to prove
that our block cipher is secure against CPA.

In our previous publications, we have shown that MPF is a worthy candidate OWF
and hence is suitable for applications in cryptography. Using the described transformation
of the initial plaintext in its matrix form, we obtain a block that can be encrypted by
executing a single round algorithm (1). Currently, this is a rather unusual idea in symmetric
cryptography. However, we think that the proven perfect secrecy property of the original
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Shannon cipher and CPA security of the newly defined block cipher can aid our proposal
to find its place among other secure symmetric ciphers.

It is also worth noting that due to construction, presented in Section 4, no additional
rounds are needed to perform data encryption. For this reason, the execution of the encryp-
tion process can be parallelized, i.e., we can use extra processors to perform calculations
simultaneously for a single block. The latter property is related to the fact that matrix
operations can be effectively parallelized up to m2 parallel computations where m is an
order of matrices defining our function. We think that this fact can be used to our advantage
resulting in a significant boost in performance. However, in this paper, we only considered
the resistance of the proposed CBC mode to chosen-plaintext attack (CPA) and leave its
performance analysis for our future publication.
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Appendix A

Here, we present the detailed and comprehensive proof of the second block security
of Proposition 1.

In the second block of (3), entries of matrices are of the following form:

s12,ij = m2,ij + c1,ij;

s22,ij = zij ·
m

∏
k=1

m

∏
l=1

( f (s12,kl))
yikyl j ;

c2,ij = s32,ij = f−1(s22,ij) + xij.

Appendix A.1. S12 Independence

Following the proof of the first block (6), s12,ij are uniformly distributed in Zq:

Pr(s12,ij = s0
12,ij) = Pr(c1,ij + m2,ij = s0

ij) =

= ∑
m0

2,ij∈Zq

Pr(c1,ij = s0
12,ij −m0

2,ij, m2,ij = m0
2,ij) =

= ∑
m0

2,ij∈Zq

∑
s0

21,ij∈Gq

Pr(xij = s0
12,ij −m0

2,ij − f−1(s0
21,ij)︸ ︷︷ ︸

∈ Zq

,

m2,ij = m0
2,ij, s21,ij = s0

21,ij) =

=
1
q ∑

m0
2,ij∈Zq

∑
s0

21,ij∈Gq

Pr(m2,ij = m0
2,ij, s21,ij = s0

21,ij)

︸ ︷︷ ︸
= 1

=
1
q

. (A1)
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Using the same idea as in (7) and (A1), we obtain that S21 and M2 are independent:

Pr(s12,ij = s0
12,ij,∩

m
i,j=1{m2,ij = m0

2,ij}) =

= ∑
s0

21,ij∈Gq

Pr(xij = s0
12,ij −m0

2,ij − f−1(s0
21,ij),

∩m
i,j=1{m2,ij = m0

2,ij}, s21,ij = s0
21,ij) =

= Pr(s12,ij = s10)Pr(∩m
i,j=1{m2,ij = m0

2,ij}). (A2)

In the last step of (A2), we refer to the independence of the entries m2,ij and s21,ij,
which can be proved in this way (analogously to (10)):

Pr(s21,ij = s0
21,ij,∩

m
i,j=1{m2,ij = m0

ij}) = ∑
c0

0,kl∈Zq

∑
y0

kl∈Zq\0

∑
m0

1,ij∈Zq

Pr(zij =

= s0
21,ij(

m

∏
k=1

m

∏
l=1

( f (c0
0,kl + m0

1,kl))
y0

iky0
l j)−1

︸ ︷︷ ︸
∈ Zq

,∩m
i,j=1{m1,ij = m0

1,ij},

∩m
k,l=1{c0,kl = c0

0,kl},∩
m
k,l=1{ykl = y0

kl},∩
m
i,j=1{m2,ij = m0

2,ij}) =

=
1
q
· Pr(∩m

i,j=1{m2,ij = m0
2,ij}) = Pr(s21,ij = s0

21,ij)Pr(∩m
i,j=1{m2,ij = m0

ij}). (A3)

The third independence of S12 is that entries of it are mutually independent. In the
same way as in (8) and (A1), it follows that:

Pr(∩m
i,j=1{s12,ij = s0

12,ij}) = Pr(∩m
i,j=1{c1,ij + m2,ij = s0

12,ij}) =

= ∑
s0

21,ij∈Gq

∑
m0

2,ij∈Zq

Pr(∩m
i,j=1{xij = s0

12,ij −m0
2,ij − f−1(s0

21,ij)},

∩m
i,j=1{m2,ij = m0

2,ij},∩
m
i,j=1{s21,ij = s0

21,ij}) =

=
(1

q

)m2

· ∑
s0

21,ij∈Gq

∑
m0

2,ij∈Zq

Pr(∩m
i,j=1{m2,ij = m0

2,ij},

∩m
i,j=1{s21,ij = s0

21,ij}) =
(1

q

)m2

, (A4)

because the double sum at the end of (A4) is equal to 1.

Appendix A.2. S22 Independence

According to Corollary 1, entries of matrix S22 are uniformly distributed in Gq:

Pr(s22,ij = s0
22,ij) =

1
q

. (A5)

To show that S22 is independent of M2, first we prove that C1 = S31 is independent
of Z:

Pr(s31,ij = s0
31,ij,∩

m
i,j=1{zij = z0

ij}) = ∑
s0

21,ij∈Gq

Pr(xij = s0
31,ij − f−1(s0

21,ij)︸ ︷︷ ︸
∈ Zq

,

∩m
i,j=1{zij = z0

ij}, s21,ij = s0
21,ij) =

=
1
q

Pr(∩m
i,j=1{zij = z0

ij}) = Pr(s31,ij = s0
31,ij)Pr(∩m

i,j=1{zij = z0
ij}). (A6)
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Additionally, we need the independence of the entries c1,ij = s31,ij and m2,ij. Similarly
as in (16):

Pr(c1,ij = c0
1,ij,∩

m
i,j=1{m2,ij = m0

2,ij}) =

= ∑
s0

21,ij∈Gq

Pr(xij = c0
1,ij − f−1(s0

21,ij), s21,ij = s0
21,ij,

∩m
i,j=1{m2,ij = m0

2,ij}) =

=
1
q
· ∑

s0
21,ij∈Gq

Pr(s21,ij = s0
21,ij)Pr(∩m

i,j=1{m2,ij = m0})

= Pr(c1,ij = c0
1,ij)Pr(∩m

i,j=1{m2,ij = m0
2,ij}). (A7)

Hence, analogously as in (10), (A6) and (A7) imply that matrices S22 and M2 are inde-
pendent:

Pr(s22,ij = s0
22,ij,∩

m
i,j=1{m2,ij = m0

2,ij}) =

= ∑
c0

1,kl∈Zq

∑
y0

kl∈Zq\0

Pr(zij = s0
22,ij(

m

∏
k=1

m

∏
l=1

( f (c0
1,kl + m0

2,kl))
y0

iky0
l j)−1,

∩m
i,j=1{m2,ij = m0

2,ij},∩
m
k,l=1{c1,kl = c0

1,kl},∩
m
k,l=1{ykl = y0

kl}) =

=
1
q
· Pr(∩m

i,j=1{m2,ij = m0
2,ij}) = Pr(s22,ij = s0

22,ij)·

·Pr(∩m
i,j=1{m2,ij = m0

2,ij}), (A8)

with the fact that C1 and Y are independent:

Pr(c1,ij = c0
1,ij,∩

m
i,j=1{yij = y0

ij}) = ∑
c0

0,ij∈Zq

∑
m0

1,ij∈Zq

∑
z0

ij∈Zq

Pr(xij = c0
1,ij−

− f−1(z0
ij

m

∏
k=1

m

∏
l=1

( f (c0
0,kl + m0

1,kl))
y0

iky0
l j),∩m

i,j=1{m1,ij = m0
1,ij},∩

m
i,j=1{c0,ij = c0

0,ij},

zij = z0
ij,∩

m
i,j=1{yij = y0

ij}) =
1
q
· Pr(∩m

i,j=1{yij = y0
ij}). (A9)

The last step of matrix S22 is to show the independence between its entries, in the
same way as in (11):

Pr(∩m
i,j=1{s22,ij = s0

ij}) = Pr(∩m
i,j=1{zij

m

∏
k=1

m

∏
l=1

( f (s12,kl))
yikyl j = s0

ij}) =

= ∑
s0

11,kl∈Zq

∑
y0

ij∈Zq\0

Pr
(
∩m

i,j=1 {zij = s0
ij
( m

∏
k=1

m

∏
l=1

( f (s0
12,kl))

y0
iky0

l j
)−1},

∩m
k,l=1{s12,kl = s0

12,kl},∩
m
i,j=1{yij = y0

ij}
)
=
(1

q

)m2

. (A10)
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In the last equality of (A10) we needed two additional independencies:
Equations (A11) and (A12). The first is that matrices S12 and Y are independent:

Pr(s12,ij = s0
12,ij,∩

m
i,j=1{yij = y0

ij}) = ∑
m0

2,ij∈Zq

Pr(c1,ij = s0
12,ij −m0

2,ij, m2,ij = m0
2,ij,

∩m
i,j=1{yij = y0

ij}) =

=
1
q

Pr(∩m
i,j=1{yij = y0

ij}) · ∑
m0

2,ij∈Zq

Pr(m2,ij = m0
2,ij) =

=
1
q

Pr(∩m
i,j=1{yij = y0

ij}) = Pr(s12,ij = s0
12,ij)Pr(∩m

i,j=1{yij = y0
ij}). (A11)

The second is that matrices S12 and Z are independent too:

Pr(s12,ij = s0
12,ij,∩

m
i,j=1{zij = z0

ij}) = ∑
m0

2,ij∈Zq

Pr(c1,ij = s0
12,ij −m0

2,ij, m2,ij = m0
2,ij,

∩m
i,j=1{zij = z0

ij}) =

=
1
q

Pr(∩m
i,j=1{zij = z0

ij}) · ∑
m0

2,ij∈Zq

Pr(m2,ij = m0
2,ij) =

1
q

Pr(∩m
i,j=1{yij = y0

ij}) = Pr(s12,ij = s0
12,ij)Pr(∩m

i,j=1{yij = y0
ij}). (A12)

Appendix A.3. S32 = C2 Independence

In order to prove that entries s32,ij = c2,ij are all uniformly distributed in Zq, first, we
need the independence between C1 and X:

Pr(c1,ij = c0
1,ij,∩

m
i,j=1{xij = x0

ij}) = Pr( f−1(s21,ij) = c0
1,ij − x0

ij,∩
m
i,j=1{xij = x0

ij}) =

=
1
q

Pr(∩m
i,j=1{xij = x0

ij}) = Pr(c1,ij = c0
1,ij)Pr(∩m

i,j=1{xij = x0
ij}), (A13)

which implies the independence of S22 and X:

Pr(s22,ij = s0
22,ij,∩

m
i,j=1{xij = x0

ij}) =

= ∑
m0

2,ij∈Zq

∑
c0

1,kl∈Zq

∑
y0

ij∈Zq\0

Pr
(

zij = s0
22,ij·

·
( m

∏
k=1

m

∏
l=1

( f (c0
1,kl + m0

2,kl))
y0

iky0
l j
)−1,∩m

i,j=1{xij = x0
ij},

∩m
i,j=1{yij = y0

ij},∩
n
i,j=1{m2,ij = m0

2,ij},∩
n
k,l=1{c1,kl = c0

1,kl}
)
=

=

=
1
q

Pr(∩m
i,j=1{xij = x0

ij}) = Pr(s22,ij = s0
22,ij)Pr(∩m

i,j=1{xij = x0
ij}). (A14)

This, together with (A13), yields

Pr(s32,ij = s0
32,ij) = Pr( f−1(s22,ij) = s0

31,ij − xij) =

=
1
q ∑

x0
ij∈Zq

Pr(xij = x0
ij) =

1
q

. (A15)
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The main security condition for the second block, the independence between S32 = C2
and M2, is satisfied (following the idea of (16)):

Pr(s32,ij = s0
32,ij,∩

m
i,j=1{m2,ij = m0

2,ij}) =

= Pr( f−1(s22,ij) + xij = s30,∩n
i,j=1{m2,ij = m0

2,ij}) =

= ∑
x0

ij∈Zq

Pr(s22,ij = f (s0
32,ij − x0

ij),∩
m
i,j=1{m2,ij = m0

2,ij},

xij = x0
ij) =

=
1
q

Pr(∩m
i,j=1{m2,ij = m0

2,ij}) = Pr(s32,ij = s0
32,ij)·

·Pr(∩m
i,j=1{m2,ij = m0

2,ij}). (A16)

Finally, entries of S32 = C2 are independent:

Pr(∩m
i,j=1{s32,ij = s0

32,ij}) = Pr(∩m
i,j=1{ f−1(s22,ij) + xij = s0

32,ij}) =

= ∑
x0

ij∈Zq

Pr(∩m
i,j=1{ f−1(s22,ij) = s0

32,ij − x0
ij},∩

m
i,j=1{xij = x0

ij}) =

=
m

∏
i,j=1

Pr( f−1(s22,ij) = s0
32,ij − x0

ij) =
(1

q

)m2

. (A17)

Additionally, to generalize the analysis of the n-th block, we can show that C2 is
independent of M3. To prove this, first, we need the independence between S22 and M3
(similarly as in (A8)):

Pr(s22,ij = s0
22,ij,∩

m
i,j=1{m3,ij = m0

3,ij}) = ∑
c0

1,kl∈Zq

∑
y0

kl∈Zq\0

Pr(zij = s0
22,ij·

·(
m

∏
k=1

m

∏
l=1

( f (c0
1,kl + m0

2,kl))
y0

iky0
l j)−1,∩m

i,j=1{m3,ij = m0
3,ij},

∩m
k,l=1{c1,kl = c0

1,kl},∩
m
k,l=1{ykl = y0

kl}) =
1
q
· Pr(∩m

i,j=1{m3,ij = m0
3,ij}) =

= Pr(s22,ij = s0
22,ij)Pr(∩m

i,j=1{m3,ij = m0
3,ij}), (A18)

where we used the fact that C1 and M3 are independent too, because:

Pr(c1,ij = c0
1,ij,∩

m
i,j=1{m3,ij = m0

3,ij}) =

= ∑
s0

21,ij∈Zq

Pr(xij = c0
1,ij − f−1(s0

21,ij), s21,ij = s0
21,ij,

∩m
i,j=1{m3,ij = m0

3,ij}) =
1
q

Pr(∩m
i,j=1{m3,ij = m0

3,ij}) =

= Pr(c1,ij = c0
1,ij)Pr(∩m

i,j=1{m3,ij = m0
3,ij}). (A19)
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Using the same idea as in (A16), (A18) and (A19) imply the independence between C2
and M3:

Pr(c2,ij = c0
2,ij,∩

m
i,j=1{m3,ij = m0

3,ij}) =

= Pr( f−1(s22,ij) + xij = s30,∩n
i,j=1{m3,ij = m0

3,ij}) =

= ∑
x0

ij∈Zq

Pr(s22,ij = f (s0
32,ij − x0

ij),∩
m
i,j=1{m3,ij = m0

3,ij},

xij = x0
ij) =

1
q

Pr(∩m
i,j=1{m3,ij = m0

3,ij}) =

Pr(c2,ij = c0
2,ij)Pr(∩m

i,j=1{m3,ij = m0
3,ij}). (A20)

To generalize the iterative process of the CBC mode, with each block satisfying the
condition of security, we need the independence between C2 and Z:

Pr(c2,ij = c0
2,ij,∩

m
i,j=1{zij = z0

ij}) =

= ∑
x0

ij∈Zq

Pr( f−1(s22,ij) = c0
2,ij − x0

ij,∩
m
i,j=1{zij = z0

ij},

xij = x0
ij) = ∑

x0
ij∈Zq

Pr(
m

∏
k=1

m

∏
l=1

( f (s12,kl))
yikyl j =

= (z0
ij)
−1 f (c0

2,ij − x0
ij), xij = x0

ij,∩
m
i,j=1{zij = z0

ij}) =

= (A21)

=
1
q ∑

x0
ij∈Zq

Pr(xij = x0
ij,∩

m
i,j=1{zij = z0

ij})

︸ ︷︷ ︸
total probability of ∩m

i,j=1{zij = z0
ij}

=

= Pr(c2,ij = c0
2,ij)Pr(∩m

i,j=1{zij = z0
ij}), (A22)

where we used that S12 and X are independent, which is easy to prove if we keep the same
idea as in (A11).

C2 and Y are also independently distributed:

Pr(c2,ij = c0
2,ij,∩

m
i,j=1{yij = y0

ij}) =

= ∑
s0

22,ij∈Zq

Pr(xij = c0
2,ij − f−1(s0

22,ij),∩
m
i,j=1{yij = y0

ij},

s22,ij = s0
22,ij) = Pr(c2,ij = c0

2,ij)Pr(∩m
i,j=1{yij = y0

ij}). (A23)

Independence of matrices C2 and X can be easily proved according to (A22), because
S22 is independent of X.
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