Article

Hom-Lie Superalgebras in Characteristic 2

Sofiane Bouarroudj ${ }^{\mathbf{1}}$ and Abdenacer Makhlouf ${ }^{2, *}$ (D)
1 Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188 United Arab Emirates; sofiane.bouarroudj@nyu.edu
2 IRIMAS-Mathematics Department, University of Haute Alsace, 68093 Mulhouse, France
* Correspondence: abdenacer.makhlouf@uha.fr

Citation: Bouarroudj, S.; Makhlouf, A. Hom-Lie Superalgebras in Characteristic 2. Mathematics 2023, 11, 4955. https://doi.org/10.3390/ math11244955

Academic Editor: Jan L. Cieśliński

Received: 5 November 2023
Revised: 5 December 2023
Accepted: 7 December 2023
Published: 14 December 2023

[^0]
Abstract

The main goal of this paper was to develop the structure theory of Hom-Lie superalgebras in characteristic 2 . We discuss their representations, semidirect product, and α^{k}-derivations and provide a classification in low dimension. We introduce another notion of restrictedness on Hom-Lie algebras in characteristic 2, different from the one given by Guan and Chen. This definition is inspired by the process of the queerification of restricted Lie algebras in characteristic 2 . We also show that any restricted Hom-Lie algebra in characteristic 2 can be queerified to give rise to a Hom-Lie superalgebra. Moreover, we developed a cohomology theory of Hom-Lie superalgebras in characteristic 2, which provides a cohomology of ordinary Lie superalgebras. Furthermore, we established a deformation theory of Hom-Lie superalgebras in characteristic 2 based on this cohomology.

Keywords: Hom-Lie superalgebra; modular Lie superalgebra; characteristic 2; representation; queerification; cohomology; deformation

MSC: 17B61; 17B05; 17A70

1. Introduction

Throughout the text, \mathbb{K} stands for an arbitrary field of characteristic 2 . In almost all our constructions, \mathbb{K} is arbitrary. There are a few instances where \mathbb{K} is required to be infinite. We will point out these instances.

1.1. Lie Superalgebras in Characteristic 2

Roughly speaking, a Lie superalgebra in characteristic 2 is a $\mathbb{Z} / 2 \mathbb{Z}$-graded vector space that has a Lie algebra structure on the even part and is endowed with a squaring on the odd part that satisfies a modified Jacobi identity; see Section 2.1 for a precise definition. Because we are in characteristic 2, those Lie superalgebras are sometimes confused with $\mathbb{Z} / 2 \mathbb{Z}$-graded Lie algebras, though they are totally different algebras due to the presence of the squaring. They can, however, be considered as a $\mathbb{Z} / 2 \mathbb{Z}$-graded Lie algebra by forgetting the super structure. The other way round is not always true in general.

The classification of simple Lie superalgebras into characteristic 2 is still an open and wide problem. Nevertheless, Lie superalgebras in characteristic 2 admitting a Cartan matrix were classified in [1], with the following assumption: each Lie superalgebra possesses a Dynkin diagram with only one odd node. The list of non-equivalent Cartan matrices for each Lie superalgebra is also given in [1]. Moreover, it was recently showed in [2] that each finite-dimensional simple Lie superalgebra in characteristic 2 can be obtained from a simple finite-dimensional Lie algebra in characteristic 2 , hence reducing the classification to the classification of simple Lie algebras, which on its own is a very tough problem. As a matter of fact, there are plenty of (vectorial and non-vectorial) Lie superalgebras in characteristic 2 that have no analogue in other characteristics; see [2-4] and the references therein.

It is worth mentioning that the characteristic 2 case is a very tricky case, due to the presence of the squaring. It does require new ideas and techniques.

1.2. Hom-Lie Superalgebras in Characteristic 2

The first instances of Hom-type algebras appeared in the physics literature; see, for example, [5], where q-deformations of some Lie algebras of vector fields led to a structure in which the Jacobi identity is no longer satisfied. This class of algebras was formalized and studied in [6-8], where these algebras were called Hom-Lie algebras since the Jacobi identity is twisted by a homomorphism. The super case was considered in [9], where Hom-Lie superalgebras were introduced as a $\mathbb{Z} / 2 \mathbb{Z}$-graded generalization of the HomLie algebras. The authors of [9] characterized Hom-Lie admissible superalgebras and proved a $\mathbb{Z} / 2 \mathbb{Z}$-graded version of a Hartwig-Larsson-Silvestrov Theorem, which led to the construction of a q-deformed Witt superalgebra using σ-derivations. Moreover, they derived a one-parameter family of Hom-Lie superalgebras deforming the orthosymplectic Lie superalgebra $\mathfrak{o s p}(1 \mid 2)$. The cohomology of Hom-Lie superalgebras was defined in [10]. For other contributions, see, for example, $[11,12]$ and the references therein. Notice that all these studies and results were performed over a field of characteristic 0 .

1.3. The Main Results

The main purpose of this paper was to tackle the positive characteristic and provide a study of Hom-Lie superalgebras in characteristic 2 . We introduce the main definitions and some key constructions, as well as a cohomology theory fitting a deformation theory. In Section 2, we recall some basic definitions and introduce Hom-Lie algebras and Hom-Lie superalgebras over fields of characteristic 2 and some related structures. We show that a Lie superalgebra in characteristic 2 and an even Lie superalgebra morphism give rise to a Hom-Lie superalgebra in characteristic 2. Moreover, we provide a classification of Hom-Lie superalgebras in characteristic 2 in low dimensions. In Section 3, we consider the representations and semidirect product of Hom-Lie superalgebras in characteristic 2. The structure map defining a Hom-Lie superalgebra in characteristic 2 allows a new type of derivation called α^{k}-derivations, discussed in Section 4. In Section 5, we introduce the notion of the p-structure and discuss the queerification of restricted Hom-Lie algebras in characteristic 2 . Section 6 is dedicated to cohomology theory. We construct a cohomology complex of a Hom-Lie superalgebra \mathfrak{g} in characteristic 2 with values in a \mathfrak{g}-module. This cohomology complex has no analogue in characteristic $p \neq 2$. In the last section, we provide a deformation theory of Hom-Lie superalgebras in characteristic 2 using the cohomology we constructed previously.

2. Backgrounds and Main Definitions

Let V and W be two vector spaces over \mathbb{K}. A map $s: V \rightarrow W$ is called a squaring if

$$
\begin{align*}
& s(\lambda x)=\lambda^{2} s(x) \quad \text { for all } \lambda \in \mathbb{K} \text { and for all } x \in V \text {, and the map } \\
& (x, y) \mapsto s(x+y)-s(x)-s(y) \text { is bilinear. } \tag{1}
\end{align*}
$$

2.1. Lie Superalgebras in Characteristic 2

Following [4,13], a Lie superalgebra in characteristic 2 is a superspace $\mathfrak{g}=\mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ over \mathbb{K} such that $\mathfrak{g}_{\overline{0}}$ is an ordinary Lie algebra, $\mathfrak{g}_{\overline{1}}$ is a \mathfrak{g}_{0}-module made two-sided by symmetry, and on $\mathfrak{g}_{\overline{1}}$, a squaring, denoted by $s_{\mathfrak{g}}: \mathfrak{g}_{\overline{1}} \rightarrow \mathfrak{g}_{\overline{0}}$, is given. The bracket on $\mathfrak{g}_{\overline{0}}$, as well as the action of $\mathfrak{g}_{\overline{0}}$ on $\mathfrak{g}_{\overline{1}}$ are denoted by the same symbol $[\cdot, \cdot]$. For any $x, y \in \mathfrak{g}_{\overline{1}}$, their bracket is then defined by

$$
[x, y]:=s(x+y)-s(x)-s(y)
$$

The bracket is extended to non-homogeneous elements by bilinearity. The Jacobi identity involving the squaring reads as follows:

$$
[s(x), y]=[x,[x, y]] \text { for any } x \in \mathfrak{g}_{\overline{1}} \text { and } y \in \mathfrak{g}
$$

Such a Lie superalgebra in characteristic 2 will be denoted by $(\mathfrak{g},[\cdot, \cdot], s)$.

For any Lie superalgebra \mathfrak{g} in characteristic 2 , its derived algebras are defined to be (for $i \geq 0$)

$$
\mathfrak{g}^{(0)}:=\mathfrak{g}, \quad \mathfrak{g}^{(i+1)}=\left[\mathfrak{g}^{(i)}, \mathfrak{g}^{(i)}\right]+\operatorname{Span}\left\{s(x) \mid x \in\left(\mathfrak{g}^{(i)}\right)_{\overline{1}}\right\} .
$$

A linear map $D: \mathfrak{g} \rightarrow \mathfrak{g}$ is called a derivation of the Lie superalgebra \mathfrak{g} if, in addition to

$$
\begin{align*}
D([x, y]) & =[D(x), y]+[x, D(y)] \quad \text { for any } x \in \mathfrak{g}_{0} \text { and } y \in \mathfrak{g}, \text { we have } \tag{2}\\
D(s(x)) & =[D(x), x] \text { for any } x \in \mathfrak{g}_{\overline{1}} . \tag{3}
\end{align*}
$$

It is worth noticing that condition (3) implies condition (2) if $x, y \in \mathfrak{g}_{\overline{1}}$.
We denote the space of all derivations of \mathfrak{g} by $\mathfrak{d e r}(\mathfrak{g})$.
Let $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}\right)$ and $\left(\mathfrak{h},[\cdot, \cdot]_{\mathfrak{h}}, s_{\mathfrak{h}}\right)$ be two Lie superalgebras in characteristic 2 . An even linear map $\varphi: \mathfrak{g} \rightarrow \mathfrak{h}$ is called a morphism (of Lie superalgebras) if, in addition to

$$
\begin{aligned}
\varphi\left([x, y]_{\mathfrak{g}}\right) & =[\varphi(x), \varphi(y)]_{\mathfrak{h}} \quad \text { for any } x \in \mathfrak{g}_{\overline{0}} \text { and } y \in \mathfrak{g}, \text { we have } \\
\varphi\left(s_{\mathfrak{g}}(x)\right) & =s_{\mathfrak{h}}(\varphi(x)) \quad \text { for any } x \in \mathfrak{g}_{\overline{1}} .
\end{aligned}
$$

Therefore, morphisms in the category of Lie superalgebras in characteristic 2 preserve not only the bracket, but the squaring as well. In particular, subalgebras and ideals have to be stable under the bracket and the squaring.

An even linear map $\rho: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is a representation of the Lie superalgebra $(\mathfrak{g},[\cdot, \cdot], s)$ in the superspace V called the \mathfrak{g}-module if

$$
\begin{equation*}
\rho([x, y])=[\rho(x), \rho(y)] \quad \text { for any } x, y \in \mathfrak{g} ; \text { and } \rho(s(x))=(\rho(x))^{2} \text { for any } x \in \mathfrak{g}_{\overline{1}} . \tag{4}
\end{equation*}
$$

Remark 1. Associative superalgebras in characteristic 2 lead to Lie superalgebras in characteristic 2. The bracket is standard, and the squaring is defined by $s(x)=x \cdot x$, for every odd element x.

2.2. Hom-Lie Algebras in Characteristic 2

A Hom-Lie algebra in characteristic 2 is a vector space \mathfrak{g} over \mathbb{K} and a map $\alpha \in \operatorname{End}(\mathfrak{g})$ together with a bracket satisfying the following conditions:

$$
[x, x]=0, \quad \alpha[x, y]=[\alpha(x), \alpha(y)] \text { and }[\alpha(x),[y, z]]+\circlearrowleft(x, y, z)=0, \quad \text { for all } x, y, z \in \mathfrak{g} .
$$

Such a Hom-Lie algebra will be denoted by $(\mathfrak{g},[\cdot, \cdot], \alpha)$.
A representation of a Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ is a triplet $\left(V,[\cdot, \cdot]_{V}, \beta\right)$, where V is a vector space, $\beta \in \mathfrak{g l}(V)$, and $[\cdot, \cdot]_{V}$ is the action of \mathfrak{g} on V such that (for all $x, y \in \mathfrak{g}$ and for all $v \in V$):

$$
\begin{equation*}
[\alpha(x), \beta(v)]_{V}=\beta\left([x, v]_{V}\right), \quad\left[[x, y]_{\mathfrak{g}}, \beta(v)\right]_{V}=\left[\alpha(x),[y, v]_{V}\right]_{V}+\left[\alpha(y),[x, v]_{V}\right]_{V} \tag{5}
\end{equation*}
$$

Writing Equation (5) using the notation of Equation (4), we put $\rho_{\beta}:=[\cdot, \cdot]_{V}$ and obtain (for all $x, y \in \mathfrak{g}$):

$$
\begin{equation*}
\rho_{\beta}(\alpha(x)) \circ \beta=\beta \circ \rho(x), \quad \rho\left([x, y]_{\mathfrak{g}}\right) \circ \beta=\rho(\alpha(x)) \rho(y)+\rho(\alpha(y)) \rho(x) . \tag{6}
\end{equation*}
$$

2.3. Hom-Lie Superalgebras in Characteristic 2

Our main definition is given below. Due to the presence of the squaring, our approach to define Hom-Lie superalgebras in characteristic 2 will differ from that used in characteristics $p \neq 2$; see [9].

Definition 1. A Hom-Lie superalgebra in characteristic 2 is a quadruple $(\mathfrak{g},[\cdot, \cdot], s, \alpha)$ consisting of $a \mathbb{Z} / 2 \mathbb{Z}$-graded superspace $\mathfrak{g}=\mathfrak{g}_{\overline{0}} \oplus \mathfrak{g}_{\overline{1}}$ over \mathbb{K}, a symmetric bracket $[\cdot, \cdot]$, a squaring s: $\mathfrak{g}_{\overline{1}} \rightarrow \mathfrak{g}_{\overline{0}}$, and an even map $\alpha \in \operatorname{End}(\mathfrak{g})$ such that:
(i) $\left(\mathfrak{g}_{0},[\cdot, \cdot],\left.\alpha\right|_{\mathfrak{g}_{\overline{0}}}\right)$ is an ordinary Hom-Lie algebra;
(ii) $\mathfrak{g}_{\overline{1}}$ is a $\mathfrak{g}_{\overline{0}}$-module made two-sided by symmetry, where the action is still denoted by the bracket $[\cdot, \cdot]$;
(iii) The map

$$
\begin{equation*}
\mathfrak{g}_{\overline{1}} \times \mathfrak{g}_{\overline{1}} \rightarrow \mathfrak{g}_{\overline{0}} \quad(x, y) \mapsto s(x+y)+s(x)+s(y) \tag{7}
\end{equation*}
$$

is bilinear and induces the bracket on odd elements; namely, for any $x, y \in \mathfrak{g}_{\overline{1}}$:

$$
[x, y]:=s(x+y)+s(x)+s(y)
$$

(iv) The following three conditions hold:

$$
\begin{align*}
{[s(x), \alpha(y)] } & =[\alpha(x),[x, y]] \text { for any } x \in \mathfrak{g}_{\overline{1}} \text { and } y \in \mathfrak{g}, \tag{8}\\
\alpha([x, y]) & =[\alpha(x), \alpha(y)] \text { for any } x, y \in \mathfrak{g}, \tag{9}\\
\alpha(s(x)) & =s(\alpha(x)) \text { for any } x \in \mathfrak{g}_{\overline{1}} . \tag{10}
\end{align*}
$$

Remark 2. (i) The Jacobi identity on triples in $\left\{\mathfrak{g}_{0}, \mathfrak{g}_{1}, \mathfrak{g}_{1}\right\}$ and $\left\{\mathfrak{g}_{1}, \mathfrak{g}_{1}, \mathfrak{g}_{1}\right\}$ follow from condition (8). We, therefore, recover the usual definition of Hom-Lie superalgebras [9].
(ii) Since we are working over a field of characteristic 2, skew symmetry and symmetry coincide since $-1 \equiv 1(\bmod 2)$.
(iii) We may want to consider Hom-Lie superalgebras in characteristic 2 without conditions (9) and (10), which corresponds to the multiplicativity of the structure map α.

Let $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right)$ and $\left(\mathfrak{g}^{\prime},[\cdot, \cdot]_{\mathfrak{g}^{\prime}}, s_{\mathfrak{g}^{\prime}}, \alpha^{\prime}\right)$ be two Hom-Lie superalgebras in characteristic 2. A map $\phi: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ is a morphism of Hom-Lie superalgebras if the following conditions are satisfied:

$$
\begin{equation*}
\phi\left([\cdot, \cdot \cdot]_{\mathfrak{g}}\right)=[\phi(\cdot), \phi(\cdot)]_{\mathfrak{g}^{\prime}}, \quad \phi \circ s_{\mathfrak{g}}=s_{\mathfrak{g}^{\prime}} \circ \phi, \quad \phi \circ \alpha=\alpha^{\prime} \circ \phi . \tag{11}
\end{equation*}
$$

Two Hom-Lie superalgebras ($\left.\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right)$ and $\left(\mathfrak{g}^{\prime},[\cdot, \cdot]_{\mathfrak{g}^{\prime}}, s_{\mathfrak{g}^{\prime}}, \alpha^{\prime}\right)$ are called isomorphic if there exists a homomorphism $\phi: \mathfrak{g} \rightarrow \mathfrak{g}^{\prime}$ as in (11) that it is bijective.

Let $(\mathfrak{g},[\cdot, \cdot], s, \alpha)$ be a Hom-Lie superalgebra in characteristic 2 . Let I be a subset of \mathfrak{g}. The set I is called an ideal of \mathfrak{g} if and only if I is closed under addition and scalar multiplication, together with

$$
[I, \mathfrak{g}] \subseteq I, \alpha(I) \subseteq I \text { and } s(x) \in I \text { whenever } x \in I \cap \mathfrak{g}_{\overline{1}} .
$$

In particular, if the ideal I is homogeneous, namely $I=I \cap \mathfrak{g}_{\overline{0}} \oplus I \cap \mathfrak{g}_{\overline{1}}=I_{\overline{0}} \oplus I_{\overline{1}}$, then the condition involving the squaring reads $s(x) \in I_{\overline{0}}$ for all $x \in I_{\overline{1}}$. In addition, the superspace \mathfrak{g} / I is also a Hom-Lie superalgebra in characteristic 2 . The bracket and the squaring are defined as follows:

$$
\begin{array}{rll}
{[x+I, y+I]} & :=[x, y]+I & \text { for all } x, y \in \mathfrak{g} \\
s(x+I) & :=s(x)+I & \text { for all } x \in \mathfrak{g}_{\overline{1}}
\end{array}
$$

while the twist map $\tilde{\alpha}$ on \mathfrak{g} / I is defined by

$$
\tilde{\alpha}(x+I)=\alpha(x)+I \quad \text { for all } x \in \mathfrak{g}
$$

We will only show that the squaring is well-defined. Suppose that $\tilde{x}-x=i \in I_{\overline{1}}$; we have

$$
s(\tilde{x})=s(x+i)=s(x)+s(i)+[x, i]=s(x) \quad \bmod (I) .
$$

In the following proposition, we will show that an ordinary Lie superalgebra together with a morphism gives rise to a Hom-Lie superalgebra structure on the underlying vector space.

Proposition 1. Let $(\mathfrak{g},[\cdot, \cdot], s)$ be a Lie superalgebra in characteristic 2 , and let $\alpha: \mathfrak{g} \rightarrow \mathfrak{g}$ be an even superalgebra morphism. Then, $\left(\mathfrak{g},[\cdot, \cdot]_{\alpha}, s_{\alpha}, \alpha\right)$, where $[\cdot, \cdot]_{\alpha}=\alpha \circ[\cdot, \cdot]$ and $s_{\alpha}=\alpha \circ s$, is a Hom-Lie superalgebra in characteristic 2.

Proof. The first part of the proof is given in [9]. We have to check Equations (1) and (8). Indeed, let $\lambda \in \mathbb{K}$, and let $x \in \mathfrak{g}_{\overline{1}}$. We have

$$
s_{\alpha}(\lambda x)=\alpha(s(\lambda x))=\alpha\left(\lambda^{2} s(x)\right)=\lambda^{2} \alpha(s(x))=\lambda^{2} s_{\alpha}(x) .
$$

On the other hand, for any $x \in \mathfrak{g}_{\overline{1}}$ and $y \in \mathfrak{g}$, we have

$$
\begin{aligned}
& {\left[s_{\alpha}(x), \alpha(y)\right]_{\alpha}=\alpha([\alpha(s(x)), \alpha(y)])=\alpha^{2}([s(x), y])=\alpha^{2}([x,[x, y]])} \\
& =\alpha([\alpha(x), \alpha([x, y])])=\left[\alpha(x),[x, y]_{\alpha}\right]_{\alpha} .
\end{aligned}
$$

More generally, let $(\mathfrak{g},[\cdot, \cdot], s, \alpha)$ be a Hom-Lie superalgebra in characteristic 2, and let $\beta: \mathfrak{g} \rightarrow \mathfrak{g}$ be an even weak superalgebra morphism (the third condition of (11) is not necessarily satisfied). Then, $\left(\mathfrak{g},[\cdot, \cdot]_{\beta}:=\beta \circ[\cdot, \cdot], s_{\beta}:=\beta \circ s, \alpha \circ \beta\right)$ is a Hom-Lie superalgebra in characteristic 2. The proof is similar to that of Proposition 1.

Example 1. Consider the ortho-orthogonal Lie superalgebra $\mathfrak{g}:=\mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)$ (see $[1,4]$) spanned by the even vectors h, x_{2}, y_{2} and the odd vectors x_{1}, y_{1} with the non-zero brackets:

$$
\left[x_{1}, y_{1}\right]=\left[x_{2}, y_{2}\right]=h, \quad\left[h, x_{1}\right]=x_{1}, \quad\left[h, y_{1}\right]=y_{1}, \quad\left[x_{2}, y_{1}\right]=x_{1}, \quad\left[y_{2}, x_{1}\right]=y_{1},
$$

and the squaring:

$$
s\left(x_{1}\right)=x_{2}, \quad s\left(y_{1}\right)=y_{2} .
$$

Let us define the map α on the vector space underlying $\mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)$:

$$
\begin{array}{ll}
\alpha\left(x_{1}\right)=\delta_{1} x_{1}+\delta_{2} y_{1}, & \alpha\left(y_{1}\right)=\varepsilon_{1} x_{1}+\varepsilon_{2} y_{1}, \quad \alpha\left(x_{2}\right)=\lambda_{1} h+\lambda_{2} x_{2}+\lambda_{3} y_{2} \\
\alpha\left(y_{2}\right)=\beta_{1} h+\beta_{2} x_{2}+\beta_{3} y_{2}, & \alpha(h)=\gamma_{1} h .
\end{array}
$$

A direct computation shows that the map α is a morphism of Lie superalgebras if and only if (where we have put for simplicity $T:=1+\delta_{2} \varepsilon_{1}+\delta_{1} \varepsilon_{2}$):

$$
\gamma_{1}=(1+T)^{2}, \quad \beta_{1}=\varepsilon_{1} \varepsilon_{2}, \quad \beta_{2}=\varepsilon_{1}^{2}, \quad \beta_{3}=\varepsilon_{2}^{2}, \quad \lambda_{1}=\delta_{1} \delta_{2}, \quad \lambda_{2}=\delta_{1}^{2}, \quad \lambda_{3}=\delta_{2}^{2}
$$

together with

$$
\begin{equation*}
\varepsilon_{1} T=\varepsilon_{1} T^{2}=\varepsilon_{2} T=\varepsilon_{2} T^{2}=\delta_{1} T=\delta_{1} T^{2}=\delta_{2} T=\delta_{2} T^{2}=T(1+T)=0 \tag{12}
\end{equation*}
$$

The only solutions to Equation (12) that do not produce the zero map are given by $T=0$.
We can, therefore, construct a Hom-Lie superalgebra by means of the map α, depending on three parameters, as in Proposition 1. So, we have

$$
\begin{array}{ll}
\alpha\left(x_{1}\right)=\delta_{1} x_{1}+\delta_{2} y_{1}, & \alpha\left(y_{1}\right)=\varepsilon_{1} x_{1}+\varepsilon_{2} y_{1}, \quad \alpha\left(x_{2}\right)=\delta_{1} \delta_{2} h+\delta_{1}^{2} x_{2}+\delta_{2}^{2} y_{2}, \\
\alpha\left(y_{2}\right)=\varepsilon_{1} \varepsilon_{2} h+\varepsilon_{1}^{2} x_{2}+\varepsilon_{2}^{2} y_{2}, & \alpha(h)=h .
\end{array}
$$

such that $\left(\begin{array}{ll}\varepsilon_{2} & \varepsilon_{1} \\ \delta_{2} & \delta_{1}\end{array}\right) \in S L_{2}(\mathbb{K})$.

In particular, we have the following Hom-Lie superalgebra in characteristic 2 , which we denote by $\mathfrak{o} \mathfrak{o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha}$, defined by the brackets:

$$
\begin{aligned}
{\left[x_{1}, y_{1}\right]_{\alpha}=} & {\left[x_{2}, y_{2}\right]_{\alpha}=h,\left[h, x_{1}\right]_{\alpha}=x_{1},\left[h, y_{1}\right]_{\alpha}=\varepsilon x_{1}+y_{1}, } \\
& {\left[x_{2}, y_{1}\right]_{\alpha}=x_{1},\left[y_{2}, x_{1}\right]_{\alpha}=\varepsilon x_{1}+y_{1}, }
\end{aligned}
$$

with the corresponding squaring:

$$
s\left(x_{1}\right)=x_{2}, \quad s\left(y_{1}\right)=\varepsilon h+\varepsilon^{2} x_{2}+y_{2},
$$

and the twist map:

$$
\alpha\left(x_{1}\right)=x_{1}, \quad \alpha\left(y_{1}\right)=\varepsilon x_{1}+y_{1}, \quad \alpha\left(x_{2}\right)=x_{2}, \quad \alpha\left(y_{2}\right)=\varepsilon h+\varepsilon^{2} x_{2}+y_{2}, \quad \alpha(h)=h,
$$

where ε is a parameter in \mathbb{K}. We recover the Lie superalgebra $\mathfrak{o} \mathfrak{o}_{I \Pi}^{(1)}(1 \mid 2)$ for $\varepsilon=0$.

2.4. The Classification In Low Dimensions

Let us assume here that the field \mathbb{K} is infinite (for instance, algebraically closed). For the classification of Hom-Lie algebras and superalgebras in low dimensions, see [14-20].
2.4.1. The Case $\operatorname{sdim}(\mathfrak{g})=1 \mid 1$

Assume that $\mathfrak{g}_{\overline{0}}=\operatorname{Span}\{e\}$ and $\mathfrak{g}_{\overline{1}}=\operatorname{Span}\{f\}$. We set

$$
\alpha(e)=\lambda_{1} e, \quad \alpha(f)=\lambda_{2} f, \quad s_{\mathfrak{g}}(f)=\rho e, \quad[e, e]=0, \quad[e, f]=\gamma f
$$

It follows that $[f, f]=s(2 f)-2 s(f)=2 s(f)=2 \rho e=0$. Calculations on the conditions lead to

$$
\rho \gamma \lambda_{2}=0, \quad \lambda_{2} \gamma=\lambda_{2} \lambda_{1} \gamma, \quad \rho \lambda_{1}=\rho \lambda_{2}^{2}
$$

These are all Hom-Lie superalgebras up to an isomorphism:
(i) Abelian: the twist is given by $\alpha(e)=\lambda_{1} e, \alpha(f)=\lambda_{2} f$, where $\left(\lambda_{1}, \lambda_{2}\right) \neq(0,0)$.
(ii) $[e, f]=f, s(f)=0$: there are two twists given by:

$$
\alpha_{1}(e)=e, \alpha_{1}(f)=\lambda_{2} f, \text { where } \lambda_{2} \neq 0, \quad \alpha_{2}(e)=\lambda_{1} e, \alpha_{2}(f)=0, \text { where } \lambda_{1} \neq 0
$$

(iii) $[e, f]=0, s(f)=e$: the twist is given by $\alpha(e)=\lambda^{2} e, \alpha(f)=\lambda f$, where $\lambda \neq 0$.

As the field \mathbb{K} is infinite, we have a family of Hom-Lie superalgebras.
2.4.2. The Case $\operatorname{sdim}(\mathfrak{g})=1 \mid 2$

Assume that $\mathfrak{g}_{\overline{0}}=\operatorname{Span}\{e\}$ and $\mathfrak{g}_{\overline{1}}=\operatorname{Span}\left\{f_{1}, f_{2}\right\}$. We define the brackets as (where $a_{i}, b_{i} \in \mathbb{K}$ for $i, j=1,2$):

$$
\left[e, f_{1}\right]=a_{1} f_{1}+a_{2} f_{2}, \quad\left[e, f_{2}\right]=b_{1} f_{1}+b_{2} f_{2}
$$

and finally, the squaring as (where $\rho_{i} \in \mathbb{K}$ for $i=1,2,3$):

$$
s\left(f_{1}\right)=\rho_{1} e, \quad s\left(f_{2}\right)=\rho_{2} e, \quad s\left(f_{1}+f_{2}\right)=\rho_{3} e
$$

Let us consider a linear map α by which we will construct the Hom-structure. As α preserves the $\mathbb{Z} / 2 \mathbb{Z}$-grading, and by using the Jordan decomposition, we distinguish two cases:

Case 1: Suppose that α is given by (where $s, t_{1}, r_{2} \in \mathbb{K}$):

$$
\alpha(e)=s e, \quad \alpha\left(f_{1}\right)=t_{1} f_{1}, \quad \alpha\left(f_{2}\right)=r_{2} f_{2}
$$

A direct computation shows that there are only the following sub-cases:

Sub-case 1a: We have $\rho_{3}=\rho_{1}+\rho_{2}, \rho_{1} \neq 0, s=t_{1}^{2}, \rho_{2}\left(s+r_{2}^{2}\right)=0$ and $a_{i}=b_{i}=0$ for $i=1,2$. Here are the two possible cases:

$$
\begin{aligned}
& \rho_{3}=\rho_{1}+\rho_{2}, \rho_{1} \neq 0, \rho_{2}=0, s=t_{1}^{2}, a_{1}=b_{1}=a_{2}=b_{2}=0, r_{2} \text { arbitrary; or } \\
& \rho_{3}=\rho_{1}+\rho_{2}, \rho_{1}, \rho_{2} \neq 0, s=t_{1}^{2}, t_{1}=r_{2}, a_{1}=b_{1}=a_{2}=b_{2}=0
\end{aligned}
$$

Sub-case 1b: We have $\rho_{1}=\rho_{2}=\rho_{3}=0$ together with

$$
b_{1}\left(t_{1}+s r_{2}\right)=0, b_{2} r_{2}(1+s)=0, a_{1} t_{1}(1+s)=0, a_{2}\left(r_{2}+s t_{1}\right)=0
$$

We can disregard this case, because it produces a Lie algebra instead of a Lie superalgebra.
Sub-case 1c: We have $\rho_{1}+\rho_{2}+\rho_{3} \neq 0, \rho_{1} \neq 0$, together with

$$
s=t_{1}^{2}=t_{1} r_{2}, \rho_{2} t_{1}^{2}=r_{2}^{2} \rho_{2}, a_{1}=b_{1}=a_{2}=b_{2}=0
$$

Here are the two possible cases:

$$
\rho_{1}+\rho_{2}+\rho_{3} \neq 0, \rho_{1} \neq 0, \rho_{2}=0, s=t_{1}^{2}=t_{1} r_{2}, r_{2} \neq 0, a_{1}=b_{1}=a_{2}=b_{2}=0 ; \text { or }
$$

$$
\rho_{1}+\rho_{2}+\rho_{3} \neq 0, \rho_{1}, \rho_{2} \neq 0, s=t_{1}^{2}, t_{1}=r_{2} \neq 0, a_{1}=b_{1}=a_{2}=b_{2}=0
$$

Case 2: Suppose that α is given by (where $s, t_{1} \in \mathbb{K}$):

$$
\alpha(e)=s e, \quad \alpha\left(f_{1}\right)=t_{1} f_{1}, \quad \alpha\left(f_{2}\right)=f_{1}+t_{1} f_{2} .
$$

A direct computation shows that there are only the following sub-cases:
Subcase 2a: We have $\rho_{1}, \rho_{2} \neq 0$, but ρ_{3} arbitrary, together with

$$
a_{1}=a_{2}=b_{1}=b_{2}=0, s=t_{1}^{2}, \rho_{1}\left(1+t_{1}\right)=t_{1}\left(\rho_{2}+\rho_{3}\right)
$$

Subcase 2 b : We have $\rho_{1}, \rho_{3} \neq 0$, but $\rho_{2}=0$ arbitrary, together with

$$
a_{1}=a_{2}=b_{1}=b_{2}=0, s=t_{1}^{2}, \rho_{1}\left(1+t_{1}\right)=t_{1} \rho_{3} .
$$

Subcase 2c: We have $\rho_{1} \neq 0$, but $\rho_{2}=\rho_{3}=0$, together with

$$
a_{1}=a_{2}=b_{1}=b_{2}=0, s=1, t_{1}=1
$$

Subcase 2d: We have $\rho_{1}=0, \rho_{2} \neq 0$, but ρ_{3} arbitrary, together with

$$
a_{1}=a_{2}=b_{1}=b_{2}=0, s=t_{1}^{2}, t_{1}\left(\rho_{2}+\rho_{3}\right)=0
$$

Subcase 2: We have $\rho_{1}=\rho_{2}=0$, but $\rho_{3} \neq 0$, together with

$$
a_{1}=a_{2}=b_{1}=b_{2}=0, s=0, t_{1}=0
$$

The tables below summarize our finding. We find it convenient to order the Hom-Lie superalgebras into two groups: (i) type I comprises those for which the \mathfrak{g}_{0}-module structure on $\mathfrak{g}_{\overline{1}}$ is trivial; (ii) type II comprises those for which the \mathfrak{g}_{0}-module structure on $\mathfrak{g}_{\overline{1}}$ is not trivial.

Remark 3. We do not explore the possibility of isomorphisms between the Hom-Lie superalgebras in Tables 1-4.

Table 1. Type I (i.e., $\left[\mathfrak{g}_{\overline{0}}, \mathfrak{g}_{\overline{1}}\right]=\{0\}$) with $\alpha(e)=s e, \alpha\left(f_{1}\right)=t_{1} f_{1}, \alpha\left(f_{2}\right)=r_{2} f_{2}$.

The HLSA	The Squaring s		The Conditions
A_{1}	$\begin{aligned} & \hline s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =\rho_{1} e, \\ & =0, \\ & =\rho_{1} e \end{aligned}$	$\rho_{1} \neq 0, s=t_{1}^{2},$ r_{2} arbitrary
A_{2}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =\rho_{1} e \\ & =\rho_{2} e, \\ & =\left(\rho_{1}+\lambda^{2} \rho_{2}\right) e \end{aligned}$	$\begin{aligned} & \rho_{1}, \rho_{2} \neq 0, \\ & s=t_{1}^{2}, r_{2}=t_{1} \end{aligned}$
A_{3}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =\rho_{1} e, \\ & =0, \\ & =\left((1+\lambda) \rho_{1}+\lambda \rho_{3}\right) e \end{aligned}$	$\begin{aligned} & \rho_{1} \neq 0, \rho_{1}+\rho_{3} \neq 0, \\ & s=t_{1}^{2}=t_{1} r_{2}, r_{2} \neq 0 \end{aligned}$
A_{4}	$\begin{aligned} & \hline s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} = & \rho_{1} e \\ = & \rho_{2} e \\ = & \lambda\left(\rho_{1}+(1+\lambda) \rho_{2}+\rho_{3}\right) e \\ & +\rho_{1} e \end{aligned}$	$\begin{aligned} & \rho_{1}, \rho_{2} \neq 0, \rho_{1}+\rho_{2}+\rho_{3} \neq 0, \\ & s=t_{1}^{2}, t_{1}=r_{2}, r_{2} \neq 0 \end{aligned}$

Table 2. Type I (i.e. $\left[\mathfrak{g}_{\overline{0}}, \mathfrak{g}_{\overline{1}}\right]=\{0\}$) with $\alpha(e)=s e, \alpha\left(f_{1}\right)=t_{1} f_{1}, \alpha\left(f_{2}\right)=f_{1}+t_{1} f_{2}$.

The HLSA	The Squaring s		The Conditions
A_{5}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} = & \rho_{1} e, \\ = & \rho_{2} f_{2}, \\ = & \lambda\left(\rho_{1}+(1+\lambda) \rho_{2}\right) e \\ & +\left(\lambda \rho_{3}+\rho_{1}\right) e \end{aligned}$	$\begin{aligned} & \rho_{1}, \rho_{2} \neq 0, \rho_{3}=\frac{1+t_{1}}{t_{1}} \rho_{1}+\rho_{2} \\ & s=t_{1}^{2} \end{aligned}$
A_{6}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & =\rho_{1} e, \\ & =0, \\ & =\left(\lambda\left(\rho_{1}+\rho_{3}\right)+\rho_{1}\right) e \end{aligned}$	$\begin{aligned} & \rho_{1}, \rho_{3} \neq 0, \rho_{3}=\frac{1+t_{1}}{t_{1}} \rho_{1}, \\ & s=t_{1}^{2} \end{aligned}$
A_{7}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & =\rho_{1} e, \\ & =0, \\ & =\rho_{1}(1+\lambda) e \end{aligned}$	$\begin{aligned} & \rho_{1} \neq 0, \\ & s=t_{1}=1 \end{aligned}$
A_{8}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =0, \\ & =\rho_{2} e, \\ & =\lambda\left(\rho_{2}+\rho_{3}+\lambda \rho_{2}\right) e \end{aligned}$	$\begin{aligned} & \rho_{2} \neq 0, \rho_{3} \text { arbitrary } \\ & s=t_{1}=0, \end{aligned}$
A_{9}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \\ & \hline \end{aligned}$	$\begin{aligned} & =0, \\ & =\rho_{2} e, \\ & =\lambda^{2} \rho_{2} e \end{aligned}$	$\begin{aligned} & \rho_{2} \neq 0, \\ & s=t_{1}^{2}, t_{1} \neq 0 \end{aligned}$
A_{10}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =0, \\ & =0, \\ & =\lambda \rho_{3} e \end{aligned}$	$\begin{aligned} & \rho_{3} \neq 0, \\ & s=t_{1}=0 \end{aligned}$

Table 3. Type II (i.e., $\left[\mathfrak{g}_{\overline{0}}, \mathfrak{g}_{\overline{1}}\right] \neq\{0\}$) with $\alpha(e)=s e, \alpha\left(f_{1}\right)=t_{1} f_{1}, \alpha\left(f_{2}\right)=r_{2} f_{2}$.

The HLSA	The Squaring s		[$\left.\mathfrak{g}_{\overline{0}}, \mathfrak{g}_{\overline{1}}\right]$		The Conditions
B_{1}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =0, \\ & =0, \\ & =0 \end{aligned}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & a_{1} f_{1}+a_{2} f_{2} \\ & b_{1} f_{1}+b_{2} f_{2} \end{aligned}$	$\begin{aligned} & \hline s=1, \\ & t_{1}=r_{2}, \\ & a_{1}, a_{2}, b_{1}, b_{2} \text { arbitrary } \end{aligned}$
B_{2}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{array}{ll} = & 0, \\ = & 0 \\ = & 0 \end{array}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & a_{1} f_{1} \\ & b_{2} f_{2} \end{aligned}$	$\begin{aligned} & s=1 \\ & t_{1} \neq r_{2} \\ & a_{1}, b_{2} \text { arbitrary } \end{aligned}$
B_{3}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =0, \\ & =0, \\ & =0 \end{aligned}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & a_{1} f_{1}+a_{2} f_{2} \\ & b_{1} f_{1}+b_{2} f_{2} \end{aligned}$	$\begin{aligned} & s \neq 0,1, \\ & t_{1}=r_{2}=0, \\ & a_{1}, a_{2}, b_{1}, b_{2} \text { arbitrary } \end{aligned}$
B_{4}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =0, \\ & =0, \\ & =0 \end{aligned}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & 0, \\ & b_{2} f_{2} \end{aligned}$	$\begin{aligned} & s \neq 0,1, \\ & t_{1} \neq 0, r_{2}=0, \\ & b_{2} \text { arbitrary } \end{aligned}$
B_{5}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =0, \\ & =0, \\ & =0 \end{aligned}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & 0, \\ & b_{1} f_{1} \end{aligned}$	$\begin{aligned} & \hline s \neq 0,1, \\ & t_{1}=r s_{2}, \\ & b_{1} \neq 0 \text { and arbitrary } \\ & \hline \end{aligned}$
B_{6}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{array}{ll} = & 0, \\ = & 0 \\ = & 0 \end{array}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & a_{2} f_{2}, \\ & 0 \end{aligned}$	$\begin{aligned} & s \neq 0,1, \\ & t_{1} \neq r s_{2}, \\ & a_{2} \neq 0 \text { and arbitrary } \end{aligned}$
B_{7}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =0, \\ & =0, \\ & =0 \end{aligned}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & a_{2} f_{2} \\ & b_{2} f_{2} \end{aligned}$	$\begin{aligned} & s \neq 0,1 \\ & r_{2}=0 \\ & a_{2}, b_{2} \text { arbitrary } \end{aligned}$

Table 4. Type II (i.e., $\left[\mathfrak{g}_{0}, \mathfrak{g}_{\overline{1}}\right] \neq\{0\}$) with $\alpha(e)=s e, \alpha\left(f_{1}\right)=t_{1} f_{1}, \alpha\left(f_{2}\right)=f_{1}+t_{1} f_{2}$.

The HLSA	The Squaring		$\left[\mathfrak{g}_{\overline{0}}, \mathfrak{g}_{\overline{1}}\right]$		The Conditions
B_{8}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{array}{ll} = & 0, \\ = & 0, \\ = & 0 \end{array}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & a_{1} f_{1} \\ & b_{1} f_{1}+a_{1} f_{2} \end{aligned}$	$\begin{aligned} & s=1 \\ & t_{1}=0 \\ & a_{1}, b_{1} \text { arbitrary } \end{aligned}$
B_{9}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{array}{ll} = & 0 \\ = & 0, \\ = & 0 \end{array}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & 0, \\ & b_{1} f_{1} \end{aligned}$	$\begin{aligned} & s \neq 1, \\ & t_{1}=0 \\ & b_{1} \neq 0 \text { and arbitrary } \end{aligned}$
B_{10}	$\begin{aligned} & s\left(f_{1}\right) \\ & s\left(f_{2}\right) \\ & s\left(f_{1}+\lambda f_{2}\right) \end{aligned}$	$\begin{aligned} & =0, \\ & =0, \\ & =0 \end{aligned}$	$\begin{aligned} & {\left[e, f_{1}\right]=} \\ & {\left[e, f_{2}\right]=} \end{aligned}$	$\begin{aligned} & a_{1} f_{1} \\ & a_{1} f_{2} \end{aligned}$	$\begin{aligned} & s=1, \\ & t_{1} \neq 0, \\ & a_{1} \neq 0 \text { and arbitrary } \end{aligned}$

3. Representations and Semidirect Product

Definition 2. A representation of a Hom-Lie superalgebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right)$ is a triple $\left(V,[\cdot, \cdot]_{V}, \beta\right)$, where V is a superspace, β is an even map in $\mathfrak{g l}(V)$, and $[\cdot, \cdot]_{V}$ is the action of \mathfrak{g} on V such that
$[\alpha(x), \beta(v)]_{V}=\beta\left([x, v]_{V}\right)$ for any $x \in \mathfrak{g}$ and $v \in V$,
$\left[[x, y]_{\mathfrak{g}}, \beta(v)\right]_{V}=\left[\alpha(x),[y, v]_{V}\right]_{V}+\left[\alpha(y),[x, v]_{V}\right]_{V}$ for any $x, y \in \mathfrak{g}$ and $v \in V$,
$\left[s_{\mathfrak{g}}(x), \beta(v)\right]_{V}=\left[\alpha(x),[x, v]_{V}\right]_{V}$ for any $x \in \mathfrak{g}_{\overline{1}}$ and $v \in V$.
We say that V is a \mathfrak{g}-module.

Sometimes, it is more convenient to use the notation $\rho_{\beta}=[\cdot, \cdot]_{V}$ and write:

$$
\begin{array}{ll}
\rho_{\beta} \circ \alpha(x) & =\beta \circ \rho_{\beta}(x) \text { for any } x \in \mathfrak{g}, \\
\rho_{\beta}\left([x, y]_{\mathfrak{g}}\right) \circ \beta & =\rho_{\beta}(\alpha(x)) \rho(y)+\rho_{\beta}(\alpha(y)) \rho(x) \text { for any } x, y \in \mathfrak{g}, \tag{14}\\
\rho_{\beta} \circ s_{\mathfrak{g}}(x) \circ \beta & =\rho_{\beta}(\alpha(x)) \circ \rho_{\beta}(x) \text { for any } x \in \mathfrak{g}_{\overline{1}} .
\end{array}
$$

Theorem 1. Let $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right)$ be a Hom-Lie superalgebra and $\left(V,[\cdot, \cdot]_{V}, \beta\right)$ be a representation. With the above notation, we define a Hom-Lie superalgebra structure on the superspace $\mathfrak{g} \oplus V=$ $\left(\mathfrak{g}_{\overline{0}}+V_{\overline{0}}\right) \oplus\left(\mathfrak{g}_{\overline{1}}+V_{\overline{1}}\right)$, where the bracket is defined by

$$
[x+v, y+w]_{\mathfrak{g} \oplus V}=[x, y]_{\mathfrak{g}}+[x, w]_{V}+[y, v]_{V} \text { for any } x, y \in \mathfrak{g} \text { and } v, w \in V,
$$

the squaring $s_{\mathfrak{g}+V}: \mathfrak{g}_{\overline{1}}+V_{\overline{1}} \rightarrow \mathfrak{g}_{\overline{0}}+V_{\overline{0}}$ is defined by

$$
s_{\mathfrak{g}+V}(x+v)=s_{\mathfrak{g}}(x)+[x, v]_{V} \text { for any } x \in \mathfrak{g}_{\overline{1}} \text { and } v \in V_{\overline{1}},
$$

and the structure map $\alpha_{\mathfrak{g} \oplus V}: \mathfrak{g} \oplus V \rightarrow \mathfrak{g} \oplus V$ is defined by

$$
\alpha_{\mathfrak{g} \oplus V}(x+v)=\alpha(x)+\beta(v) \text { for any } x \in \mathfrak{g} \text { and } v \in V .
$$

The Hom-Lie superalgebra $\left(\mathfrak{g} \oplus V,[\cdot, \cdot]_{\mathfrak{g} \oplus V}, s_{\mathfrak{g}+V}, \alpha_{\mathfrak{g} \oplus V}\right)$ is called the semidirect product of $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right)$ by the representation $\left(V,[\cdot, \cdot]_{V}, \beta\right)$.

Proof. Checking Axioms (i) and (ii) of Definition 1 is routine; we can refer to [9]. We should check the conditions relative to the squaring. Let us first check that the map $s_{\mathfrak{g}} \oplus V$ is indeed a squaring. We will check only the first condition. For all $x+v \in \mathfrak{g}_{\overline{1}} \oplus V_{\overline{1}}$ and for all $\lambda \in \mathbb{K}$, we have

$$
s_{\mathfrak{g} \oplus V}(\lambda(x+v))=s_{\mathfrak{g}}(\lambda x)+[\lambda x, \lambda v]_{V}=\lambda^{2} s_{\mathfrak{g}}(x)+\lambda^{2}[x, v]_{V}=\lambda^{2} s_{\mathfrak{g} \oplus V}(x+v) .
$$

Now, for all $x+v \in \mathfrak{g}_{\overline{1}} \oplus V_{\overline{1}}$ and for all $y+w \in \mathfrak{g} \oplus V$, we have

$$
\begin{aligned}
& {\left[s_{\mathfrak{g} \oplus V}(x+v), \alpha_{\mathfrak{g} \oplus V}(y+w)\right]_{\mathfrak{g} \oplus V}=\left[s_{\mathfrak{g}}(x)+[x, v]_{V}, \alpha(y)+\beta(w)\right]_{\mathfrak{g} \oplus V}} \\
& =\left[s_{\mathfrak{g}}(x), \alpha(y)\right]_{\mathfrak{g}}+\left[s_{\mathfrak{g}}(x), \beta(w)\right]_{V}+\left[\alpha(y),[x, v]_{V}\right]_{V} \\
& =\left[\alpha(x),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{g}}+\left[\alpha(x),[x, w]_{V}\right]_{V}+\left[\alpha(y),[x, v]_{V}\right]_{V} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& {\left[\alpha_{\mathfrak{g} \oplus V}(x+v),[x+v, y+w]_{\mathfrak{g} \oplus V}\right]_{\mathfrak{g} \oplus V}=\left[\alpha(x)+\beta(v),[x, y]_{\mathfrak{g}}+[x, w]_{V}+[y, v]_{V}\right]_{\mathfrak{g} \oplus V}} \\
& =\left[\alpha(x),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{g}}+\left[\alpha(x),[x, w]_{V}+[y, v]_{V}\right]_{V}+\left[[x, y]_{\mathfrak{g}}, \beta(v)\right]_{V} \\
& =\left[\alpha(x),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{g}}+\left[\alpha(x),[x, w]_{V}+[y, v]_{V}\right]_{V}+\left[\alpha(x),[y, v]_{V}\right]_{V}+\left[\alpha(y),[x, v]_{V}\right]_{V} \\
& =\left[\alpha(x),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{g}}+\left[\alpha(x),[x, w]_{V}\right]_{V}+\left[\alpha(y),[x, v]_{V}\right]_{V} .
\end{aligned}
$$

Therefore, Equation (8) is satisfied. Now,

$$
\begin{aligned}
& \alpha_{\mathfrak{g} \oplus V}\left(s_{\mathfrak{g} \oplus V}(x+v)\right)=\alpha_{\mathfrak{g} \oplus V}\left(s_{\mathfrak{g}}(x)+[x, v]_{V}\right)=\alpha\left(s_{\mathfrak{g}}(x)\right)+\beta\left([x, v]_{V}\right) \\
& =\alpha\left(s_{\mathfrak{g}}(x)\right)+[\alpha(x), \beta(v)]_{V}=s_{\mathfrak{g}}(\alpha(x))+[\alpha(x), \beta(v)]_{V}=s_{\mathfrak{g} \oplus V}(\alpha(x)+\beta(v)) \\
& \quad=s_{\mathfrak{g} \oplus V}\left(\alpha_{\mathfrak{g} \oplus V}(x+v)\right) .
\end{aligned}
$$

Therefore, Equation (10) is satisfied.

In the following proposition, we show how to twist a Lie superalgebra and its representation into a Hom-Lie superalgebra together with a representation in characteristic 2 .

Proposition 2. Let $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}\right)$ be a Lie superalgebra and (V, ρ) a representation. Let $\alpha: \mathfrak{g} \rightarrow \mathfrak{g}$ be an even superalgebra morphism and $\beta \in \mathfrak{g l}(V)$ be a linear map such that $\rho(\alpha(x)) \circ \beta=\beta \circ \rho(x)$. Then, $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}, \alpha}, s_{\mathfrak{g}, \alpha}, \alpha\right)$, where $[\cdot, \cdot]_{\mathfrak{g}, \alpha}=\alpha \circ[\cdot, \cdot]_{\mathfrak{g}}$ and $s_{\mathfrak{g}, \alpha}=\alpha \circ s_{\mathfrak{g}}$, is a Hom-Lie superalgebra and $\left(V, \rho_{\beta}, \beta\right)$, where $\rho_{\beta}=\beta \circ \rho$, is a representation.

Proof. We have already proven in Proposition 1 that $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}, \alpha}, s_{\mathfrak{g}, \alpha}, \alpha\right)$ is a Hom-Lie superalgebra. Let us check that $\left(V, \rho_{\beta}, \beta\right)$ is a representation with respect to $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}, \alpha}, s_{\mathfrak{g}, \alpha}, \alpha\right)$. Indeed, the first condition is provided by the hypothesis, while the second and the third ones are straightforward. Let us check the last one. For any $x \in \mathfrak{g}_{\overline{1}}$ and $v \in V$, we have

$$
\left[s_{\mathfrak{g}, \alpha}(x), \beta(v)\right]_{V, \beta}=\beta\left(\left[\alpha\left(s_{\mathfrak{g}}(x)\right), \beta(v)\right]_{V}\right)=\beta^{2}\left(\left[s_{\mathfrak{g}}(x), v\right]_{V}\right)
$$

and

$$
\left[\alpha(x),[x, v]_{V, \beta}\right]_{V, \beta}=\beta\left[\alpha(x), \beta\left([x, v]_{V}\right]_{V}\right)=\beta^{2}\left(\left[x,[x, v]_{V}\right]_{V}\right) .
$$

The equality follows from the fact that $\left[s_{\mathfrak{g}}(x), v\right]_{V}=\left[x,[x, v]_{V}\right]_{V}$.
Example 2. The classification of irreducible modules over $\mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)$ having the highest weight vectors was carried out in [21]. We will borrow here the simplest example. Consider the Hom-Lie superalgebra $\mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)$ with the twist α given as in Example 1. We consider the $\mathfrak{o}_{I \Pi}^{(1)}(1 \mid 2)$-module M with basis: (even |odd)

$$
m_{1}, m_{3} \mid m_{2} .
$$

The vector m_{1} is the highest weight vector with weight $\left(m_{1}\right)=(1)$. The map β is given as follows:

$$
\beta\left(m_{1}\right)=\delta_{1} m_{1}+\delta_{2} m_{3}, \quad \beta\left(m_{3}\right)=\varepsilon_{1} m_{1}+\varepsilon_{2} m_{3}, \quad \beta\left(m_{2}\right)=m_{2},
$$

where the coefficients $\delta_{1}, \delta_{2}, \varepsilon_{1}, \varepsilon_{2}$ are given as in Example 1 .
Here, we will introduce another point of view concerning the representations of Hom-Lie superalgebras in characteristic 2, inspired by [22].

Let $V=V_{\overline{0}} \oplus V_{\overline{1}}$ be a vector superspace, and let $\beta \in G L(V)$ be an even map. We will define a bracket on $\mathfrak{g l}(V)$, as well as a product as follows (where β^{-1} is the inverse of β):

$$
\begin{align*}
{[f, g]_{\mathfrak{g l}(V)} } & :=\beta \circ f \circ \beta^{-1} g \circ \beta^{-1}+\beta \circ g \circ \beta^{-1} f \circ \beta^{-1} \quad \text { for all } f, g \in \mathfrak{g l}(V), \tag{15}\\
s_{\mathfrak{g l}(V)}(f) & :=\beta \circ f \circ \beta^{-1} f \circ \beta^{-1} \quad \text { for all } f \in \mathfrak{g l}(V)_{\overline{1}} . \tag{16}
\end{align*}
$$

Obviously, $s_{\mathfrak{g l}(V)}(\lambda f)=\lambda^{2} s_{\mathfrak{g l r}(V)}(f)$ for all $\lambda \in \mathbb{K}$ and for all $f \in \mathfrak{g l}(V)_{\overline{1}}$. Now, the map:

$$
(f, g) \mapsto s_{\mathfrak{g l}(V)}(f+g)+s_{\mathfrak{g l l}(V)}(f)+s_{\mathfrak{g l}(V)}(g)=\beta \circ f \circ \beta^{-1} g \circ \beta^{-1}+\beta \circ g \circ \beta^{-1} f \circ \beta^{-1}
$$

is obviously bilinear on $\mathfrak{g l}(V)_{\overline{1}}$ as well.
Denote by $\operatorname{Ad}_{\beta}: \mathfrak{g l}(V) \rightarrow \mathfrak{g l}(V)$ the adjoint action on $\mathfrak{g l}(V)$, i.e., $\operatorname{Ad}_{\beta}(f)=\beta \circ f \circ \beta^{-1}$.
Proposition 3. The brackets and the squaring defined in Equations (15) and (16) make $\left(\mathfrak{g l}(V),[\cdot, \cdot]_{\mathfrak{g l}(V)}, s_{\mathfrak{g l}(V)}, \mathrm{Ad}_{\beta}\right)$ a Hom-Lie superalgebra in characteristic 2.

Proof. The map $A d_{\beta}$ is invertible with inverse $\operatorname{Ad}_{\beta^{-1}}$. Let us check the multiplicativity conditions:

$$
\begin{aligned}
& {\left[\operatorname{Ad}_{\beta}(f), \operatorname{Ad}_{\beta}(g)\right]_{\mathfrak{g} l(V)}=\left[\beta \circ f \circ \beta^{-1}, \beta \circ g \circ \beta^{-1}\right]_{\mathfrak{g l}(V)}} \\
& =\beta \circ\left(\beta \circ f \circ \beta^{-1}\right) \circ \beta^{-1}\left(\beta \circ g \circ \beta^{-1}\right) \circ \beta^{-1}+\beta \circ\left(\beta \circ g \circ \beta^{-1}\right) \circ \beta^{-1}\left(\beta \circ f \circ \beta^{-1}\right) \circ \beta^{-1} \\
& =\beta \circ\left(\beta \circ f \circ \beta^{-1} \circ g \circ \beta^{-1}\right) \circ \beta^{-1}+\beta \circ\left(\beta \circ g \circ \beta^{-1} \circ f \circ \beta^{-1}\right) \circ \beta^{-1} \\
& =\operatorname{Ad}_{\beta}\left([f, g]_{\mathfrak{g} l(V)}\right) . \\
& \quad \text { Similarly, }
\end{aligned}
$$

$$
\begin{aligned}
& s_{\mathfrak{g l}(V)}\left(\operatorname{Ad}_{\beta}(f)\right)=s_{\mathfrak{g l}(V)}\left(\beta \circ f \circ \beta^{-1}\right)=\beta \circ\left(\beta \circ f \circ \beta^{-1}\right) \circ \beta^{-1} \circ\left(\beta \circ f \circ \beta^{-1}\right) \circ \beta^{-1} \\
& =\beta \circ\left(\beta \circ f \circ \beta^{-1} \circ f \circ \beta^{-1}\right) \circ \beta^{-1}=\operatorname{Ad}_{\beta}\left(s_{\mathfrak{g l}(V)}\right) .
\end{aligned}
$$

For the Jacobi identity, let us just deal with the squaring. The LHS of the Jacobi identity reads (for all $f \in \mathfrak{g l}(V)_{\overline{1}}$ and for all $g \in \mathfrak{g l}(V)$)

$$
\begin{aligned}
{\left[s_{\mathfrak{g l}(V)}(f), \operatorname{Ad}_{\beta}(g)\right]_{\mathfrak{g l}(V)}=} & \beta \circ s_{\mathfrak{g l}(V)}(f) \circ \beta^{-1} \circ \beta \circ g \circ \beta^{-1} \circ \beta^{-1}+ \\
& +\beta \circ \beta \circ g \circ \beta^{-1} \circ \beta^{-1} \circ s_{\mathfrak{g l}(V)}(f) \circ \beta^{-1} \\
= & \beta^{2} \circ\left(f \circ \beta^{-1} \circ f \circ \beta^{-1} \circ g+g \circ \beta^{-1} \circ f \circ \beta^{-1} \circ f\right) \circ \beta^{-2} .
\end{aligned}
$$

The RHS reads

$$
\begin{aligned}
{\left[\operatorname{Ad}_{\beta}(f),[f, g]_{\mathfrak{g} l(V)}\right]_{\mathfrak{g} l(V)}=} & \beta^{2} \circ f \circ \beta^{-2} \circ[f, g]_{\mathfrak{g l}(V)} \circ \beta^{-1}+\beta \circ[f, g]_{\mathfrak{g l}(V)} \circ f \circ \beta^{-1} \circ \beta^{-1} \\
= & \beta^{2} \circ f \circ \beta^{-2} \circ\left(\beta \circ f \circ \beta^{-1} g \circ \beta^{-1}+\beta \circ g \circ \beta^{-1} f \circ \beta^{-1}\right) \circ \beta^{-1} \\
& +\beta \circ\left(\beta \circ f \circ \beta^{-1} g \circ \beta^{-1}+\beta \circ g \circ \beta^{-1} f \circ \beta^{-1}\right) \circ f \circ \beta^{-2} \\
= & \beta^{2} \circ\left(f \circ \beta^{-1} \circ f \circ \beta^{-1} \circ g+g \circ \beta^{-1} \circ f \circ \beta^{-1} \circ f\right) \circ \beta^{-2} .
\end{aligned}
$$

Theorem 2. Let $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right)$ be a Hom-Lie superalgebra in characteristic 2. Let V be a vector superspace, and let $\beta \in G L(V)$ be even. Then, the map $\rho_{\beta}: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is a representation of $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right)$ on V with respect to β if and only if the map $\rho_{\beta}:\left(\mathfrak{g},[\because, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right) \rightarrow$ $\left(\mathfrak{g l}(V),[\cdot, \cdot]_{\mathfrak{g l}(V)}, s_{\mathfrak{g l}(V)}, \operatorname{Ad}_{\beta}\right)$ is a morphism of Hom-Lie superalgebras.

Proof. Let us only prove one direction. Suppose that $\rho_{\beta}: \mathfrak{g} \rightarrow \mathfrak{g l}(V)$ is a representation of $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right)$ on V with respect to β. Since $\rho_{\beta}(\alpha(x)) \circ \beta=\beta \circ \rho(x)$, for all $f \in \mathfrak{g}$, it follows that

$$
\rho_{\beta}(x) \circ \alpha=\beta \circ \rho(x) \circ \beta^{-1}=\operatorname{Ad}_{\beta} \circ \rho_{\beta}(x)
$$

Now,

$$
\begin{aligned}
\rho_{\beta}\left([x, y]_{\mathfrak{g}}\right) & =\rho_{\beta}(\alpha(x)) \circ \rho(y) \circ \beta^{-1}+\rho_{\beta}(\alpha(y)) \circ \rho(x) \circ \beta^{-1} \\
& =\rho_{\beta}(\alpha(x)) \circ \beta \circ \beta^{-1} \circ \rho_{\beta}(y) \circ \beta^{-1}+\rho_{\beta}(\alpha(y)) \circ \beta \circ \beta^{-1} \circ \rho_{\beta}(x) \circ \beta^{-1} \\
& =\beta \circ \rho_{\beta}(x) \circ \beta^{-1} \circ \rho_{\beta}(y) \circ \beta^{-1}+\beta \circ \rho_{\beta}(y) \circ \beta^{-1} \circ \rho_{\beta}(x) \circ \beta^{-1} \\
& =\left[\rho_{\beta}(x), \rho_{\beta}(y)\right]_{\mathfrak{g l}(V)}
\end{aligned}
$$

For the squaring, we have

$$
\begin{aligned}
\rho_{\beta}\left(s_{\mathfrak{g}}(x)\right) & =\rho_{\beta}(\alpha(x)) \circ \rho_{\beta}(x) \circ \beta^{-1} \\
& =\beta \circ \rho_{\beta}(x) \circ \beta^{-1} \circ \rho_{\beta}(x) \circ \beta^{-1} \\
& =s_{\mathfrak{g l v}(V)}\left(\rho_{\beta}(x)\right) .
\end{aligned}
$$

It follows that ρ_{β} is a homomorphism of Hom-Lie superalgebras in characteristic 2.
Corollary 1. Let $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, s_{\mathfrak{g}}, \alpha\right)$ be a Hom-Lie superalgebra in characteristic 2. Then, the adjoint representation ad : $\mathfrak{g} \rightarrow \mathfrak{g l}(\mathfrak{g})$, which is defined by $\operatorname{ad}_{x}(y)=[x, y]_{\mathfrak{g}}$, is a morphism from $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}, \alpha\right)$ to $\left(\mathfrak{g l}(\mathfrak{g}),[\cdot, \cdot]_{\mathfrak{g}(\mathfrak{g})}, s_{\mathfrak{g}(\mathfrak{g})}, \operatorname{Ad}_{\alpha}\right)$.

4. α^{k}-Derivations

Let $(\mathfrak{g},[\cdot, \cdot], s, \alpha)$ be a Hom-Lie superalgebra in characteristic 2 . We denote by α^{k} the k-times composition of α, where α^{0} is the identity map. We will need the following linear map:

$$
\begin{equation*}
\operatorname{ad}_{\alpha^{s, k}}(x): y \mapsto\left[\alpha^{s}(x), \alpha^{k}(y)\right] . \tag{17}
\end{equation*}
$$

Definition 3. A linear map $D: \mathfrak{g} \rightarrow \mathfrak{g}$ is called an α^{k}-derivation of the Hom-Lie superalgebra \mathfrak{g} if

$$
\begin{align*}
D \circ \alpha & =\alpha \circ D, \text { namely } D \text { and } \alpha \text { commutes. } \tag{18}\\
D([x, y]) & =\left[D(x), \alpha^{k}(y)\right]+\left[\alpha^{k}(x), D(y)\right] \quad \text { for any } x \in \mathfrak{g}_{\overline{0}} \text { and } y \in \mathfrak{g .} \tag{19}\\
D(s(x)) & =\left[D(x), \alpha^{k}(x)\right] \text { for any } x \in \mathfrak{g}_{\overline{1}} . \tag{20}
\end{align*}
$$

Remark 4. Notice that condition (20) implies condition (19) if $x, y \in \mathfrak{g}_{\overline{1}}$.
Let us give an example. Let $x \in \mathfrak{g}$ such that $\alpha(x)=x$. The linear map $\operatorname{ad}_{\alpha^{0}, k}(x): y \mapsto$ $\left[x, \alpha^{k}(y)\right]$ (see Equation (17)) is an α^{k}-derivation. Let us just check the condition related to the squaring. Indeed,

$$
\operatorname{ad}_{\alpha^{0, k}}(x)(s(y))=\left[x, \alpha^{k}(s(y))\right]=\left[x, s\left(\alpha^{k}(y)\right)\right]=\left[\left[x, \alpha^{k}(y)\right], \alpha^{k}(y)\right]=\left[\operatorname{ad}_{\alpha^{0, k}}(x)(y), \alpha^{k}(y)\right] .
$$

Let us denote the space of α^{k}-derivations by $\mathfrak{d e r}{ }^{\alpha}(\mathfrak{g})$. We have the following proposition.
Proposition 4. The space $\mathfrak{d e r}^{\alpha}(\mathfrak{g})$ can be endowed with a Lie superalgebra structure in characteristic 2. The bracket is the usual commutator, and the squaring is given by

$$
s_{\mathfrak{d e r}^{\alpha}(\mathfrak{g})}(D):=D^{2} \quad \text { for all } D \in \mathfrak{d e r}_{\overline{1}}^{\alpha}(\mathfrak{g})
$$

Proof. As we did before, we only prove the requirements when the squaring is involved. Let us first show that D^{2} is an $\alpha^{2 k}$-derivation. Checking the bracket is routine. For the squaring, we have (for all $x \in \mathfrak{g}_{\overline{1}}$):

$$
\begin{aligned}
& D^{2}\left(s_{\mathfrak{g}}(x)\right)=D\left(\left[D(x), \alpha^{k}(x)\right]_{\mathfrak{g}}\right)=\left[D^{2}(x), \alpha^{k}\left(\alpha^{k}(x)\right)\right]_{\mathfrak{g}}+\left[\alpha^{k}(D(x)), D\left(\alpha^{k}(x)\right)\right]_{\mathfrak{g}} \\
& =\left[D^{2}(x), \alpha^{2 k}(x)\right]_{\mathfrak{g}}+\left[\alpha^{k}(D(x)), \alpha^{k}(D(x))\right]_{\mathfrak{g}}=\left[D^{2}(x), \alpha^{2 k}(x)\right]_{\mathfrak{g}} .
\end{aligned}
$$

Before we proceed with the proof, let us re-denote the space $\mathfrak{d e r}{ }^{\alpha}(\mathfrak{g})$ by \mathfrak{h} for simplicity. Now, for all $D \in \mathfrak{h}_{\overline{1}}$ and for all $E \in \mathfrak{h}_{\overline{1}}$, we have (for all $x \in \mathfrak{g}$):

$$
\left[s_{\mathfrak{h}}(D), E\right]_{\mathfrak{h}}(x)=\left[D^{2}, E\right]_{\mathfrak{h}}(x)=D^{2} \circ E(x)+E \circ D^{2}(x) .
$$

On the other hand,

$$
\begin{aligned}
& {\left[D,[D, E]_{\mathfrak{h}}\right]_{\mathfrak{h}}(x)=[D, D \circ E+E \circ D]_{\mathfrak{h}}(x)} \\
& =D \circ(D \circ E+E \circ D)(x)+(D \circ E+E \circ D) \circ D(x) \\
& =D^{2} \circ E(x)+E \circ D^{2}(x)
\end{aligned}
$$

Therefore, $\left[s_{\mathfrak{h}}(D), E\right]_{\mathfrak{h}}=\left[D,[D, E]_{\mathfrak{h}}\right]_{\mathfrak{h}}$.

The space $\mathfrak{d e r}{ }^{\alpha}(\mathfrak{g})$ is actually graded as $\mathfrak{d e r}(\mathfrak{g})=\oplus \mathfrak{d e r}_{k}^{\alpha}(\mathfrak{g})$, where $\mathfrak{d e r}{ }_{k}^{\alpha}(\mathfrak{g})$ is the space of α^{k}-derivations, where k is fixed. Indeed, we have

$$
\left[\mathfrak{d e r}_{k}^{\alpha}(\mathfrak{g}), \mathfrak{d e r}_{l}^{\alpha}(\mathfrak{g})\right] \subseteq \mathfrak{d e r}_{k+l}^{\alpha}(\mathfrak{g}) \quad \text { and } \quad s\left(\mathfrak{d e r}_{k}^{\alpha}(\mathfrak{g})_{\overline{1}}\right) \subseteq \mathfrak{d e r}_{2 k}^{\alpha}(\mathfrak{g})
$$

Example 3. We will describe all α^{k}-derivations of the Hom-Lie superalgebra $\mathfrak{o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha}$ introduced in Example 1. First, observe that

$$
\alpha^{2 k}=\alpha^{0}=\mathrm{Id}, \quad \alpha^{2 k+1}=\alpha, \quad \text { for all } k \geq 0 .
$$

The case of α^{0}-derivations:

$$
\begin{aligned}
& \text { (Even) } D_{1}^{0}=h_{1} \otimes y_{2}^{*}+x_{1} \otimes y_{1}^{*} \\
& \text { (Even) } D_{2}^{0}=x_{1} \otimes x_{1}^{*}+y_{1} \otimes y_{1}^{*} \\
& \text { (Odd) } D_{3}^{0}=x_{1} \otimes h_{1}^{*}+h_{1} \otimes y_{1}^{*}+y_{1} \otimes y_{2}^{*}
\end{aligned}
$$

The case of α-derivations:
(Even) $D_{1}^{1}=h_{1} \otimes y_{2}^{*}+x_{1} \otimes y_{1}^{*}$,
(Even) $D_{2}^{1}=\epsilon x_{1} \otimes y_{1}^{*}+x_{1} \otimes x_{1}^{*}+y_{1} \otimes y_{1}^{*}$,
(Odd) $\quad D_{3}^{1}=\epsilon x_{1} \otimes y_{2}^{*}+x_{1} \otimes h_{1}^{*}+h_{1} \otimes y_{1}^{*}+y_{1} \otimes y_{2}^{*}$.

5. \boldsymbol{p}-Structures and Queerification of Hom-Lie Algebras in Characteristic 2

We will first introduce the concept of p-structures on Hom-Lie algebras. In the case of Lie algebras, the definition is due to Jacobson [23]. Roughly speaking, one requires the existence of an endomorphism on the modular Lie algebra that resembles the p th power mapping $x \mapsto x^{p}$ in associative algebras. In the case of Hom-Lie algebra, there is a definition proposed in [24], but it turns out that this definition is not appropriate to queerify a restricted Hom-Lie algebras in characteristic 2, as done in [2] in the case of ordinary restricted Lie algebras. Here, we will give an alternative definition and justify the construction.

Definition 4. Let \mathfrak{g} be a Hom-Lie algebra in characteristic p with a twist α. A mapping $[p]_{\alpha}: \mathfrak{g} \rightarrow$ $\mathfrak{g}, a \mapsto a^{[p]_{\alpha}}$ is called a p-structure of \mathfrak{g}, and \mathfrak{g} is said to be restricted if:
(R1) $\operatorname{ad}\left(x^{[p]_{\alpha}}\right) \circ \alpha^{p-1}=\operatorname{ad}\left(\alpha^{p-1}(x)\right) \circ \operatorname{ad}\left(\alpha^{p-2}(x)\right) \circ \cdots \circ \operatorname{ad}(x)$ for all $x \in \mathfrak{g}$;
(R2) $(\lambda x)^{[p]_{\alpha}}=\lambda^{p} x^{[p]_{\alpha}}$ for all $x \in \mathfrak{g}$ and for all $\lambda \in \mathbb{K}$;
(R3) $(x+y)^{[p]_{\alpha}}=x^{[p]_{\alpha}}+y^{[p]_{\alpha}}+\sum_{1 \leq i \leq p-1} s_{i}(x, y)$, where $s_{i}(x, y)$ can be obtained from

$$
\operatorname{ad}\left(\alpha^{p-2}(\lambda x+y)\right) \circ \operatorname{ad}\left(\alpha^{p-3}(\lambda x+y)\right) \circ \cdots \circ \operatorname{ad}(\lambda x+y)(x)=\sum_{1 \leq i \leq p-1} i s_{i}(x, y) \lambda^{i-1}
$$

Let us exhibit this p-structure in the case where $p=2$. The conditions (R2) and (R3) read, respectively, as

$$
\left[x^{[2]_{\alpha}}, \alpha(y)\right]=[\alpha(x),[x, y]] \text { and }(x+y)^{[2]_{\alpha}}=x^{[2]_{\alpha}}+y^{[2]_{\alpha}}+[x, y] .
$$

Proposition 5. Twisting with a morphism α an ordinary Lie algebra with a p-structure gives rise to a Hom-Lie algebra with a p-structure. More precisely, given an ordinary Lie algebra $(\mathfrak{g},[\cdot, \cdot])$
with a p-structure and a Lie algebra morphism α, then $\left(\mathfrak{g},[\cdot, \cdot]_{\alpha}, \alpha\right)$, where $[\cdot, \cdot]_{\alpha}:=\alpha \circ[\cdot, \cdot]$, is a Hom-Lie algebra with a p-structure given by

$$
x^{[p]_{\alpha}}:=\alpha^{p-1}\left(x^{[p]}\right) .
$$

Proof. It was shown in [25] that, if $(\mathfrak{g},[\cdot, \cdot])$ is an ordinary Lie algebra, then $\left(\mathfrak{g},[\cdot, \cdot]_{\alpha}\right)$, where $[\cdot, \cdot]_{\alpha}:=\alpha \circ[\cdot, \cdot]$ is a Hom-Lie algebra. Now, let us show that the map $[p]_{\alpha}$ defines a p-structure on the Hom-Lie algebra $\left(\mathfrak{g},[\cdot, \cdot]_{\mathfrak{g}}\right)$. Indeed, let us check Axiom (R1). The LHS reads

$$
\operatorname{ad}\left(x^{[p]_{\alpha}}\right) \circ \alpha^{p-1}(y)=\left[x^{[p]_{\alpha}}, \alpha^{p-1}(y)\right]_{\alpha}=\alpha\left(\left[\alpha^{p-1}\left(x^{[p]}\right), \alpha^{p-1}(y)\right]\right)=\alpha^{p}\left(\left[x^{[p]}, y\right]\right) .
$$

The RHS reads

$$
\begin{aligned}
& \operatorname{ad}\left(\alpha^{p-1}(x)\right) \circ \operatorname{ad}\left(\alpha^{p-2}(x)\right) \circ \cdots \circ \operatorname{ad}(x)(y)=\left[\alpha^{p-1}(x),\left[\alpha^{p-2}(x), \ldots,[x, y]_{\alpha}\right]_{\alpha}\right. \\
& \quad=\alpha\left(\left[\alpha^{p-1}(x), \alpha\left(\left[\alpha^{p-2}(x),[\ldots, \alpha([x, y]))\right]\right)=\alpha^{p}\left([x,[x, \ldots,[x, y]])=\alpha^{p}\left(\left[x^{[p]}, y\right]\right) .\right.\right.\right.
\end{aligned}
$$

Axiom (R2) is obviously satisfied. Let us check Axiom (R3). Indeed,

$$
\begin{aligned}
& (x+y)^{[p]_{\alpha}}=\alpha^{p-1}\left((x+y)^{[p]}\right)=\alpha^{p-1}\left(x^{[p]}+y^{[p]}+\sum_{1 \leq i \leq p-2} s_{i}(x, y)\right) \\
& =x^{[p]_{\alpha}}+y^{[p]_{\alpha}}+\left(\sum_{1 \leq i \leq p-2} \alpha^{p-1}\left(s_{i}(x, y)\right)\right) .
\end{aligned}
$$

Now,

$$
\begin{aligned}
& \operatorname{ad}\left(\alpha^{p-2}(\lambda x+y)\right) \circ \operatorname{ad}\left(\alpha^{p-3}(\lambda x+y)\right) \circ \cdots \circ \operatorname{ad}(\lambda x+y)(x) \\
& =\left[\alpha^{p-2}(\lambda x+y),\left[\alpha^{p-3}(\lambda x+y), \ldots,[\lambda x+y, x]_{\alpha}\right]_{\alpha}\right. \\
& =\alpha\left(\left[\alpha^{p-2}(\lambda x+y), \alpha\left(\left[\alpha^{p-3}(\lambda x+y),[\ldots, \alpha([\lambda x+y, x]))\right]\right)\right.\right. \\
& =\alpha^{p-1}([\lambda x+y,[\lambda x+y,[\ldots,[\lambda x+y, x]]) \\
& =\alpha^{p-1}\left(\sum_{1 \leq i \leq p-1} i s_{i}(x, y) \lambda^{i-1}\right)=\sum_{1 \leq i \leq p-1} i \alpha^{p-1}\left(s_{i}(x, y)\right) \lambda^{i-1} .
\end{aligned}
$$

The proof is now complete.
Proposition 6. Let \mathfrak{g} be a restricted Hom-Lie algebra in characteristic 2 with a twist map α. On the superspace $\mathfrak{h}:=\mathfrak{g} \oplus \Pi(\mathfrak{g})$, where $\Pi(\mathfrak{g})$ is copy of \mathfrak{g} whose elements are odd, there exists a Hom-Lie superalgebra structure defined as follows (for all $x, y \in \mathfrak{g}$):

$$
[x, y]_{\mathfrak{h}}:=[x, y]_{\mathfrak{g}}, \quad[\Pi(x), y]_{\mathfrak{h}}:=\Pi\left([x, y]_{\mathfrak{g}}\right), \quad s_{\mathfrak{h}}(\Pi(x))=x^{[2]_{\alpha}} .
$$

Proof. Let us check that the map $s_{\mathfrak{h}}$ is indeed a squaring on \mathfrak{h}. The condition $s_{\mathfrak{h}}(\lambda \Pi(x))=$ $\lambda^{2} s_{\mathfrak{h}}(\Pi(x))$, for all $\lambda \in \mathbb{K}$ and for all $x \in \mathfrak{g}$, is an immediate consequence of condition (R2). Moreover, the map

$$
\left(\Pi(x), \Pi(y) \mapsto s_{\mathfrak{h}}(\Pi(x)+\Pi(y))+s_{\mathfrak{h}}(\Pi(x))+s_{\mathfrak{h}}(\Pi(y))=(x+y)^{[2]_{\alpha}}+x^{[2]_{\alpha}}+y^{[2]_{\alpha}}=[x, y]_{\mathfrak{g}}\right.
$$

is obviously bilinear because it coincides with the Lie bracket on \mathfrak{g}.

Let us check the Jacobi identity involving the squaring. Indeed, for all $y \in \mathfrak{h}_{\overline{0}}$ and for all $\Pi(x) \in \mathfrak{h}_{\overline{1}}$, we have

$$
\left[s_{\mathfrak{h}}(\Pi(x)), \alpha(y)\right]_{\mathfrak{h}}=\left[x^{[2]_{\alpha}}, \alpha(y)\right]_{\mathfrak{h}}=\left[x^{[2]_{\alpha}}, \alpha(y)\right]_{\mathfrak{g}}=\left[\alpha(x),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{g}} .
$$

On the other hand,

$$
\begin{aligned}
& {\left[\alpha(\Pi(x)),[\Pi(x), y]_{\mathfrak{h}}\right]_{\mathfrak{h}} }=\left[\Pi(\alpha(x)), \Pi\left([x, y]_{\mathfrak{g}}\right)\right]_{\mathfrak{h}}=\Pi\left(\left[\Pi(\alpha(x)),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{h}}\right) \\
&=\Pi^{2}\left(\left[\alpha(x),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{h}}\right)=\left[\alpha(x),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{g}} .
\end{aligned}
$$

For all $\Pi(y) \in \mathfrak{h}_{\overline{1}}$ and for all $\Pi(x) \in \mathfrak{h}_{\overline{1}}$, we have

$$
\left[s_{\mathfrak{h}}(\Pi(x)), \alpha(\Pi(y))\right]_{\mathfrak{h}}=\left[x^{[2]_{\alpha}}, \alpha(\Pi(y))\right]_{\mathfrak{h}}=\Pi\left(\left[x^{[2]_{\alpha}}, \alpha(y)\right]_{\mathfrak{g}}\right)=\Pi\left(\left[\alpha(x),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{g}}\right) .
$$

On the other hand,

$$
\begin{aligned}
& {\left[\alpha(\Pi(x)),[\Pi(x), \Pi(y)]_{\mathfrak{h}}\right]_{\mathfrak{h}}=\left[\Pi(\alpha(x)), s_{\mathfrak{h}}(\Pi(x)+\Pi(y))+s_{\mathfrak{h}}(\Pi(x))+s_{\mathfrak{h}}(\Pi(x)]_{\mathfrak{h}}\right.} \\
& =\left[\Pi(\alpha(x)),(x+y)^{[2]_{\alpha}}+x^{[2]_{\alpha}}+y^{[2]_{\alpha}}\right]_{\mathfrak{h}}=\left[\Pi(\alpha(x)),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{h}}=\Pi\left(\left[\alpha(x),[x, y]_{\mathfrak{g}}\right]_{\mathfrak{g}}\right) .
\end{aligned}
$$

Proposition 7. Let \mathfrak{g} be a restricted Lie algebra in characteristic 2 and $\mathfrak{h}:=\mathfrak{g} \oplus \Pi(\mathfrak{g})$ be its queerification (see [2]), defined as follows (for all $x, y \in \mathfrak{g}$):

$$
[x, y]_{\mathfrak{h}}:=[x, y]_{\mathfrak{g}}, \quad[\Pi(x), y]_{\mathfrak{h}}:=\Pi\left([x, y]_{\mathfrak{g}}\right), \quad s_{\mathfrak{h}}(\Pi(x))=x^{[2]} .
$$

Let $\alpha: \mathfrak{g} \rightarrow \mathfrak{g}$ be a Lie algebra morphism. Let us extend it to $\tilde{\alpha}$ on \mathfrak{h} by declaring $\alpha(\Pi(x)):=$ $\Pi(\alpha(x))$ for all $x \in \mathfrak{g}$. Then, twisting the Lie superalgebra \mathfrak{h} along $\tilde{\alpha}$ is exactly the queerification of the Hom-Lie algebra \mathfrak{g}_{α} obtained by twisting \mathfrak{g} along α. Namely,

$$
\mathfrak{h}_{\tilde{\alpha}}=(\mathfrak{g} \oplus \Pi(\mathfrak{g}))_{\tilde{\alpha}}=\mathfrak{g}_{\alpha} \oplus \Pi\left(\mathfrak{g}_{\alpha}\right) .
$$

Proof. Let $x, y \in \mathfrak{g}$. We have

$$
[x, y]_{\mathfrak{h} \tilde{\alpha}}=\tilde{\alpha}\left([x, y]_{\mathfrak{h}}\right)=\alpha\left([x, y]_{\mathfrak{g}}\right) .
$$

On the other hand,

$$
[x, y]_{\mathfrak{g}_{\alpha} \oplus \Pi\left(\mathfrak{g}_{\alpha}\right)}=[x, y]_{\mathfrak{g}_{\alpha}}=\alpha\left([x, y]_{\mathfrak{g}}\right) .
$$

Similarly, one can easily prove that

$$
[\Pi(x), y]_{\mathfrak{h}_{\bar{\alpha}}}=[\Pi(x), y]_{\mathfrak{g}_{\alpha} \oplus \Pi\left(\mathfrak{g}_{\alpha}\right)}
$$

Let us only prove that their squarings coincide. Indeed, for all $x \in \mathfrak{g}$, we have

$$
s_{\mathfrak{h} \tilde{\alpha}}(\Pi(x))=\alpha \circ s_{\mathfrak{h}}(\Pi(x))=\alpha\left(x^{[2]}\right) .
$$

On the other hand,

$$
s_{\mathfrak{g}_{\alpha} \oplus \Pi\left(\mathfrak{g}_{\alpha}\right)}(\Pi(x))=x^{[2]_{\alpha}}=\alpha\left(x^{[2]}\right) .
$$

6. Cohomology and Deformations of Finite-Dimensional Hom-Lie Superalgebras

6.1. Cohomology of Ordinary Lie Superalgebras in Characteristic 2

In this section, we define a cohomology theory of Lie superalgebras in characteristic 2. The first instances can be found in [26]. Let \mathfrak{g} be a Lie superalgebra in characteristic 2 and M be a \mathfrak{g}-module. Let us introduce a map:

$$
\begin{equation*}
\mathfrak{p}: \mathfrak{g}_{\overline{1}} \times \wedge^{n} \mathfrak{g} \rightarrow M \tag{21}
\end{equation*}
$$

with the following properties:
(i) $\mathfrak{p}(\lambda x, z)=\lambda^{2} \mathfrak{p}(x, z)$ for all $x \in \mathfrak{g}_{\overline{1}}$, for all $z \in \wedge^{n} \mathfrak{g}$ and for all $\lambda \in \mathbb{K}$.
(ii) For all $x \in \mathfrak{g}_{\overline{1}}$, the map $z \mapsto \mathfrak{p}(x, z)$ is multi-linear.

For $n=0$, the map \mathfrak{p} should be understood as a quadratic form on $\mathfrak{g}_{\overline{1}}$ with values in M.
We are now ready to define the space of cochains on \mathfrak{g} with values in M. We set $(n>1)$

$$
\begin{align*}
X C^{-1}(\mathfrak{g} ; M):= & \{0\}, \\
X C^{0}(\mathfrak{g} ; M):= & M, \\
X C^{1}(\mathfrak{g} ; M):= & \{c \mid \text { where } c: \mathfrak{g} \rightarrow M \text { is linear }\}, \\
X C^{n}(\mathfrak{g} ; M):= & \left\{(c, \mathfrak{p}) \mid \text { where } c: \wedge^{n} \mathfrak{g} \rightarrow M\right. \text { is a multi-linear map and } \tag{22}\\
& \mathfrak{p}: \mathfrak{g}_{\overline{1}} \times \wedge^{n-2} \mathfrak{g} \rightarrow M \text { is a map as in }(21) \text { such that } \\
& \mathfrak{p}(x+y, z)+\mathfrak{p}(x, z)+\mathfrak{p}(y, z)=c(x, y, z) \\
& \text { for all } \left.x, y \in \mathfrak{g}_{\overline{1}} \text { and } z \in \wedge^{n-2} \mathfrak{g}\right\} .
\end{align*}
$$

We define the differential $\mathfrak{d}^{-1}: X C^{-1}(\mathfrak{g}, M) \rightarrow X C^{0}(\mathfrak{g}, M)$ to be the trivial map. The differential \mathfrak{d}^{0} is given by

$$
\mathfrak{d}^{0}: X C^{0}(\mathfrak{g}, M) \rightarrow X C^{1}(\mathfrak{g}, M) \quad m \mapsto \mathfrak{d}^{0}(m)
$$

where $\mathfrak{d}^{0}(m)(x)=x \cdot m$. The differential \mathfrak{d}^{1} is given by

$$
\mathfrak{d}^{1}: X C^{1}(\mathfrak{g}, M) \rightarrow X C^{2}(\mathfrak{g}, M) \quad c \mapsto(d c, \mathfrak{q})
$$

where

$$
\begin{align*}
& d c(x, z)=c([x, z])+x \cdot c(z)+z \cdot c(x) \quad \text { for all } x, z \in \mathfrak{g} ; \tag{23}\\
& \mathfrak{q}(x) \quad=c(s(x))+x \cdot c(x) \text { for all } x \in \mathfrak{g}_{\overline{1}} .
\end{align*}
$$

Now, for $n \geq 2$, the differential \mathfrak{d}^{n} is given by

$$
\mathfrak{d}^{n}: X C^{n}(\mathfrak{g}, M) \rightarrow X C^{n+1}(\mathfrak{g}, M) \quad(c, \mathfrak{p}) \mapsto\left(d^{n} c, d^{n} \mathfrak{p}\right),
$$

where

$$
\begin{align*}
d^{n} c\left(z_{1}, \ldots, z_{n+1}\right)= & \sum_{1 \leq i \leq n+1} z_{i} \cdot c\left(z_{1}, \ldots, \hat{z}_{i}, \ldots, z_{n+1}\right) \\
& +\sum_{1 \leq i<j \leq n+1} c\left(\left[z_{i}, z_{j}\right], z_{1}, \ldots, \hat{z}_{i}, \ldots, \hat{z}_{j}, \ldots z_{n+1}\right), \\
d^{n} \mathfrak{p}\left(x, z_{1}, \ldots, z_{n-1}\right)= & x \cdot c\left(x, z_{1}, \ldots, z_{n-1}\right)+\sum_{1 \leq i \leq n-1} z_{i} \cdot \mathfrak{p}\left(x, z_{1}, \ldots, \hat{z}_{i}, \ldots, z_{n-1}\right) \tag{24}\\
& +c\left(s(x), z_{1}, \ldots, z_{n-1}\right)+\sum_{1 \leq i \leq n-1} c\left(\left[x, z_{i}\right], x, z_{1}, \ldots, \hat{z}_{i}, \ldots, z_{n-1}\right) \\
& +\sum_{1 \leq i<j \leq n-1} \mathfrak{p}\left(x,\left[z_{i}, z_{j}\right], z_{1}, \ldots, \hat{z}_{i}, \ldots, \hat{z}_{j}, \ldots, z_{n-1}\right) .
\end{align*}
$$

Theorem 3. The maps \mathfrak{d}^{n} are well-defined. Moreover, for all integers n,

$$
\mathfrak{d}^{n+1} \circ \mathfrak{d}^{n}=0
$$

Hence, the pair $\left(X C^{*}(\mathfrak{g}, M), \mathfrak{d}^{*}\right)$ defines a cohomology complex for Lie superalgebras in characteristic 2.

The proof of the theorem will be given next when considering the cohomology of Hom-Lie superalgebras that reduce to ordinary Lie superalgebras when the structure map is the identity.

6.2. Elucidation for $n=2,3$

Let us first exhibit the sets of cochains in the case where $n=2,3$.
If $v \in M$ and $a, b \in \mathfrak{g}_{\overline{1}}^{*}$, we can define the cochain $(v \otimes a \wedge b, \mathfrak{q}) \in X C^{2}(\mathfrak{g}, M)$ such that the quadratic form is $\mathfrak{q}(x)=a(x) b(x) v$ for all $x \in \mathfrak{g}_{\overline{1}}$. The polar form associated with \mathfrak{q} is

$$
B_{\mathfrak{q}}(x, y)=(a(x) b(y)+a(y) b(x)) v \text { for all } x, y \in \mathfrak{g}_{\overline{1}} .
$$

Recall that, to each quadratic form \mathfrak{q} with values in a space M, its polar form is the bilinear form with the values in M given by: $\left.B_{\mathfrak{q}}(x, y):=\mathfrak{q}(x+y)+\mathfrak{q}(x)+\mathfrak{q}(y).\right)$

In particular, we can define the cochain $c=v \otimes a \wedge a$, where $q(x)=v(a(x))^{2}$ for all $x \in \mathfrak{g}_{\overline{1}}$ and $c(x, y)=0$ for all $x, y \in \mathfrak{g}$.

Similarly, if $v \in M$ and $a, b \in \mathfrak{g}_{1}^{*}$, but $c \in \mathfrak{g}$, we can define the cochain $(v \otimes a \wedge b \wedge c, \mathfrak{p}) \in$ $X C^{2}(\mathfrak{g}, M)$ such that the map \mathfrak{p} is

$$
\mathfrak{p}(x, z)=(a(x) b(x) c(z)+a(z) b(x) c(x)+a(x) b(z) c(x)) v \quad \text { for all } x \in \mathfrak{g}_{\overline{1}} \text { and } z \in \mathfrak{g}
$$

Now, a direct computation shows that

$$
\begin{aligned}
\mathfrak{p}(x+y, z)+\mathfrak{p}(x, z)+\mathfrak{p}(y, z)= & (a(x) b(y) c(z)+a(y) b(x) c(z)+a(z) b(x) c(y)) v \\
& +(a(z) b(y) c(x)+b(z) a(x) c(y)+b(z) a(y) c(x)) v \\
= & v \otimes(a \wedge b \wedge c)(x, y, z) .
\end{aligned}
$$

A one-cocycle c on \mathfrak{g} with values in an \mathfrak{g}-module M must satisfy the following conditions:

$$
\begin{align*}
x \cdot c(z)+z \cdot c(x)+c([x, z]) & =0 \quad \text { for all } x, z \in \mathfrak{g}, \tag{25}\\
x \cdot c(x)+c(s(x)) & =0 \quad \text { for all } x \in \mathfrak{g}_{\overline{1}} . \tag{26}
\end{align*}
$$

A two-cocycle (c, \mathfrak{q}) on \mathfrak{g} with values in M must satisfy the following conditions:

$$
\begin{align*}
0 & =x \cdot c(y, z)+c([x, y], z)+\circlearrowleft(x, y, z) \quad \text { for all } x, y, z \in \mathfrak{g} \tag{27}\\
0 & =x \cdot c(x, z)+z \cdot \mathfrak{q}(x)+c(s(x), z)+c([x, z], x] \tag{28}
\end{align*}
$$

for all $x \in \mathfrak{g}_{\overline{1}}$ and for all $z \in \mathfrak{g}$.

6.3. Cohomology of Hom-Lie Superalgebras in Characteristic 2

Let $(\mathfrak{g},[\cdot, \cdot], s, \alpha)$ be a Hom-Lie superalgebra in characteristic 2 and (M, β) be a \mathfrak{g} module; see Definition 2. The space of n-cochains is defined similarly to (22) with a slight difference with respect to the degree 0 space and an extra condition, that is

$$
\begin{equation*}
\beta \circ c=c \circ(\alpha \wedge \cdots \wedge \alpha), \quad \text { and } \quad \beta \circ \mathfrak{p}=\mathfrak{p} \circ(\alpha \wedge \cdots \wedge \alpha) . \tag{29}
\end{equation*}
$$

$$
\begin{align*}
X C_{\alpha}^{-1}(\mathfrak{g} ; M):= & \{0\}, \\
X C_{\alpha}^{0}(\mathfrak{g} ; M):= & \{m \in M \mid \beta(m)=m \text { and } \alpha(x) \cdot(y \cdot m)=x \cdot(y \cdot m) \text { for all } x, y \in \mathfrak{g}\}, \\
X C_{\alpha}^{1}(\mathfrak{g} ; M):= & \{c \mid \text { where } c: \mathfrak{g} \rightarrow M \text { is linear and satisfies Equation (29) }\}, \tag{30}\\
X C_{\alpha}^{n}(\mathfrak{g} ; M):= & \left\{(c, p) \mid \text { where } c: \wedge^{n} \mathfrak{g} \rightarrow M\right. \text { is a multi-linear map satisfying Equation (29) and } \\
& \mathfrak{p}: \mathfrak{g}_{\overline{1}} \times \wedge^{n-2} \mathfrak{g} \rightarrow M \text { is a map as in (21) satisfying Equation (29) such that } \\
& \left.\mathfrak{p}(x+y, z)+\mathfrak{p}(x, z)+\mathfrak{p}(y, z)=c(x, y, z) \text { for all } x, y \in \mathfrak{g}_{\overline{1}} \text { and } z \in \wedge^{n-2} \mathfrak{g}\right\} .
\end{align*}
$$

One-cochains are just linear functions c on \mathfrak{g} with values in an \mathfrak{g}-module M such that $\beta \circ c=c \circ \alpha$. Let us define the differentials in our context. First, let us define $\mathfrak{d}_{\alpha}^{0}$ and $\mathfrak{d}_{\alpha}^{1}$.

$$
\mathfrak{d}_{\alpha}^{0}: X C_{\alpha}^{0}(\mathfrak{g}, M) \rightarrow X C_{\alpha}^{1}(\mathfrak{g}, M) \quad m \mapsto d_{\alpha}^{0} m,
$$

where $d_{\alpha}^{0} m(x)=x \cdot m$ for all $x \in \mathfrak{g}$. Additionally,

$$
\mathfrak{d}_{\alpha}^{1}: X C_{\alpha}^{1}(\mathfrak{g}, M) \rightarrow X C_{\alpha}^{2}(\mathfrak{g}, M) \quad c \mapsto\left(d_{\alpha}^{1} c, \mathfrak{q}\right),
$$

where

$$
\begin{align*}
d_{\alpha}^{1} c(x, z) & =c([x, z])+x \cdot c(z)+y \cdot c(x) \quad \text { for all } x, z \in \mathfrak{g} ; \\
\mathfrak{q}(x) & =c(s(x))+x \cdot c(x) \text { for all } x \in \mathfrak{g}_{\overline{1}} . \tag{31}
\end{align*}
$$

Note that these definitions are consistent as, shown by the following lemma.
Proposition 8. The differentials $\mathfrak{d}_{\alpha}^{0}$ and $\mathfrak{d}_{\alpha}^{1}$ are indeed well-defined; namely, $\operatorname{Im}\left(\mathfrak{d}_{\alpha}^{0}\right) \subseteq X C_{\alpha}^{1}(\mathfrak{g}, M)$ and $\operatorname{Im}\left(\mathfrak{d}_{\alpha}^{1}\right) \subseteq X C_{\alpha}^{2}(\mathfrak{g}, M)$.

Proof. Let us first deal with $\mathfrak{d}_{\alpha}^{0}$. We have

$$
d_{\alpha}^{0} m(\alpha(x))=\alpha(x) \cdot m=\alpha(x) \cdot \beta(m)=\beta(x \cdot m)=\beta\left(d_{\alpha}^{0} m(x)\right)
$$

Therefore, Equation (29) is satisfied. Let us now deal deal with $\mathfrak{d}_{\alpha}^{1}$. We will only prove that \mathfrak{q} satisfies Equation (29). Indeed,

$$
\begin{aligned}
\mathfrak{q}(\alpha(x)) & =c(s(\alpha(x)))+\alpha(x) \cdot c(\alpha(x))=c(\alpha(s(x)))+\alpha(x) \cdot \beta(c(x)) \\
& =\beta(c(s(x)))+\beta(x \cdot c(x))=\beta(\mathfrak{q}(x)) .
\end{aligned}
$$

On the other hand, we have

$$
\begin{aligned}
\mathfrak{q}(x+y)+\mathfrak{q}(x)+\mathfrak{q}(y)= & c(s(x+y))+(x+y) \cdot c(x+y)+c(s(x)) \\
& +x \cdot c(x)+c(s(y))+y \cdot c(y) \\
= & c([x, y])+y \cdot c(x)+x \cdot c(y)=d_{\alpha}^{1} c(x, y) .
\end{aligned}
$$

A one-cocycle c on \mathfrak{g} with values in an \mathfrak{g}-module M must satisfy the following conditions:

$$
\begin{align*}
x \cdot c(y)+y \cdot c(x)+c([x, y]) & =0 & \text { for all } x, y \in \mathfrak{g} \tag{32}\\
x \cdot c(x)+c(s(x)) & =0 & \text { for all } x \in \mathfrak{g}_{\overline{1}} . \tag{33}
\end{align*}
$$

The space of all one-cocycles is denoted by $Z_{\alpha}^{1}(\mathfrak{g} ; M)$.
Now, for $n \geq 2$, the differential $\mathfrak{o}_{\alpha}^{n}$ is given by

$$
\mathfrak{d}^{n}: X C_{\alpha}^{n}(\mathfrak{g}, M) \rightarrow X C_{\alpha}^{n+1}(\mathfrak{g}, M) \quad(c, \mathfrak{p}) \mapsto\left(d_{\alpha}^{n} c, d_{\alpha}^{n} \mathfrak{p}\right),
$$

where

$$
\begin{aligned}
& d_{\alpha}^{n} c\left(z_{1}, \ldots, z_{n+1}\right)=\sum_{1 \leq i \leq n+1} \alpha^{n-1}\left(z_{i}\right) \cdot c\left(z_{1}, \ldots, \hat{z_{i}}, \ldots, z_{n+1}\right) \\
& +\sum_{1 \leq i<j \leq n+1} c\left(\left[z_{i}, z_{j}\right], \alpha\left(z_{1}\right), \ldots, \hat{z}_{i}, \ldots, \hat{z}_{j}, \ldots \alpha\left(z_{n+1}\right)\right), \\
& d_{\alpha}^{n} \mathfrak{p}\left(x, z_{1}, \ldots, z_{n-1}\right)=\alpha^{n-1}(x) \cdot c\left(x, z_{1}, \ldots, z_{n-1}\right)+c\left(s(x), \alpha\left(z_{1}\right), \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq i \leq n-1} \alpha^{n-1}\left(z_{i}\right) \cdot \mathfrak{p}\left(x, z_{1}, \ldots, \hat{z}_{i}, \ldots, z_{n-1}\right) \\
& +\sum_{1 \leq i \leq n-1} c\left(\left[x, z_{i}\right], \alpha(x), \alpha\left(z_{1}\right), \ldots, \hat{z}_{i}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq i<j \leq n-1} \mathfrak{p}\left(\alpha(x),\left[z_{i}, z_{j}\right], \alpha\left(z_{1}\right), \ldots, \hat{z}_{i}, \ldots, \hat{z_{j}}, \ldots, \alpha\left(z_{n-1}\right)\right) .
\end{aligned}
$$

In particular, for $n=2$, the differential is given by

$$
\mathfrak{d}_{\alpha}^{2}: X C_{\alpha}^{2}(\mathfrak{g}, M) \rightarrow X C_{\alpha}^{3}(\mathfrak{g}, M) \quad(c, \mathfrak{p}) \mapsto\left(d_{\alpha}^{2} c, d_{\alpha}^{2} \mathfrak{p}\right),
$$

where

$$
\begin{aligned}
d_{\alpha}^{2} c\left(z_{1}, z_{2}, z_{3}\right)= & \alpha\left(z_{1}\right) \cdot c\left(z_{2}, z_{3}\right)+c\left(\left[z_{1}, z_{2}\right], \alpha\left(z_{3}\right)\right)+\circlearrowleft\left(z_{1}, z_{2}, z_{3}\right) \text { for all } z_{1}, z_{2}, z_{3} \in \mathfrak{g} ; \\
d_{\alpha}^{2} \mathfrak{p}\left(x, z_{1}\right)= & \alpha(x) \cdot c\left(x, z_{1}\right)+\alpha\left(z_{1}\right) \cdot \mathfrak{p}(x)+c\left(s(x), \alpha\left(z_{1}\right)\right)+c\left(\left[x, z_{1}\right], \alpha(x)\right) \\
& \text { for all } x \in \mathfrak{g}_{\overline{1}}, \text { and for all } z_{1} \in \mathfrak{g} .
\end{aligned}
$$

A two-cocycle is two-tuple (c, \mathfrak{p}) satisfying the following conditions:

$$
\begin{align*}
0 & =\alpha\left(z_{3}\right) \cdot c\left(z_{1}, z_{2}\right)+c\left(\left[z_{1}, z_{2}\right], \alpha\left(z_{3}\right)\right)+\circlearrowleft\left(z_{1}, z_{2}, z_{3}\right) \quad \text { for all } z_{1}, z_{2}, z_{3} \in \mathfrak{g} \tag{34}\\
0 & =\alpha(x) \cdot c\left(x, z_{1}\right)+\alpha\left(z_{1}\right) \cdot \mathfrak{p}(x)+c\left(s(x), \alpha\left(z_{1}\right)\right)+c\left(\left[x, z_{1}\right], \alpha(x)\right] \tag{35}
\end{align*}
$$

for all $x \in \mathfrak{g}_{\overline{1}}$ and for all $z_{1} \in \mathfrak{g}$,
The first step here is to show that the map $\mathfrak{d}_{\alpha}^{n}$ is well-defined, for every twist α. By doing so, we give a proof to the first part of Theorem 3 in the case where $\alpha=\mathrm{id}$.

Proposition 9. The maps $\mathfrak{d}_{\alpha}^{n}$ are well-defined; namely, $\operatorname{Im}\left(\mathfrak{d}_{\alpha}^{n}\right) \subseteq X C_{\alpha}^{n+1}(\mathfrak{g}, M)$.
Proof. For all $x, y \in \mathfrak{g}_{\overline{1}}$ and for all $z_{1}, \ldots, z_{n} \in \mathfrak{g}$, we have

$$
\begin{aligned}
& d_{\alpha}^{n} \mathfrak{p}\left(x+y, z_{1}, \ldots, z_{n}\right) \\
& =\alpha^{n-1}(x+y) \cdot c\left(x+y, z_{1}, \ldots, z_{n-1}\right)+\sum_{1 \leq i \leq n-1} \alpha^{n-1}\left(z_{i}\right) \cdot \mathfrak{p}\left(x+y, z_{1}, \ldots, \hat{z}_{i}, \ldots, z_{n-1}\right) \\
& +c\left(s(x+y), \alpha\left(z_{1}\right), \ldots, \alpha\left(z_{n-1}\right)\right)+\sum_{1 \leq i \leq n-1} c\left(\left[x+y, z_{i}\right], \alpha(x+y), \alpha\left(z_{1}\right), \ldots, \hat{z}_{i}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq i<j \leq n-1} \mathfrak{p}\left(\alpha(x+y),\left[z_{i}, z_{j}\right], \alpha\left(z_{1}\right), \ldots, \hat{z}_{i}, \ldots, \hat{z}_{j}, \ldots, \alpha\left(z_{n-1}\right)\right) . \\
& =d_{\alpha}^{n} \mathfrak{p}\left(x, z_{1}, \ldots, z_{n}\right)+d_{\alpha}^{n} \mathfrak{p}\left(y, z_{1}, \ldots, z_{n}\right)+\alpha^{n-1}(x) \cdot c\left(y, z_{1}, \ldots, z_{n-1}\right) \\
& +\alpha^{n-1}(y) \cdot c\left(x, z_{1}, \ldots, z_{n-1}\right)+\sum_{1 \leq i \leq n-1} \alpha^{n-1}\left(z_{i}\right) \cdot c\left(x, y, z_{1}, \ldots, \hat{z}_{i}, \ldots, z_{n-1}\right) \\
& +c\left([x, y], \alpha\left(z_{1}\right), \ldots, \alpha\left(z_{n-1}\right)\right)+\sum_{1 \leq i \leq n-1} c\left(\left[x, z_{i}\right], \alpha(y), \alpha\left(z_{1}\right), \ldots, \hat{z}_{i}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq i \leq n-1} c\left(\left[y, z_{i}\right], \alpha(x), \alpha\left(z_{1}\right), \ldots, \hat{z}_{i}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq i<j \leq n-1} c\left(\alpha(x), \alpha(y),\left[z_{i}, z_{j}\right], \alpha\left(z_{1}\right), \ldots, \hat{z}_{i}, \ldots, \hat{z}_{j}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& =d_{\alpha}^{n} \mathfrak{p}\left(x, z_{1}, \ldots, z_{n}\right)+d_{\alpha}^{n} \mathfrak{p}\left(y, z_{1}, \ldots, z_{n}\right)+d_{\alpha}^{n} c\left(x, y, z_{1}, \ldots, z_{n}\right),
\end{aligned}
$$

where we have used the fact that $s(x+y)=s(x)+s(y)+[x, y]$ and

$$
\mathfrak{p}\left(x+y, z_{1}, \ldots, z_{n-1}\right)+\mathfrak{p}\left(x, z_{1}, \ldots, z_{n-1}\right)+\mathfrak{p}\left(y, z_{1}, \ldots, z_{n-1}\right)=c\left(x, y, z_{1}, \ldots, z_{n-1}\right)
$$

Theorem 4. For all $n \geq 1$, we have $\mathfrak{d}_{\alpha}^{n} \circ \mathfrak{d}_{\alpha}^{n-1}=0$. Hence, the pair $\left(X C_{\alpha}^{*}(\mathfrak{g}, M), \mathfrak{d}_{\alpha}^{*}\right)$ defines a cohomology complex for Hom-Lie superalgebras in characteristic 2.

In order to prove this theorem, we will need the following lemma.
Lemma 1. If $(c, \mathfrak{p}) \in X C_{\alpha}^{n}(\mathfrak{g}, M)$, then:
(i) $\quad \alpha^{n-1}(x) \cdot\left(\alpha^{n-2}(x) \cdot c\left(z_{1}, \ldots, z_{n}\right)\right)=\alpha^{n-2}(s(x)) \cdot c\left(\alpha\left(z_{1}\right), \ldots, \alpha\left(z_{n}\right)\right)$ for all $x \in \mathfrak{g}_{1}$ and for all $z_{1}, \ldots, z_{n} \in \mathfrak{g}$.
(ii) $\alpha\left(z_{i}\right) \cdot\left(z_{j} \cdot c\left(z_{1}, \ldots, z_{n}\right)\right)+\alpha\left(z_{j}\right) \cdot\left(z_{i} \cdot c\left(z_{1}, \ldots, z_{n}\right)\right)=\left[z_{i}, z_{j}\right] \cdot c\left(\alpha\left(z_{1}\right), \ldots, \alpha\left(z_{n}\right)\right)$ for all $z_{1}, \ldots, z_{n} \in \mathfrak{g}$.

Proof. Let us only prove Part (i). Using the fact that $\beta \circ c=c \circ(\alpha \wedge \cdots \wedge \alpha)$, we obtain

$$
\begin{aligned}
& \alpha^{n-1}(x) \cdot\left(\alpha^{n-2}(x) \cdot c\left(z_{1}, \ldots, z_{n}\right)\right)=s\left(\alpha^{n-2}(x)\right) \cdot \beta\left(c\left(z_{1}, \ldots, z_{n}\right)\right) \\
& =\alpha^{n-2}(s(x)) \cdot\left(c\left(\alpha\left(z_{1}\right), \ldots, \alpha\left(z_{n}\right)\right)\right) .
\end{aligned}
$$

Proof of Theorem 4. Let us first show that $\mathfrak{d}_{\alpha}^{1} \circ \mathfrak{d}_{\alpha}^{0}=0$. Indeed, for all $x, y \in \mathfrak{g}$ and $m \in X C_{\alpha}^{0}(\mathfrak{g} ; M)$, we have

$$
\begin{aligned}
d_{\alpha}^{1} \circ d_{\alpha}^{0} m(x, y) & =x \cdot d_{\alpha}^{0} m(y)+y \cdot d_{\alpha}^{0} m(x)+d_{\alpha}^{0} m([x, y])=x \cdot(y \cdot m)+y \cdot(x \cdot m)+[x, y] \cdot m \\
& =\alpha(x) \cdot(y \cdot m)+\alpha(y) \cdot(x \cdot m)+[x, y] \cdot \beta(m)=0 .
\end{aligned}
$$

On the other hand, for all $x \in \mathfrak{g}_{\overline{1}}$ and $m \in X C_{\alpha}^{0}(\mathfrak{g} ; M)$, we have

$$
\mathfrak{q}(x)=d_{\alpha}^{0} m(s(x))+x \cdot d_{\alpha}^{0} m(x)=s(x) \cdot m+x \cdot(x \cdot m)=s(x) \cdot \beta(m)+\alpha(x) \cdot(x \cdot m)=0 .
$$

Let us now show that $\mathfrak{d}_{\alpha}^{n} \circ \mathfrak{d}_{\alpha}^{n-1}=0$ for all $n>1$. To show that $d_{\alpha}^{n} \circ d_{\alpha}^{n-1}(c)=0$ is routine, see for instance [10]. Let us show that $d_{\alpha}^{n} \circ d_{\alpha}^{n-1}(\mathfrak{p})=0$. This would imply that $\mathfrak{d}_{\alpha}^{n} \circ \mathfrak{d}_{\alpha}^{n-1}(c, \mathfrak{p})=0$. Actually, the computation is very cumbersome, so we will break it into small pieces. First, we compute:

$$
\begin{aligned}
& d_{\alpha}^{n} \circ d_{\alpha}^{n-1}(\mathfrak{p})\left(x, z_{1}, \ldots, z_{n-1}\right)=\alpha^{n-1}(x) \cdot d_{\alpha}^{n-1} c\left(x, z_{1}, \ldots, z_{n-1}\right) \\
& +\sum_{i=1}^{n-1} \alpha^{n-1}\left(z_{i}\right) d_{\alpha}^{n-1} \mathfrak{p}\left(x, z_{1}, \ldots, \widehat{z_{i}}, \ldots, z_{n-1}\right)+d_{\alpha}^{n-1} c\left(s(x), \alpha\left(z_{1}\right), \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{i=1}^{n-1} d_{\alpha}^{n-1} c\left(\left[x, z_{i}\right], \alpha(x), \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq i<j \leq n-1} d_{\alpha}^{n-1} \mathfrak{p}\left(\alpha(x),\left[z_{i}, z_{j}\right], \alpha\left(z_{1}\right), \ldots \widehat{\alpha\left(z_{i}\right)}, \ldots, \widehat{\alpha\left(z_{j}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) .
\end{aligned}
$$

There are five terms in the expression above. We will compute each term separately.

$$
\begin{aligned}
& \text { Part 1: } \sum_{1 \leq i \leq n-1} \alpha_{\alpha}^{n-1}\left(z_{i}\right) d^{n-1} \mathfrak{p}\left(x, z_{1}, \ldots, \widehat{z_{i}}, \ldots, z_{n-1}\right)= \\
& +\sum_{1 \leq i \leq n-1} \alpha^{n-1}\left(z_{i}\right) \cdot\left[\alpha^{n-2}(x) \cdot c\left(x, z_{1}, \ldots, \widehat{z_{i}}, \ldots, z_{n-1}\right)\right. \\
& +\sum_{1 \leq j \leq n-2} \alpha^{n-2}\left(z_{j}\right) \mathfrak{p}\left(x, z_{1}, \ldots, \widehat{z_{i}}, \ldots, \widehat{z_{j}}, \ldots, z_{n-1}\right)+c\left(s(x), \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq j \leq n-2} c\left(\left[x, z_{i}\right], \alpha(x), \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \widehat{\alpha\left(z_{j}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& \left.+\sum_{1 \leq l<j \leq n-2} \mathfrak{p}\left(\alpha(x),\left[z_{l}, z_{j}\right], \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{l}\right)}, \ldots, \widehat{\alpha\left(z_{j}\right)}, \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Part 2: } \alpha^{n-1}(x) d_{\alpha}^{n-1} c\left(x, z_{1}, \ldots, z_{n-1}\right)=\alpha^{n-1}(x) \cdot\left[\alpha^{n-2}(x) c\left(z_{1}, \ldots, z_{n-1}\right)\right. \\
& +\sum_{1 \leq i \leq n-1} \alpha^{n-2}\left(z_{i}\right) c\left(x, z_{1}, \ldots, \widehat{z_{i}}, \ldots, z_{n-1}\right)+\sum_{1 \leq i \leq n-1} c\left(\left[x, z_{i}\right], \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& \left.+\sum_{1 \leq i<j \leq n-1} c\left(\left[z_{i}, z_{j}\right], \alpha(x), \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \widehat{\alpha\left(z_{j}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Part 3: } d_{\alpha}^{n-1} c\left(s(x), \alpha\left(z_{1}\right), \ldots, \alpha\left(z_{n-1}\right)\right)=\alpha^{n-2}(s(x)) \cdot c\left(\alpha\left(z_{1}\right), \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq i \leq n-1} \alpha^{n-1}\left(z_{i}\right) \cdot c\left(s(x), \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& \sum_{1 \leq i<j \leq n-1} c\left(\left[\alpha\left(z_{i}\right), \alpha\left(z_{j}\right)\right], \alpha(s(x)), \alpha^{2}\left(z_{1}\right), \ldots, \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{j}\right)}, \ldots, \alpha^{2}\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq i \leq n-1} c\left(\left[s(x), \alpha\left(z_{i}\right)\right], \alpha^{2}\left(z_{1}\right), \ldots, \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \alpha^{2}\left(z_{n-1}\right)\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \text { Part 4: } \sum_{1 \leq i \leq n-1} d_{\alpha}^{n-1} c\left(\left[x, z_{i}\right], \alpha(x), \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& =\sum_{1 \leq i \leq n-1}\left[\alpha^{n-2}\left(\left[x, z_{i}\right]\right) \cdot c\left(\alpha(x), \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right)\right. \\
& +\alpha^{n-1}(x) \cdot c\left(\left[x, z_{i}\right], \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq l \leq n-2} \alpha^{n-1}\left(z_{l}\right) \cdot c\left(\left[x, z_{i}\right], \alpha(x), \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{l}\right)}, \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +c\left(\left[\left[x, z_{i}\right], \alpha(x)\right], \alpha^{2}\left(z_{1}\right), \ldots, \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \alpha^{2}\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq j \leq n-1} c\left(\left[\left[x, z_{i}\right], \alpha\left(z_{j}\right)\right], \alpha^{2}(x), \alpha^{2}\left(z_{1}\right), \ldots, \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{j}\right)}, \ldots \alpha^{2}\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq l \leq n-1} c\left(\left[\alpha(x), \alpha\left(z_{l}\right)\right], \alpha\left(\left[x, z_{i}\right]\right), \alpha^{2}\left(z_{1}\right), \ldots, \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{l}\right)}, \ldots \alpha^{2}\left(z_{n-1}\right)\right) \\
& \left.+\sum_{1 \leq u<v \leq n-1} c\left(\alpha\left(\left[x, z_{i}\right]\right), \alpha^{2}(x),\left[\alpha\left(z_{u}\right), \alpha\left(z_{v}\right)\right], \alpha^{2}\left(z_{1}\right), \ldots, \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{u}\right)}, \ldots \widehat{\alpha^{2}\left(z_{v}\right)}, \ldots \alpha^{2}\left(z_{n-1}\right)\right)\right] . \\
& \text { Part 5: } \sum_{1 \leq i<j \leq n-1} d_{\alpha}^{n-1} \mathfrak{p}\left(\alpha(x),\left[z_{i}, z_{j}\right], \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \widehat{\alpha\left(z_{j}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& =\sum_{1 \leq i<j \leq n-1}\left[\alpha^{n-1}(x) \cdot c\left(\alpha(x),\left[z_{i}, z_{j}\right], \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \widehat{\alpha\left(z_{j}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right)\right. \\
& +\sum_{1 \leq l \leq n-1} \alpha^{n-1}\left(z_{l}\right) \mathfrak{p}\left(\alpha(x),\left[z_{i}, z_{j}\right], \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \widehat{\alpha\left(z_{j}\right)}, \ldots, \widehat{\alpha\left(z_{l}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +\alpha^{n-2}\left(\left[z_{i}, z_{j}\right]\right) \cdot \mathfrak{p}\left(x, \alpha\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \widehat{\alpha\left(z_{j}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& +c\left(s(\alpha(x)), \alpha\left(\left[z_{i}, z_{j}\right]\right), \alpha^{2}\left(z_{1}\right), \ldots, \widehat{\alpha\left(z_{i}\right)}, \ldots, \widehat{\alpha\left(z_{j}\right)}, \ldots, \alpha\left(z_{n-1}\right)\right) \\
& \sum_{1 \leq l \leq n-1} c\left(\left[\alpha(x), \alpha\left(z_{l}\right)\right], \alpha\left(\left[z_{i}, z_{j}\right]\right), \alpha^{2}(x), \alpha^{2}\left(z_{1}\right), \ldots, \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{j}\right)}, \ldots, \alpha^{2}\left(z_{n-1}\right)\right) \\
& +c\left(\left[\alpha(x),\left[z_{i}, z_{j}\right]\right], \alpha^{2}\left(z_{1}\right), \ldots \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{j}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{l}\right)}, \ldots, \alpha^{2}\left(z_{n-1}\right)\right) \\
& +\sum_{1 \leq l \leq n-1} \mathfrak{p}\left(\alpha^{2}(x),\left[\alpha\left(z_{l}\right),\left[z_{i}, z_{j}\right]\right], \alpha^{2}\left(z_{1}\right), \ldots \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{j}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{l}\right)}, \ldots \alpha^{2}\left(z_{n-1}\right)\right) \\
& \left.+\sum_{1 \leq u<v \leq n-1} T_{i j u v}\right],
\end{aligned}
$$

where

$$
T_{i j u v}=\mathfrak{p}\left(\alpha^{2}(x), \alpha\left(\left[z_{i}, z_{j}\right]\right),\left[\alpha\left(z_{u}\right), \alpha\left(z_{v}\right)\right], \alpha^{2}\left(z_{1}\right), \ldots \widehat{\alpha^{2}\left(z_{i}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{j}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{u}\right)}, \ldots, \widehat{\alpha^{2}\left(z_{v}\right)}, \ldots\right)
$$

Now, using Lemma 1, a direct computation shows that

$$
\text { Part } 1+\text { Part } 2+\text { Part } 3+\text { Part } 4+\text { Part } 5=0
$$

Now, we are ready to define a cohomology of Hom-Lie superalgebras in characteristic 2. The kernel of the map $\mathfrak{d}_{\alpha}^{n}$, denoted by $Z_{\alpha}^{n}(\mathfrak{g} ; M)$, is the space of n-cocycles. The range of the map $\mathfrak{d}_{\alpha}^{n-1}$, denoted by $B_{\alpha}^{n}(\mathfrak{g} ; M)$, is the space of coboundaries.

We define the nth cohomology space as

$$
\mathrm{H}_{\alpha}^{n}(\mathfrak{g} ; M):=Z_{\alpha}^{n}(\mathfrak{g} ; M) / B_{\alpha}^{n}(\mathfrak{g} ; M) .
$$

Remark 5. The cohomology defined above coincides when $\alpha=\operatorname{id}_{\mathfrak{g}}$ and $\beta=\mathrm{id}_{M}$, with the cohomology of Lie superalgebras in characteristic 2 defined in the previous section.

Example 4. We compute the second cohomology of the Hom-Lie superalgebra $\mathfrak{o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha}$ defined in Example 1. We will assume here that the field \mathbb{K} is infinite:
(i) The cohomology space $\mathrm{H}_{\alpha}^{2}\left(\mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha} ; \mathbb{K}\right)$ is trivial. Recall that, in this case, the map $\beta=\mathrm{Id}$.

Let us first show that cocycles of the form $(0, \mathfrak{p})$ are necessarily trivial. In fact, the condition $\mathfrak{p}=\mathfrak{p} \circ \alpha$ and $\varepsilon \neq 0$ imply that

$$
\mathfrak{p}\left(x_{1}\right)=0 \quad \text { and } \quad \mathfrak{p}\left(y_{1}\right)=m \text { (arbitrary) } .
$$

Choose $B_{m}=m y_{2}^{*}$, where $m \in \mathbb{K}$. A direct computation shows that $d_{\alpha}^{2} B_{m}=0$. Let us compute the corresponding \mathfrak{q}_{m}. Indeed,

$$
\mathfrak{q}_{m}\left(x_{1}\right)=B_{m}\left(s\left(x_{1}\right)\right)=B_{m}\left(x_{2}\right)=0,
$$

and

$$
\mathfrak{q}_{m}\left(y_{1}\right)=B_{m}\left(s\left(y_{1}\right)\right)=B_{m}\left(\varepsilon h_{1}+\varepsilon^{2} x_{2}+y_{2}\right)=m
$$

It follows that $(0, \mathfrak{p})=\left(d_{\alpha}^{2} B_{m}, \mathfrak{q}_{m}\right)$, and hence, its cohomology class is trivial.
Let us now describe two-cocycles of the form (c, \mathfrak{p}). A direct computation shows that

$$
c_{1}=x_{1}^{*} \wedge y_{1}^{*}+x_{2}^{*} \wedge y_{2}^{*}, \quad c_{2}=h_{1}^{*} \wedge y_{1}^{*}+x_{1}^{*} \wedge y_{2}^{*},
$$

are the only cochains verifying both conditions $c_{i} \circ(\alpha \wedge \alpha)=c_{i}$ and $d_{\alpha}^{2} c_{i}=0$ for $i=1,2$. Let us describe the corresponding $\mathfrak{p s}$. We have

$$
\begin{aligned}
& \mathfrak{p}_{1}\left(x_{1}\right)=\varepsilon^{-1}, \mathfrak{p}_{1}\left(y_{1}\right)=m_{1} \quad \text { (arbitrary) } \\
& \mathfrak{p}_{2}\left(x_{1}\right)=0 \quad \mathfrak{p}_{2}\left(y_{1}\right)=m_{2} \quad \text { (arbitrary) }
\end{aligned}
$$

We then obtain that $\mathfrak{d}_{\alpha}^{2}\left(c_{1}, \mathfrak{p}_{1}\right)=\mathfrak{d}_{\alpha}^{2}\left(c_{2}, \mathfrak{p}_{2}\right)=0$.
Let us now describe the coboundaries. Choose $b_{1}=h_{1}^{*}+\varepsilon^{-1} x_{2}^{*}$. It follows that

$$
d_{\alpha}^{1} b_{1}=x_{1}^{*} \wedge y_{1}^{*}+x_{2}^{*} \wedge y_{2}^{*}
$$

Now,

$$
\mathfrak{q}_{1}\left(x_{1}\right)=b_{1}\left(s\left(x_{1}\right)\right)=b_{1}\left(x_{2}\right)=\varepsilon^{-1}
$$

and

$$
\mathfrak{q}_{1}\left(y_{1}\right)=b_{1}\left(s\left(y_{1}\right)\right)=b_{1}\left(\varepsilon h+\varepsilon^{2} x_{2}+y_{2}\right)=0 .
$$

Choose $b_{2}=y_{1}^{*}$. A direct computation shows that

$$
d_{\alpha}^{1} b_{2}=h_{1}^{*} \wedge y_{1}^{*}+x_{1}^{*} \wedge y_{2}^{*}, \quad \text { and } \mathfrak{q}_{2} \equiv 0
$$

It follows that
$\left(c_{1}, \mathfrak{p}_{1}\right)=\left(d_{\alpha}^{2} b_{1}, \mathfrak{q}_{1}\right)+\left(d_{\alpha}^{2} B_{m_{1}}=0, \mathfrak{q}_{m_{1}}\right), \quad$ and $\quad\left(c_{2}, \mathfrak{p}_{2}\right)=\left(d_{\alpha}^{2} b_{2}, \mathfrak{q}_{2}\right)+\left(d_{\alpha}^{2} B_{m_{2}}=0, \mathfrak{q}_{m_{2}}\right)$.
Therefore, the cohomology space $\mathrm{H}_{\alpha}^{2}\left(\mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha} ; \mathbb{K}\right)$ is trivial.
(ii) Let us now compute the cohomology space: $\mathrm{H}_{\alpha}^{2}\left(\mathfrak{o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha} ; \mathfrak{o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha}\right)$. Recall that, in the case where $\alpha=\mathrm{Id}$, this cohomology space has only two non-trivial two-cocycles.

The case where $\varepsilon \neq 1$: the space $\mathrm{H}_{\alpha}^{2}\left(\mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha} ; \mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha}\right.$ is generated by the non-trivial two-cocycles:
where

$$
\begin{aligned}
c_{4}= & \varepsilon x_{1} \otimes h_{1}^{*} \wedge x_{1}^{*}+\varepsilon^{2} x_{1} \otimes h_{1}^{*} \wedge y_{1}^{*}+x_{1} \otimes x_{1}^{*} \wedge x_{2}^{*}+\varepsilon^{2} x_{1} \otimes x_{1}^{*} \wedge y_{2}^{*}+\varepsilon^{2} x_{2} \otimes x_{1}^{*} \wedge y_{1}^{*} \\
& \varepsilon^{2} x_{2} \otimes x_{2}^{*} \wedge y_{2}^{*}+\varepsilon y_{1} \otimes h_{1}^{*} \wedge y_{1}^{*}+y_{1} \otimes x_{2}^{*} \wedge y_{1}^{*}, \\
c_{5}= & h_{1} \otimes h_{1}^{*} \wedge y_{2}^{*}+x_{1} \otimes h_{1}^{*} \wedge y_{1}^{*}+x_{1} \otimes x_{1}^{*} \wedge y_{2}^{*}, \\
c_{9}= & h_{1} \otimes h_{1}^{*} \wedge x_{1}^{*}+\varepsilon h_{1} \otimes h_{1}^{*} \wedge y_{1}^{*}+\varepsilon x_{1} \otimes x_{1}^{*} \wedge y_{1}^{*}+\varepsilon x_{2} \otimes h_{1}^{*} \wedge x_{1}^{*}+\varepsilon^{2} x_{2} \otimes h_{1}^{*} \wedge y_{1}^{*} \\
& +\varepsilon^{2} x_{2} \otimes x_{1}^{*} \wedge y_{2}^{*}+\varepsilon x_{2} \otimes x_{2}^{*} \wedge y_{1}^{*}+y_{2} \otimes h_{1}^{*} \wedge y_{1}^{*}+y_{2} \otimes x_{1}^{*} \wedge y_{2}^{*}, \\
c_{10}= & h_{1} \otimes x_{1}^{*} \wedge y_{1}^{*}, \\
c_{11}= & h_{1} \otimes x_{2}^{*} \wedge y_{2}^{*}+x_{1} \otimes x_{1}^{*} \wedge y_{2}^{*}+x_{1} \otimes x_{2}^{*} \wedge y_{1}^{*}+\varepsilon x_{2} \otimes x_{1}^{*} \wedge y_{1}^{*}+\varepsilon x_{2} \otimes x_{2}^{*} \wedge y_{2}^{*}, \\
c_{12}= & x_{1} \otimes y_{1}^{*} \wedge x_{1}^{*}+\varepsilon x_{1} \otimes h_{1}^{*} \wedge y_{1}^{*}+\varepsilon x_{2} \otimes x_{1}^{*} \wedge y_{1}^{*}+\varepsilon x_{2} \otimes x_{2}^{*} \wedge y_{2}^{*} \\
& +y_{1} \otimes h_{1}^{*} \wedge y_{1}^{*}+y_{1} \otimes x_{1}^{*} \wedge y_{2}^{*},
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathfrak{p}_{4}\left(x_{1}\right)=h_{1}, \mathfrak{p}_{4}\left(y_{1}\right)=\varepsilon^{2} h_{1}+\varepsilon^{3} x_{2}+\varepsilon y_{2}, \\
& \mathfrak{p}_{5}\left(x_{1}\right)=0, \mathfrak{p}_{5}\left(y_{1}\right)=0 \\
& \mathfrak{p}_{9}\left(x_{1}\right)=x_{1}, \mathfrak{p}_{9}\left(y_{1}\right)=0 \\
& \mathfrak{p}_{10}\left(x_{1}\right)=x_{2}, \mathfrak{p}_{10}\left(y_{1}\right)=\varepsilon h_{1}+\varepsilon^{2} x_{2}+y_{2}, \\
& \mathfrak{p}_{11}\left(x_{1}\right)=x_{2}, \mathfrak{p}_{11}\left(y_{1}\right)=0, \\
& \mathfrak{p}_{12}\left(x_{1}\right)=x_{2}, \mathfrak{p}_{12}\left(y_{1}\right)=0
\end{aligned}
$$

The case where $\varepsilon=1$: the space $\mathrm{H}_{\alpha}^{2}\left(\mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha} ; \mathfrak{o o}_{I \Pi}^{(1)}(1 \mid 2)_{\alpha}\right)$ is generated by the non-trivial two-cocycles:

$$
\left(c_{4}, \mathfrak{p}_{4}\right), \quad\left(c_{5}, \mathfrak{p}_{5}\right), \quad\left(c_{10}, \mathfrak{p}_{10}\right), \quad\left(c_{11}, \mathfrak{p}_{11}\right) .
$$

6.4. Deformations of Hom-Lie Superalgebras

The deformation theory of Hom-Lie superalgebras in characteristic 2 will be discussed here. As a result, we also cover the Lie case, namely $\alpha=\mathrm{Id}_{\mathfrak{g}}$. Over a field of characteristic 0 , the study was carried out in $[10,27,28]$.

Let $(\mathfrak{g},[\cdot, \cdot], s, \alpha)$ be a Hom-Lie superalgebra over a field \mathbb{K} of characteristic 2. A deformation of \mathfrak{g} is a family of Hom-Lie superalgebras \mathfrak{g}_{t} specializing in \mathfrak{g} when the even parameter t equals 0 and where the Hom-Lie superalgebra structure is defined on the tensor product $\mathfrak{g} \otimes \mathbb{K}[[t]]$ when \mathfrak{g} is finite-dimensional. The bracket in the deformed Hom-Lie superalgebra \mathfrak{g}_{t} is a $\mathbb{K}[[t]]$-bilinear map of the form (for all $x, y \in \mathfrak{g}$):

$$
[x, y]_{t}=[x, y]+\sum_{i \geq 1} c_{i}(x, y) t^{i}
$$

while the squaring s_{t}, with respect to $\mathbb{K}[[t]]$, on the Hom-Lie superalgebra \mathfrak{g}_{t} is given by (for all $x \in \mathfrak{g}_{\mathfrak{1}}$):

$$
s_{t}(x)=s(x)+\sum_{i \geq 1} \mathfrak{p}_{i}(x) t^{i}
$$

where $\left(c_{i}, \mathfrak{p}_{i}\right) \in X C_{\alpha}^{2}(\mathfrak{g} ; \mathfrak{g})$ such that c_{i} is an even map and $\mathfrak{p}_{i}: \mathfrak{g}_{\overline{1}} \rightarrow \mathfrak{g}_{\overline{0}}$, for all $i \geq 1$. We will assume that $c_{0}(\cdot, \cdot)=[\cdot, \cdot]$ and $\mathfrak{p}_{0}(\cdot)=s(\cdot)$.

According to deformation theory, we call a deformation infinitesimal if the bracket $[\cdot, \cdot]_{t}$ and the squaring $s_{t}(\cdot)$ define a Hom-Lie superalgebra structure $\bmod \left(t^{2}\right)$ (degree 1), that is $[\cdot, \cdot]_{t}=[\cdot, \cdot]+c_{1}(\cdot, \cdot) t$ and $s_{t}(\cdot)=s(\cdot)+\mathfrak{p}_{1}(\cdot) t$. A deformation is said to be of order n if the bracket $[\cdot, \cdot]_{t}$ and the squaring $s_{t}(\cdot)$ define a Hom-Lie superalgebra structure $\bmod \left(t^{n+1}\right)$, that is

$$
[\cdot, \cdot]_{t}=[\cdot, \cdot]+\sum_{1 \leq i \leq n} c_{i}(\cdot, \cdot) t^{i} \text { and } s_{t}(\cdot)=s(\cdot)+\sum_{1 \leq i \leq n} \mathfrak{p}_{i}(\cdot) t^{i}
$$

Afterwards, one tries to extend a deformation of order n to a deformation of order $n+1$. All obstructions are cohomological, as we will see.

Theorem 5. Let $(\mathfrak{g},[\cdot, \cdot], s, \alpha)$ be a Hom-Lie superalgebra in characteristic 2 and $\left(\mathfrak{g}_{t},[\cdot, \cdot]_{t}, s_{t}, \alpha\right)$ be a deformation. Assume that $\left(c_{1}, \mathfrak{p}_{1}\right) \neq(0,0)$. Then:
(i) $\left(c_{1}, \mathfrak{p}_{1}\right)$ is a two-cocycle, i.e., $\left(c_{1}, \mathfrak{p}_{1}\right) \in Z_{\alpha}^{2}(\mathfrak{g} ; \mathfrak{g})$.
(ii) For $n>1$, consider the following maps:

$$
\begin{aligned}
& C_{n}(x, y, z):=\sum_{\substack{i+j=n \\
i, j<n}} c_{i}\left(c_{j}(x, y), \alpha(z)\right)+\circlearrowleft(x, y, z), \text { for all } x, y, z \in \mathfrak{g}, \\
& Q_{n}(x, y):=\sum_{\substack{i+j=n \\
i, j<n}} c_{i}\left(\mathfrak{p}_{j}(x), \alpha(y)\right)+\sum_{\substack{i+j=n \\
i, j<n}} c_{i}\left(c_{j}(x, y), \alpha(x)\right), \text { for all } x \in \mathfrak{g}_{\overline{1}} \text { and } y \in \mathfrak{g} .
\end{aligned}
$$

A deformation of order $n-1$ can be extended to a deformation of order n if and only there exists $\left(c_{n}, \mathfrak{p}_{n}\right)$:

$$
\left(C_{n}, Q_{n}\right)=\mathfrak{d}_{\alpha}^{2}\left(c_{n}, \mathfrak{p}_{n}\right)
$$

Proof. (i) Checking that c_{1} satisfies the condition (34) is routine; see [10]. Let us deal with the squaring s_{t}. We have

$$
\begin{align*}
& {\left[s_{t}(x), \alpha(y)\right]_{t}=\left[s(x)+\sum_{i \geq 1} \mathfrak{p}_{i}(x) t^{i}, \alpha(y)\right]_{t}} \\
& =[s(x), \alpha(y)]+\sum_{i \geq 1} c_{i}(s(x), \alpha(y)) t^{i}+\sum_{i \geq 1}\left[\mathfrak{p}_{i}(x), \alpha(y)\right] t^{i}+\sum_{i, j \geq 1} c_{j}\left(\mathfrak{p}_{i}(x), \alpha(y)\right) t^{i+j} . \tag{36}
\end{align*}
$$

On the other hand,

$$
\begin{align*}
{\left[\alpha(x),[x, y]_{t}\right]_{t}=} & {\left[\alpha(x),[x, y]+\sum_{i \geq 1} c_{i}(x, y) t^{i}\right]_{t} } \\
= & {[\alpha(x),[x, y]]+\sum_{i \geq 1} c_{i}(\alpha(x),[x, y]) t^{i}+\sum_{i \geq 1}\left[\alpha(x), c_{i}(x, y)\right] t^{i}+} \tag{37}\\
& +\sum_{i, j \geq 1} c_{i}\left(\alpha(x), c_{j}(x, y)\right) t^{i+j} .
\end{align*}
$$

Collecting the coefficient of t in the condition $\left[s_{t}(x), \alpha(y)\right]_{t}=\left[\alpha(x),[x, y]_{t}\right]_{t}$, we obtain

$$
c_{1}(s(x), \alpha(y))+\left[\alpha(y), \mathfrak{p}_{i}(x)\right]+c_{1}(\alpha(x),[x, y])+\left[\alpha(x), c_{1}(x, y)\right]=0
$$

which corresponds to Condition (35). Therefore, $\left(c_{1}, \mathfrak{p}_{1}\right)$ is a two-cocycle on \mathfrak{g} with values in the adjoint representation.
(ii) Let us first show that the pair $\left(C_{n}, Q_{n}\right)$ is a cochain in $X C^{3}(\mathfrak{g}, \mathfrak{g})$. Indeed,

$$
\begin{aligned}
& Q_{n}\left(x_{1}+x_{2}, y\right)=\sum_{i, j} c_{i}\left(\mathfrak{p}_{j}\left(x_{1}+x_{2}\right), \alpha(y)\right)+c_{i}\left(c_{j}\left(x_{1}+x_{2}, y\right), \alpha\left(x_{1}+x_{2}\right)\right) \\
& =\sum_{i, j} c_{i}\left(\mathfrak{p}_{j}\left(x_{1}\right)+\mathfrak{p}_{j}\left(x_{2}\right)+c_{j}\left(x_{1}, x_{2}\right), \alpha(y)\right)+c_{i}\left(c_{j}\left(x_{1}, y\right)+c_{j}\left(x_{2}, y\right), \alpha\left(x_{1}\right)+\alpha\left(x_{2}\right)\right) \\
& =Q_{n}\left(x_{1}, y\right)+Q_{n}\left(x_{2}, y\right)+\sum_{i, j}\left(c_{i}\left(c_{j}\left(x_{1}, x_{2}\right), \alpha(y)\right)+c_{i}\left(c_{j}\left(x_{1}, y\right), \alpha\left(x_{2}\right)\right)+c_{i}\left(c_{j}\left(x_{2}, y\right), \alpha\left(x_{1}\right)\right)\right) \\
& =Q_{n}\left(x_{1}, y\right)+Q_{n}\left(x_{2}, y\right)+C_{n}\left(x_{1}, x_{2}, y\right) .
\end{aligned}
$$

Collecting the coefficients of t^{n} in (34) leads to $C_{n}=d_{\alpha}^{2} c_{n}$; see [10]. Let us deal with the squaring. Consider the coefficient of t^{n} in the condition $\left[s_{t}(x), \alpha(y)\right]_{t}=\left[\alpha(x),[x, y]_{t}\right]_{t}$, and using Equations (36) and (37), we obtain (for all $x \in \mathfrak{g}_{\overline{1}}$ and $y \in \mathfrak{g}$):

$$
\begin{aligned}
c_{n}(s(x), \alpha(y))+\left[\mathfrak{p}_{n}(x), \alpha(y)\right]+\sum_{\substack{i+j=n \\
i, j<n}} c_{j}\left(\mathfrak{p}_{i}(x), \alpha(y)\right)= & c_{n}(\alpha(x),[x, y])+\left[\alpha(x), c_{n}(x, y)\right] \\
& +\sum_{\substack{i+j=n \\
i, j<n}} c_{i}\left(\alpha(x), c_{j}(x, y)\right) .
\end{aligned}
$$

Let us rewrite this expression. We obtain

$$
d_{\alpha}^{2} \mathfrak{p}_{n}(x, y)=\sum_{\substack{i+j=n \\ i, j<n}} c_{i}\left(\alpha(x), c_{j}(x, y)\right)+\sum_{\substack{i+j=n \\ i, j<n}} c_{j}\left(\mathfrak{p}_{i}(x), \alpha(y)\right) .
$$

Therefore, $\left(C_{n}, Q_{n}\right)=\left(d_{\alpha}^{2} c_{n}, d_{\alpha}^{2} \mathfrak{p}_{n}\right)=\mathfrak{d}_{\alpha}^{2}\left(c_{n}, \mathfrak{p}_{n}\right)$.
Now, we discuss equivalent deformations.
Definition 5. Let $(\mathfrak{g},[\cdot, \cdot], s, \alpha)$ be a Hom-Lie superalgebra in characteristic 2. Let $\left(\mathfrak{g}_{t},[\cdot, \cdot]_{t}, s_{t}, \alpha\right)$ and $\left(\tilde{\mathfrak{g}}_{t},[\cdot, \cdot]_{t}, \tilde{s}_{t}, \alpha\right)$ be two deformations of \mathfrak{g}, such that $[. \tilde{\sim} \cdot]_{0}=[\cdot, \cdot]_{0}=[\cdot, \cdot]$ and $\tilde{s}_{0}=s_{0}=s$. We say that the two deformations \mathfrak{g}_{t} and $\tilde{\mathfrak{g}}_{t}$ are equivalent if there exists a $\mathbb{K}[[t]]$-linear map $\tau: \mathfrak{g}_{t} \rightarrow \tilde{\mathfrak{g}}_{t}$ of the form $\tau(a)=\operatorname{id}_{\mathfrak{g}}(a)+\sum_{i \geq 1} \tau_{i}(a) t^{i}$ for all $a \in \mathfrak{g}$, which is an isomorphism of the Hom-Lie superalgebras.

Theorem 6. Two one-parameter formal deformations \mathfrak{g}_{t} and $\tilde{\mathfrak{g}}_{t}$ of \mathfrak{g} given by the collections (c, \mathfrak{p}) and $(\tilde{c}, \tilde{\mathfrak{p}})$ are equivalent through an isomorphism of the form $\tau=\operatorname{id}_{\mathfrak{g}}+\sum_{i \geq 1} t^{i} \tau_{i}$ if and only if τ links (c, \mathfrak{p}) and $(\tilde{c}, \tilde{\mathfrak{p}})$ by the following formulae (for all $n>0)$:

$$
\begin{equation*}
\sum_{i+j=n} \tau_{i}\left(\tilde{c}_{j}(x, y)\right)=\sum_{i+j+k=n} c_{i}\left(\tau_{j}(x), \tau_{k}(y)\right), \quad \text { for all } x, y \in \mathfrak{g} \tag{38}
\end{equation*}
$$

and $\left(\right.$ for all $\left.x \in \mathfrak{g}_{\overline{1}}\right)$:

$$
\begin{equation*}
\sum_{i+j=n} \tau_{i}\left(\tilde{\mathfrak{p}}_{j}(x)\right)=\sum_{i+j=n} c_{i}\left(x, \tau_{j}(x)\right)+\sum_{2 i+j=n} \mathfrak{p}_{j}\left(\tau_{i}(x)\right)+\sum_{\substack{u+v+j=n \\ 1 \leq u<v \\ 1 \leq j}} c_{j}\left(\left[\tau_{u}(x), \tau_{v}(x)\right]\right) \tag{39}
\end{equation*}
$$

In particular, if $n=1$, we obtain

$$
\begin{aligned}
& \tilde{c}_{1}(x, y)=c_{1}(x, y)+\tau_{1}([x, y])+\left[x, \tau_{1}(y)\right]+\left[y, \tau_{1}(x)\right], \quad \text { for all } x, y \in \mathfrak{g}, \\
& \tilde{\mathfrak{p}}_{1}(x)=\mathfrak{p}_{1}(x)+\tau_{1}(s(x))+\left[x, \tau_{1}(x)\right], \text { for all } x \in \mathfrak{g}_{\overline{1}} .
\end{aligned}
$$

Hence, $\left(\tilde{c}_{1}, \tilde{\mathfrak{p}}_{1}\right)$ and $\left(c_{1}, \mathfrak{p}_{1}\right)$ are in the same cohomology class.
Proof. Checking Equation (38) is routine; see [10]. Let us check Equation (39).
We have

$$
\begin{aligned}
& \tau\left(\tilde{s}_{t}(x)\right)=\tau\left(s(x)+\sum_{i \geq 1} \tilde{\mathfrak{p}}_{i}(x) t^{i}\right)=s(x)+\sum_{i \geq 1} \tilde{\mathfrak{p}}_{i}(x) t^{i}+\sum_{i, j \geq 1} \tau_{j}\left(\tilde{\mathfrak{p}}_{i}(x)\right) t^{i+j}+\sum_{j \geq 1} \tau_{j}(s(x)) t^{j} \\
& =\sum_{i, j \geq 0} \tau_{j}\left(\tilde{\mathfrak{p}}_{i}(x)\right) t^{i+j}
\end{aligned}
$$

On the other hand, we obtain

$$
\begin{aligned}
s_{t}(\tau(x))= & s\left(x+\sum_{i \geq 1} \tau_{i}(x) t^{i}\right)+\sum_{i \geq 1} \mathfrak{p}_{i}\left(x+\sum_{i \geq 1} \tau_{i}(x) t^{i}\right) t^{j} \\
= & s(x)+\sum_{i \geq 1} s\left(\tau_{i}(x)\right) t^{2 i}+\sum_{i \geq 1}\left[x, \tau_{i}(x)\right] t^{i}+\sum_{i \geq 1} \mathfrak{p}_{j}\left(x+\sum_{i \geq 1} \tau_{i}(x) t^{i}\right) t^{j} \\
= & s(x)+\sum_{i \geq 1} s\left(\tau_{i}(x)\right) t^{2 i}+\sum_{i \geq 1}\left[x, \tau_{i}(x)\right] t^{i}+\sum_{i \geq 1} \mathfrak{p}_{j}(x) t^{j}+\sum_{i \geq 1} \mathfrak{p}_{j}\left(\tau_{i}(x)\right) t^{2 i+j} \\
& +\sum_{i, j \geq 1} c_{j}\left(x, \tau_{i}(x)\right) t^{i+j}+\sum_{1 \leq j} \sum_{1 \leq u<v} c_{j}\left(\tau_{u}(x), \tau_{v}(x)\right) t^{j+u+v} \\
= & \sum_{i, j \geq 0} \mathfrak{p}_{j}\left(\tau_{i}(x)\right) t^{2 i+j}++\sum_{i, j \geq 0} c_{j}\left(x, \tau_{i}(x)\right) t^{i+j}+\sum_{1 \leq j} \sum_{1 \leq u<v} c_{j}\left(\tau_{u}(x), \tau_{v}(x)\right) t^{j+u+v}
\end{aligned}
$$

The result follows by identification.
As a consequence, we have that, when the second cohomology group is trivial, the Lie superalgebra in characteristic 2 has no non-trivial deformation. Such Lie superalgebras in characteristic 2 are called rigid.

Corollary 2. Infinitesimal deformations over $\mathbb{K}[[t]] /\left(t^{2}\right)$ are classified by element (c, \mathfrak{p}) of the cohomology group $\mathrm{H}_{\alpha}^{2}(\mathfrak{g} ; \mathfrak{g})$, where c is even and $\operatorname{Im}(\mathfrak{p}) \subseteq \mathfrak{g}_{0}$.

Author Contributions: Conceptualization, S.B. and A.M.; methodology, S.B. and A.M.; software, S.B. and A.M.; validation, S.B. and A.M.; formal analysis, S.B. and A.M.; investigation, S.B. and A.M.; resources, S.B. and A.M.; data curation, S.B. and A.M.; writing-original draft preparation, S.B. and A.M.; writing-review and editing, S.B. and A.M.; visualization, S.B. and A.M.; supervision, S.B. and A.M.; project administration, S.B. and A.M.; funding acquisition, S.B. All authors have read and agreed to the published version of the manuscript.

Funding: S.B. was supported by the grant NYUAD-065.
Data Availability Statement: Data are contained within the article.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bouarroudj, S.; Grozman, P.; Leites, D. Classification of finite-dimensional modular Lie superalgebras with indecomposable Cartan matrix. SIGMA Symmetry Integrability Geom. Methods Appl. 2009, 5, 63. [CrossRef]
2. Bouarroudj, S.; Lebedev, A.; Leites, D.; Shchepochkina, I. Classifications of simple Lie superalgebras in characteristic 2. Int. Math. Res. Not. 2023, 1, 54-94. [CrossRef]
3. Krutov, A.; Lebedev, A. On gradings modulo 2 of simple Lie algebras in characteristic 2. SIGMA Symmetry Integr. Geom. Methods Appl. 2018, 14, 130. [CrossRef]
4. Lebedev, A. Analogs of the orthogonal, Hamiltonian, Poisson, and contact Lie superalgebras in characteristic 2. J. Nonlinear Math. Phys. 2010, 17, 217-251. [CrossRef]
5. Chaichian, M.; Kulish, K.; Lukierski, J. q-Deformed Jacobi identity, q-oscillators and q-deformed infinite-dimensional algebras. Phys. Lett. B 1990, 237, 401-406. [CrossRef]
6. Hartwig, J.T.; Larsson, D.; Silvestrov, S. Deformations of Lie algebras using σ-derivations. J. Algebra 2006, 295, 314-361. [CrossRef]
7. Larsson, D.; Silvestrov, S.D. Quasi-hom-Lie algebras, central extensions and 2-cocycle-like identities. J. Algebra 2005, 288, 321-344. [CrossRef]
8. Larsson, D.; Silvestrov, S. Graded quasi-Lie algebras. Czech. J. Phys. 2005, 55, 1473-1478. [CrossRef]
9. Ammar, F.; Makhlouf, A. Hom-Lie superalgebras and Hom-Lie admissible superalgebras. J. Algebra 2010, 324, 1513-1528. [CrossRef]
10. Ammar, F.; Makhlouf, A.; Saadaoui, N. Cohomology of Hom-Lie superalgebras and q-deformed Witt superalgebra. Czechoslovak Math. J. 2013, 63, 721-761. [CrossRef]
11. Albuquerque, H.; Barreiro, E.; Calderón, A.J.; Sànchez, J.M. On split regular Hom-Lie superalgebras. J. Geom. Phys. 2018, 128, 1-11. [CrossRef]
12. Hou, Y.; Tang, L.; Chen, L. Product and complex structures on hom-Lie superalgebras. Comm. Algebra 2021, 49, 3685-3707. [CrossRef]
13. Bahturin, Y.A.; Mikhalev, A.A.; Petrogradsky, V.M.; Zaicev, M.V. Infinite-Dimensional Lie Superalgebras. In De Gruyter Expositions in Mathematics Book 7; Walter de Gruyter \& Co.: Berlin, Germany, 1992; 250p.
14. Garcia-Delgado, R.; Salgado, G.; Sanchez-Valenzuela, O.A. On 3-dimensional complex Hom-Lie algebras. J. Algebra 2020, 555, 361-385. Corrigendum in J. Algebra 2020, 562, 286-289. [CrossRef]
15. Li, X.; Li, Y. Classification of 3-dimensional multiplicative Hom-Lie algebras. J. Xinyang Norm. Univ. Nat. Sci. Ed. 2012, 25, 455-475.
16. Makhlouf, A.; Silvestrov, S.D. Hom-algebra structures. J. Gen. Lie Theory Appl. 2008, 2, 51-64. [CrossRef]
17. Ongong'a, E.; Richter, J.; Silvestrov S. Classification of 3-dimensional Hom-Lie algebras. IOP Conf. Ser. J. Physics Conf. Ser. 2019, 1194, 012084. [CrossRef]
18. Ongong'a, E.; Richter, J. Silvestrov, S. Classification of Low-Dimensional Hom-Lie Algebras, Classification of Low-Dimensional Hom-Lie Algebras. In Algebraic Structures and Applications, SPAS 2017; Silvestrov, S., Malyarenko, A., Rancic, M., Eds.; Springer Proceedings in Mathematics \& Statistics; Springer: Cham, Switzerland, 2020; Volume 317. [CrossRef]
19. Remm, E. 3-Dimensional Skew-symmetric Algebras and the Variety of Hom-Lie Algebras. Algebra Colloq. 2018, 25, 547-566. [CrossRef]
20. Wang, C.; Zhang, Q.; Wei, Z.; A classification of low dimensional multiplicative Hom-Lie superalgebras. Open Math. 2016, 14, 613-628. [CrossRef]
21. Bouarroudj, S.; Grozman, P.; Krutov, A.; Leites, D. Irreducible modules over exceptional modular Lie superalgebras with indecomposable Cartan matrix. In preparation.
22. Sheng, Y.; Xiong, Z. On Hom-Lie algebras, Linear and Multilinear. Algebra 2015, 63, 2379-2395.
23. Jacobson, N. Lie Algebras; Interscience: New York, NY, USA, 1962.
24. Guan, B.; Chen L. Restricted hom-Lie algebras. Hacet. J. Math. Stat. 2015, 44, 823-837. [CrossRef]
25. Yau, D. Hom-algebras and homology. J. Lie Theory 2009, 19, 409-421.
26. Bouarroudj, S.; Grozman, P.; Lebedev, A.; Leites, D. Derivations and central extensions of simple modular Lie algebras and superalgebras. SIGMA Symmetry Integr. Geom. Methods Appl. 2023, 19, 1858.
27. Fuks, D. Cohomology of Infinite Dimensional Lie Algebras; Consultants Bureau: New York, NY, USA, 1986.
28. Tripathy, K.C.; Patra, M.K.; Cohomology theory and deformations of \mathbb{Z}_{2}-graded Lie algebras. J. Math. Phys. 1990, 31, 2822. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

[^0]: Copyright: © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

