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Abstract: In the paper, we iteratively solve a scalar nonlinear equation f (x) = 0, where f ∈ C(I,R),
x ∈ I ⊂ R, and I includes at least one real root r. Three novel two-step iterative schemes equipped
with memory updating methods are developed; they are variants of the fixed-point Newton method.
A triple data interpolation is carried out by the two-degree Newton polynomial, which is used
to update the values of f ′(r) and f ′′(r). The relaxation factor in the supplementary variable is
accelerated by imposing an extra condition on the interpolant. The new memory method (NMM) can
raise the efficiency index (E.I.) significantly. We apply the NMM to five existing fourth-order iterative
methods, and the computed order of convergence (COC) and E.I. are evaluated by numerical tests.
When the relaxation factor acceleration technique is combined with the modified Džunić’s memory
method, the value of E.I. is much larger than that predicted by the paper [Kung, H.T.; Traub, J.F. J.
Assoc. Comput. Machinery 1974, 21]. for the iterative method without memory.

Keywords: nonlinear equation; two-step iterative schemes; new memory updating method; relaxation
factor; supplementary variable
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1. Introduction

Three novel two-step iterative schemes with memory will be proposed to solve a given
scalar nonlinear equation:

f (x) = 0, f ∈ C(I,R), x ∈ I ⊂ R, (1)

where I is an interval to include the real solution of f = 0.
For iteratively solving Equation (1),

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, . . . (2)

is a famous Newton method (NM). Obviously, for the Newton method, f (x) is required
to be differentiable, even though the NM is still a popular iterative method to solve
Equation (1), owing to its simplicity.

From Equation (2), we can define the following Newton iteration function:

N (x) = x − f (x)
f ′(x)

. (3)

It follows that

N ′(x) =
f (x) f ′′(x)

f ′(x)2 . (4)
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The critical point of the mapping N (x) has two sources: one is the root of f (x) = 0
and another is the zero point of f ′′(x) = 0, which causes N ′(x) = 0. When the iteration
tends to the zero point of f ′′(x) = 0, the NM no longer converges to the real solution of
f (x) = 0. For the function f (x) = x3 − 2x + 2 = 0, as an example, we have

N (x) = x − f (x)
f ′(x)

=
2x3 − 2
3x2 − 2

. (5)

It follows that
N (0) = 1, N (1) = 0. (6)

Because of f ′′(0) = 0 and N (1) = 0, if the initial point x0 is located near 0 and 1, the NM
does not converge to the true solution r = −1.769292354238631 of x3 − 2x + 2 = 0.

In summary, the NM possesses some drawbacks, such as sensitiveness to the initial
guess, dividing by a nearly zero value in the denominator, and nonconvergence near to the
critical values which are not the roots of f (x) = 0. In order to overcome these difficulties,
we propose the following perturbation of the Newton method. Mathematically, Equation (1)
can be written as

x f ′(x)− αx f (x) = x f ′(x)− (1 + αx) f (x), (7)

where α = f ′′(r)/(2 f ′(r)) is determined in [1]. By canceling x f ′(x) and αx f (x) on both
sides of

x f ′(x)− αx f (x) = x f ′(x)− αx f (x)− f (x), (8)

we can achieve
− f (x) = 0,

which is equivalent to Equation (1).
From Equation (8):

[ f ′(xn)− α f (xn)]xn+1 = xn f ′(xn)− αxn f (xn)− f (xn), (9)

which upon dividing both sides by f ′(xn)− α f (xn) preceding xn+1, yields

xn+1 = xn −
f (xn)

f ′(xn)− α f (xn)
. (10)

The iterative scheme (10) was developed to be a one-step continuation Newton-like
method [2], and it was used as the first step in the multistep iterative schemes in [3–5]. Some
dynamical analysis of Equation (10) can be seen in [6,7]. When f ′(xn) = 0, Equation (10) is
still applicable, but Equation (2) is a failure. As pointed out by Wu [8], Equation (10) has
some merits over the NM.

The following second-order boundary value problem (BVP) demonstrates the useful-
ness of Equation (1):

u′′(y)− 3u′(y) + 2u(y) = 0, y ∈ (0, 1), (11)

u(0) = 1, u(1) = 0. (12)

Upon letting
u(y) = v(y)− (x + 1)y + 1, (13)

and using v(0) = 0 and v(1) = x to render u(0) = 1 and u(1) = 0 automatically, we can
transform Equations (11) and (12) to an initial value problem of the following ordinary
differential equation (ODE):

v′′(y)− 3v′(y) + 2v(y)− 2(x + 1)y + 3(x + 1) + 2 = 0, (14)

v(0) = 0, v′(0) = 0; (15)
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the solution is endowed with an unknown value x, given by

v(y) = (3 + x)ey − (x + 2)e2y + (x + 1)y − 1. (16)

If a real value exists for x, then we have a real solution for v(y). By imposing v(1) = x,

(3 + x)e − (x + 2)e2 + x + 1 − 1 = x (17)

results to the equation f (x) = (3 + x)e − (x + 2)e2 = 0 for determining x; then, by
Equations (16) and (13), the exact solution u(y) can be obtained.

Sometimes f (x) is obtained from a nonlinear ODE, rather than the linear ODE in
Equation (11). We further consider a nonlinear BVP:

u′′(y) =
3
2

u2(y), y ∈ (0, 1), (18)

u(0) = 4, u(1) = 1. (19)

One assumes an initial value u′(0) = x with x being unknown and integrates Equation (18) with
the initial conditions u(0) = 4 and u′(0) = x. The nonlinear equation f (x) = u(1, x)− 1 = 0
for satisfying the right-end boundary condition in Equation (19) is derived. Since u(1, x) is
an implicit function of x, the function f (x) cannot be written out explicitly. In this nonlinear
problem, when we apply the NM to solve f (x) = u(1, x)− 1 = 0, we encounter a difficulty
to calculate f ′(x). Recently, Liu et al. [9] proposed a single-step memory-dependent method
to solve f (x) = 0 by a Lie-symmetry formulation of Equation (18).

Consider the following one [10]:

Q̇(t) = keq̇(t)− kex
Q0

Q(t), (20)√
(Q0 − ∥Q(t)∥)2 + x2 − (Q0 − ∥Q(t)∥)− x = 0, (21)

which simulates the time-varying relation between stress Q and strain q of an elastic–
perfectly plastic material. In the above, ke is the elastic modulus and Q0 is the yield stress
of material. We need to solve the nonlinear scalar equation f (x) =

√
(Q0 − ∥Q∥)2 + x2 −

(Q0 − ∥Q∥)− x = 0 to determine x, but Q is governed by a system of first-order ODEs
being coupled to x in Equation (20). The difficulty is exhibited by using the NM to solve
Equation (21), where the transition from elastic phase x = 0 to plastic phase x > 0 is
not smooth.

Many engineering problems and adapted mathematical methods have been proposed
for solving nonlinear equations, e.g., a weighted density functional theory for an inhomoge-
neous 12-6 Lennard–Jones fluid and the Euler–Lagrange equation derived from the density
functional theory of inhomogeneous fluids [11], the governing mathematical equations
defining the physical features of the first-grade viscoelastic nanofluid flow and heat transfer
models [12], and a specialized nonlinear Fredholm integral equation in the turbo-reactors
industry [13].

If one attempts to obtain an approximate analytical solution of the nonlinear BVP,
the functional iteration method may be a useful tool. A conventional functional iteration
method is the Picard iteration method; however, it has a major disadvantage because of
its slow convergence. In order to improve the convergence property, He [14,15] proposed
the variational iteration method, which is a modification of the Picard iteration method
for the second-order nonlinear initial value problem. Recently, Wang et al. [16] developed
an accurate predictor–corrector Picard iteration method for solving nonlinear problems.
By the Newton–Kurchatov method for solving nonlinear equations, Argyros et al. [17]
addressed a semilocal analysis and derived the weaker sufficient semilocal convergence
criteria, and Argyros and Shakhno [18] employed a local convergence in the Banach space
valued equations.
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The drawbacks and limitations of the NM as just mentioned above induced a lot of
studies that continue to the present and render some modifications of the Newton method,
like the Adomian decomposition method [19], decomposition method [20], the arithmetic
mean quadrature method [21], contra-harmonic mean and quadrature method [22], power-
means variants [23], modified homotopy perturbation method [24], generating function
method [25], perturbation of Newton’s method [26], and the variants of Bawazir’s iterative
methods [27].

To improve the low-order convergence of the one-step iterative scheme and to enhance
the convergence order, many multistep iterative schemes were developed. One can refer
to [28,29] for many discussions of the multistep iterative methods. According to the
conjecture of Kung and Traub [30], the upper bound of the efficiency index (E.I.) for
the optimal iterative scheme with m evaluations of functions is E.I. = 21−1/m < 2. For
m = 2, the NM is an optimal iterative scheme with E.I. = 1.414. With m = 3, the Halley
method is not the optimal one with a low-value E.I. = 1.44225. The conjecture of Kung
and Traub [30] is only applicable to the integer-order convergence scheme. The computed
order of convergence (COC) proposed in [21] can be adopted to evaluate the convergence
order of the iterative scheme. In this paper, we extend the Newton method by the idea of
perturbations, which involve some optimal parameters determined by the convergence
analysis. The COC of these two-step iterative schemes is larger than p = 2m−1.

Liu et al. [31] verified that the following iterative scheme:

xn+1 = xn −
f (xn)

c + d f (xn)
(22)

is of third-order convergence, if c = f ′(r) and d = f ′′(r)/(2 f ′(r)). By using the accelerating
parameters,we can speed up the convergence. A more detailed analysis of the iterative
scheme (22) can be seen in [1]. Equation (22) was addressed by Liu [32] from a two-
dimensional approach together with the splitting technique. If we take c = f ′(r) and d = 0,
Equation (22) is known to be a fixed-point Newton method:

xn+1 = xn −
f (xn)

f ′(r)
. (23)

Traub [33] developed a simple accelerating method by giving x0 and γ0:
wn = xn + γn f (xn),

xn+1 = xn − f (xn)
f [xn ,wn ]

,

γn+1 = − 1
f [xn ,xn+1]

.

(24)

By incorporating the memory of xn into account, the order of convergence can be raised.
Traub’s technique is a typical method with memory, in which the data that appeared in
the previous iteration were adopted in the iteration. For recent progress of the memory
method with accelerating parameters in the multistep iterative methods, one can refer
to [5,27,34–40]. One major goal of this paper is to develop the two-step iterative schemes
with a new memory method to determine the accelerating parameters by updating tech-
nique with the information at the current step.

2. Three New Two-Step Iterative Schemes

In 2010, Wang and Liu [41] proposed
yn = xn − f (xn)

f ′(xn)−α f (xn)
,

xn+1 = yn − f (yn)
f ′(xn)−α f (xn)

,
(25)
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which is a two-step iterative scheme based on Equation (10). The error equation is

en+1 = (α2 − 3a2α + 2a2
2)e

3
n +O(e4

n), (26)

where a2 := f ′′(r)/(2 f ′(r)) and en = xn − r. Equation (25) is a two-step iterative scheme
because it involves two variables, xn and yn, and two steps for computing xn+1; the first
step is computing yn, and then xn and yn are inserted into the second step to compute xn+1.

Wang and Zhang [42] developed a family of Newton-type two-step iterative schemes
with a memory method for solving nonlinear equations whose R-convergence order is
increased from 4 to 4.5616, 4.7913, and 5 depending on whether updating techniques are
used in the accelerating parameters. Nowadays, most memory-accelerating methods do
not take the differential term f ′(x) into the iterative schemes.

2.1. First New Two-Step Iterative Scheme

Instead of Equation (25), we consider an extension of Equation (23) to a two-step
iterative scheme: 

yn = xn − f (xn)
f ′(r)−β f (xn)

,

xn+1 = yn − f (yn)
f ′(r)−β f (xn)

,
(27)

where β is a parameter whose optimal value is to be determined. The first step is a variant
of the so-called fixed-point Newton method yn = xn − f (xn)/ f ′(r).

Theorem 1. The function f : I ⊂ R 7→ R is sufficiently differentiable on the domain I, and r ∈ I
is a simple root with f (r) = 0 and f ′(r) ̸= 0. If x0 is sufficiently close to r within the radius of
convergence, then the iterative scheme (27) for solving f (x) = 0 has fourth-order convergence:

en+1 = (a3
2 − a2a3)e4

n +O(e5
n), (28)

where the optimal value of β is given by

β = −a2 = − f ′′(r)
2 f ′(r)

. (29)

Furthermore, the error of yn reads as

en,y = yn − r = (a2
2 − a3)e3

n +O(e4
n), (30)

where a3 = f ′′′(r)/(6 f ′(r)).

Proof. According to the assumption,

en = xn − r (31)

is a small quantity; by en+1 = xn+1 − r and Equation (31):

en+1 = en + xn+1 − xn. (32)

Define

an :=
f (n)(r)
n! f ′(r)

, n = 2, . . . ; (33)

as usual,
f (xn) = f ′(r)[en + a2e2

n + a3e3
n + a4e4

n + · · · ]. (34)
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A straightforward computation renders

β f (xn)− f ′(r) = f ′(r)[−1 + βen + βa2e2
n + βa3e3

n + βa4e4
n], (35)

dn = yn − xn =
f (xn)

β f (xn)− f ′(r)
= −en + b2e2

n + b3e3
n + b4e4

n, (36)

where

b2 = −(β + a2), b3 = −(2βa2 + β2 + a3), b4 = −(βa2
2 + 3β2a2 + 2βa3 + a4). (37)

It follows from Equations (31) and (36) that

en,y = yn − r = yn − xn + xn − r = dn + en = b2e2
n + b3e3

n + b4e4
n. (38)

In terms of en,y, we can express f (yn) by

f (yn) = f ′(r)[en,y + a2e2
n,y + · · · ]

= f ′(r)[b2e2
n + b3e3

n + b4e4
n + a2(b2e2

n + b3e3
n + b4e4

n)
2 + · · · ]

= f ′(r)[b2e2
n + b3e3

n + (b4 + a2b2
2)e

4
n + · · · ].

(39)

By using the second one in Equation (27), subtracting both sides by r and from
Equations (34), (38) and (39), we can derive

en+1 = en,y − f (yn)
f ′(r)−β f (xn)

= b2e2
n + b3e3

n + b4e4
n −

b2e2
n+b3e3

n+(b4+a2b2
2)e

4
n

1−βen−βa2e2
n−βa3e3

n−βa4e4
n

= b2e2
n + b3e3

n + b4e4
n − [b2e2

n + b3e3
n + (b4 + a2b2

2)e
4
n]

×[1 + βen + βa2e2
n + (βen + βa2e2

n)
2]

= −βb2e3
n − (βb3 + a2b2

2 + βa2b2 + β2b2)e4
n +O(e5

n)

= β(β + a2)e3
n − (βb3 + a2b2

2 + βa2b2 + β2b2)e4
n +O(e5

n).

(40)

If we take β = −a2, then b2 = 0, b3 = a2
2 − a3, and then Equation (28) is derived.

If β = −a2 is taken, Equation (38) reduces to

en,y = b3e3
n + b4e4

n = (a2
2 − a3)e3

n + (2a2a3 − 2a3
2 − a4)e4

n. (41)

The proof of Theorem 1 is completed.

Notice that the error Equation (28) is the same as the Ostrowski’s two-step fourth-order
optimal iterative scheme [43]. Since Equation (27) is different from Equation (25), the error
Equation (28) is different from that in Equation (26); if α = a2, the iterative scheme (25) also
has fourth-order convergence.

2.2. Second New Two-Step Iterative Scheme

Let 
yn = xn − f (xn)

f ′(r)−β f (xn)
,

xn+1 = yn − f (yn)
f ′(r)−α f (xn)

,
(42)

where β and α are two parameters whose optimal values are to be determined.
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Theorem 2. The function f : I ⊂ R 7→ R is sufficiently differentiable on the domain I, and r ∈ I
is a simple root with f (r) = 0 and f ′(r) ̸= 0. If x0 is sufficiently close to r within the radius
of convergence, then the iterative scheme (42) with α = 0 for solving f (x) = 0 has fourth-
order convergence:

en+1 = −a2(β + a2)
2e4

n +O(e5
n). (43)

If the optimal value of β is given by

β = −a2 = − f ′′(r)
2 f ′(r)

, (44)

then the iterative scheme (42) with α = 0 has fifth-order convergence.

Proof. By using the second one in Equation (42), subtracting both sides by r and from
Equations (34), (38) and (39), we can derive

en+1 = en,y − f (yn)
f ′(r)−α f (xn)

= b2e2
n + b3e3

n + b4e4
n −

b2e2
n+b3e3

n+(b4+a2b2
2)e

4
n

1−αen−αa2e2
n−αa3e3

n−αa4e4
n

= b2e2
n + b3e3

n + b4e4
n − [b2e2

n + b3e3
n + (b4 + a2b2

2)e
4
n]

×[1 + αen + αa2e2
n + (αen + αa2e2

n)
2]

= −αb2e3
n − (αb3 + a2b2

2 + αa2b2 + α2b2)e4
n +O(e5

n)

= α(β + a2)e3
n − (αb3 + a2b2

2 + αa2b2 + α2b2)e4
n +O(e5

n).

(45)

If we take α = 0, then Equation (43) is derived after taking b2 = −(β + a2).

It is interesting that the iterative scheme (42) with α = 0 is simpler than the iterative
scheme (27), but its order of convergence is better.

2.3. Third New Two-Step Iterative Scheme

We further consider 
yn = xn − f (xn)

f ′(r)−β f (xn)
,

xn+1 = yn − f (yn)
f ′(r)−β f (yn)

.
(46)

The second-step is enhanced by using f ′(r)− β f (yn), rather than f ′(r)− β f (xn) in Equation (27).
Equation (46) is a two-step iterative scheme because it involves two variables, xn and yn, and two
steps for computing xn+1; the first step is computing yn, and then yn is inserted into the second
step to compute xn+1.

Theorem 3. The function f : I ⊂ R 7→ R is sufficiently differentiable on the domain I, and r ∈ I
is a simple root with f (r) = 0 and f ′(r) ̸= 0. If x0 is sufficiently close to r within the radius of
convergence, then the iterative scheme (46) for solving f (x) = 0 is of the fourth-order convergence:

en+1 = −(β + a2)b2
2e4

n +O(e5
n) = −(β + a2)

3e4
n +O(e5

n). (47)

If β = −a2, Equation (47) reduces to en+1 = O(e5
n). That is, the iterative scheme (46) is of the

fifth-order convergence.

Proof. By using the second one in Equation (46), subtracting both sides by r and from
Equations (38) and (39), we can derive
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en+1 = en,y − f (yn)
f ′(r)−β f (yn)

= b2e2
n + b3e3

n + b4e4
n −

b2e2
n+b3e3

n+(b4+a2b2
2)e

4
n

1−βb2e2
n−βb3e3

n−β(b4+a2b2
2)e

4
n

= b2e2
n + b3e3

n + b4e4
n − [b2e2

n + b3e3
n + (b4 + a2b2

2)e
4
n][1 + βb2e2

n + βb3e3
n]

= −(β + a2)b2
2e4

n +O(e5
n).

(48)

The proof of Theorem 3 is completed.

3. Four New Memory Methods
3.1. The First and Second New Memory Methods

The error Equation (40) is simpler than that in Equation (26). Theorem 1 indicates that
the optimal value of β is β = − f ′′(r)/(2 f ′(r)). However, because the root r is itself an
unknown value, f ′(r) and f ′′(r) are not available; they are critical parameters to enhance
the performance of the proposed two-step iterative schemes.

The memory-dependent techniques to obtain the suitable parameters’ values were
found in [34,44–48]. Let A = f ′(r) and B = −β = f ′′(r)/(2 f ′(r)). We develop a new
memory method for updating the values of A and B with the current values. In Equa-
tion (27), there are only two current values, xn and yn, which are insufficient to update
f ′′(r). Therefore, we introduce a supplementary variable obtained by the fixed point
Newton method:

wn = xn −
f (xn)

A
= xn −

f (xn)

f ′(r)
. (49)

Then, with the three data (xn, wn, yn), a second-degree Newton polynomial that is an
interpolant is given by

N2(x) = f (xn) + f [xn, wn](x − xn) + f [xn, wn, yn](x − xn)(x − wn), (50)

where

f [xn, wn] =
f (xn)− f (wn)

xn − wn
, f [xn, wn, yn] =

f [xn, wn]− f [wn, yn]

xn − yn
. (51)

It is easy to derive N2(yn) = f (yn), and

N ′
2(xn+1) = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn), N ′′

2 (xn+1) = 2 f [xn, wn, yn]. (52)

In general, N2(xn+1) ̸= f (xn+1).
The new algorithm based on Theorem 1, namely the first new memory-updating

method (FNMUM), is depicted by (i) giving x0, a0, b0, and c0 = (a0 + b0)/2 and computing
A0 and B0 by

A0 = f [a0, b0], B0 =
f (b0)− 2 f (c0) + f (a0)

2A0(c0 − a0)2 , (53)

(ii) for n = 0, 1, . . ., perform the following computations until convergence:

wn = xn −
f (xn)

An
, (54)

yn = xn −
f (xn)

An + Bn f (xn)
, (55)

xn+1 = yn −
f (yn)

An + Bn f (xn)
, (56)
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An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn), (57)

Bn+1 =
f [xn, wn, yn]

An+1
. (58)

There exist three evaluations of functions for f (xn), f (wn), and f (yn) such that the optimal
order of convergence is p = 22 = 4, and E.I. = 1.5874. The role of wn, which does not
engage in the iteration, is different from xn and yn; xn and yn are step variables used in the
iteration in Equations (55) and (56), and wn is computed from Equation (54) to provide an
extra datum used in Equations (57) and (58) to update the values of An+1 and Bn+1.

Therefore, the present parameters’ updating technique is different from the memory-
dependent accelerating techniques in [34,44–48]. In the FNMUM, no previous iteration
values of wn−1 and yn−1 were used in addition to the initial values a0 and b0. Therefore,
the new memory method can save much more computational cost than the previous
memory-accelerating technique.

The second new memory-updating method (SNMUM) based on Theorem 2 is depicted
by (i) giving x0, a0, b0, and c0 = (a0 + b0)/2 and computing A0 and B0 by

A0 = f [a0, b0], B0 =
f (b0)− 2 f (c0) + f (a0)

2A0(c0 − a0)2 , (59)

(ii) for n = 0, 1, . . ., perform the following computations until convergence:

wn = xn −
f (xn)

An
, (60)

yn = xn −
f (xn)

An + Bn f (xn)
, (61)

xn+1 = yn −
f (yn)

An
, (62)

An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn), (63)

Bn+1 =
f [xn, wn, yn]

An+1
. (64)

In the SNMUM, only the initial values a0 and b0 are guessed, and no previous iteration
values of wn−1 and yn−1 were used, which renders it more computationally cost-effective
than the previous memory-accelerating technique.

3.2. The Third New Memory Method

According to Theorem 3, the third new memory-updating method (TNMUM), is
depicted by (i) giving x0, a0, b0, and c0 = (a0 + b0)/2 and computing A0 and B0 by

A0 = f [a0, b0], B0 =
f (b0)− 2 f (c0) + f (a0)

2A0(c0 − a0)2 , (65)

(ii) for n = 0, 1, . . ., perform the following computations until convergence:

wn = xn −
f (xn)

An
, (66)

yn = xn −
f (xn)

An − Bn f (xn)
, (67)

xn+1 = yn −
f (yn)

An − Bn f (yn)
, (68)

An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn), (69)

Bn+1 =
f [xn, wn, yn]

An+1
. (70)
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Similarly, in the TNMUM, only the initial values a0 and b0 are guessed, and no previous
iteration values of wn−1 and yn−1 are used; it is quite computationally cost-effective.

3.3. The Accelerated Third New Memory Method

In the previous three new memory methods, the datum of f (xn+1) at xn+1 was not
used. We modify the supplementary variable by

wn = xn − η
f (xn)

f ′(r)
, (71)

where η is a relaxation factor to be designed.
Then, we set

N2(xn+1) = f (xn) + f [xn, wn](xn+1 − xn) + f [xn, wn, yn](xn+1 − xn)(xn+1 − wn) = f (xn+1), (72)

where N2(x) was given by Equation (50). Inserting

xn − wn = η
f (xn)

f ′(r)
(73)

into Equation (72), we can derive

f (xn) +
f ′(r)[ f (xn)− f (wn)]

η f (xn)
(xn+1 − xn)

+ 1
xn−yn

[
f ′(r)[ f (xn)− f (wn)]

η f (xn)
− f (wn)− f (yn)

xn−yn

]
= f (xn+1).

(74)

Through some manipulations we can derive

η =
f ′(r)[ f (xn)− f (wn)][(xn+1 − xn)(xn − yn) + 1]
f (xn){[ f (xn+1)− f (xn)](xn − yn) + f [wn, yn]}

, (75)

which can be used to update η.
The new algorithm based on Theorem 3 and Equations (71) and (75), namely the

accelerated third new memory-updating method (ATNMUM), is depicted by (i) giving x0,
a0, b0, c0 = (a0 + b0)/2 and η0 and computing A0 and B0 by

A0 = f [a0, b0], B0 =
f (b0)− 2 f (c0) + f (a0)

2A0(c0 − a0)2 , (76)

(ii) for n = 0, 1, . . ., perform the following computations until convergence:

wn = xn − ηn
f (xn)

An
, (77)

yn = xn −
f (xn)

An + Bn f (xn)
, (78)

xn+1 = yn −
f (yn)

An + Bn f (yn)
, (79)

An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn), (80)

Bn+1 =
f [xn, wn, yn]

An+1
, (81)

ηn+1 =
An+1[ f (xn)− f (wn)][(xn+1 − xn)(xn − yn) + 1]
f (xn){[ f (xn+1)− f (xn)](xn − yn) + f [wn, yn]}

. (82)

In Equation (46), we take the free parameter β = −Bn.
In the ATNMUM, the initial values a0, b0, and η0 are guessed, and no previous iteration

values of wn−1 and yn−1 are used; it is quite computationally cost-effective.
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In the above four iterative algorithms, FNMUM, SNMUM, TNMUM, and ATNMUM,
the function f (x) with f ∈ C(I,R) is sufficient. We suppose that the interval I includes at
least one real root. In general, the nonlinear equation f (x) = 0 may possess many roots,
which can be determined by the iterative schemes by giving different initial guesses of x0.

4. A Simple Memory Approach to Existent Iterative Schemes
4.1. The WMM Method

Wang [36] modified the Ostrowski-type method with memory for self-accelerating a
parameter λ, given by 

wn = xn − f (xn)
f ′(xn)

,

yn = wn − λ(wn − xn)2,

xn+1 = yn − f (yn)
2 f [xn ,yn ]− f ′(xn)

,

(83)

whose error equation was proven to be

en+1 = (a2 − λ)(a2
2 − a3 − a2λ)e4

n +O(e5
n). (84)

Substituting the first one into the second one in Equation (83), it is indeed a two-step
method: 

yn = xn − f (xn)
f ′(xn)

− λ
f 2(xn)
f ′(xn)2 ,

xn+1 = yn − f (yn)
2 f [xn ,yn ]− f ′(xn)

.
(85)

Upon taking B = λ = a2 to be an updating parameter, the order can be raised
by the Wang memory method (WMM), which is depicted by (i) giving x0, a0, b0, and
c0 = (a0 + b0)/2 and computing B0 by

B0 =
f (b0)− 2 f (c0) + f (a0)

2 f [a0, b0](c0 − a0)2 , (86)

(ii) perform for n = 0, 1, . . .,

wn = xn −
f (xn)

f ′(xn)
, (87)

yn = wn − Bn(wn − xn)
2, (88)

xn+1 = yn −
f (yn)

2 f [xn, yn]− f ′(xn)
, (89)

Bn+1 =
f [xn, wn, yn]

f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn)
. (90)

There exist four evaluations of functions for f (xn), f (wn), f (yn), and f ′(xn).

4.2. The ZLHMM Method

Zheng et al. [49] modified the Steffensen-type method with an accelerating parameter γ:
wn = xn + γ f (xn),

yn = xn − f (xn)
f [xn ,wn ]

,

xn+1 = yn − f (yn)
f [xn ,yn ]+(yn−xn) f [xn ,wn ,yn ]

,

(91)

whose error equation is

en+1 = (1 + f ′(r)γ)2a2(a2
2 − a3)e4

n +O(e5
n). (92)
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Let A = f ′(r) and γ = −1/A. The ZLH memory method (ZLHMM) reads as (i) giving
x0, a0, b0 and computing A0 by

A0 = f [a0, b0], (93)

(ii) for n = 0, 1, . . .,

wn = xn −
f (xn)

An
, (94)

yn = xn −
f (xn)

f [xn, wn]
, (95)

xn+1 = yn −
f (yn)

f [xn, yn] + (yn − xn) f [xn, wn, yn]
, (96)

An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn). (97)

There exist three evaluations of functions for f (xn), f (wn), and f (yn).

4.3. The CCTMM Method

Chicharro et al. [37] proposed a two-step iterative scheme:
yn = xn − f (xn)

f [xn ,wn ]
,

xn+1 = yn − H(tn)
f (yn)

f [yn ,wn ]
,

(98)

where wn = xn + γ f (xn), tn = f (yn)/ f (xn), and H(0) = H′(0) = 1, and H′′(0) < ∞. They
derived the following error equation:

en+1 = − a2

2
[1 + γ f ′(r)]2[{−6 + γ f ′(r)(H′′(0)− 2) + H′′(0)}a2

2 + 2a3]e4
n +O(e5

n). (99)

If we take γ = −1/ f ′(r), the convergence at least increases by one order.
Let A = f ′(r). The CCT memory method (CCTMM) reads as (i) giving x0, a0, b0

and computing A0 by Equation (93), and (ii) for n = 0, 1, . . .,

wn = xn −
f (xn)

An
, (100)

yn = xn −
f (xn)

f [xn, wn]
, (101)

tn =
f (yn)

f (xn)
, (102)

xn+1 = yn − H(tn)
f (yn)

f [yn, wn]
, (103)

An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn). (104)

In the numerical test, we take H(t) = 1+ t. Three evaluations of functions for f (xn), f (wn),
and f (yn) are needed.

4.4. The DMM Method

In 2013, Džunić [34] proposed a two-step iterative scheme:
yn = xn − f (xn)

f [xn ,wn ]+p f (wn)
,

xn+1 = yn − g(tn)
f (yn)

f [yn ,wn ]+p f (wn)
,

(105)

where wn = xn + γ f (xn), tn = f (yn)/ f (xn), and g(0) = g′(0) = 1, and |g′′(0)| < ∞.
Džunić [34] verified that the convergence order is at least seven when the parameters
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γ and p are accelerated by the memory-dependent technique using the third-order and
fourth-order Newton polynomials.

Here, we employ the second-order N2(x) in Equation (50) to update γ and p. Let
A = f ′(r) = −1/γ and B = −p = a2. The new Džunić memory method (DMM) reads as
(i) giving x0, a0, b0, c0 = (a0 + b0)/2 and computing A0 and B0 by Equation (53), as well
as (ii) performing, for n = 0, 1, . . .,

wn = xn −
f (xn)

An
, (106)

yn = xn −
f (xn)

f [xn, wn]− Bn f (wn)
, (107)

tn =
f (yn)

f (xn)
, (108)

xn+1 = yn − g(tn)
f (yn)

f [yn, wn]− Bn f (wn)
, (109)

An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn), (110)

Bn+1 =
f [xn, wn, yn]

An+1
. (111)

In the numerical test, we take g(t) = 1 + t. Three evaluations of functions for f (xn), f (wn),
and f (yn) are needed.

Like the accelerated third new memory method in Section 3.3, we propose a modifica-
tion of DMM (MDMM). The new memory method of MDMM reads as (i) giving x0, a0, b0,
c0 = (a0 + b0)/2, η0 and computing A0 and B0 by Equation (53), as well as (ii) performing,
for n = 0, 1, . . .,

wn = xn −
ηn f (xn)

An
, (112)

yn = xn −
f (xn)

f [xn, wn]− Bn f (wn)
, (113)

tn =
f (yn)

f (xn)
, (114)

xn+1 = yn − g(tn)
f (yn)

f [yn, wn]− Bn f (wn)
, (115)

An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn), (116)

Bn+1 =
f [xn, wn, yn]

An+1
, (117)

ηn+1 =
An+1[ f (xn)− f (wn)][(xn+1 − xn)(xn − yn) + 1]
f (xn){[ f (xn+1)− f (xn)](xn − yn) + f [wn, yn]}

. (118)

4.5. The CLBTMM Method

In 2015, Cordero et al. [50] proposed a two-step iterative scheme:
yn = xn − f (xn)

f [xn ,wn ]+λ f (wn)
,

xn+1 = yn − f (yn)
f [xn ,yn ]+(yn−xn) f [xn ,wn ,yn ]

,
(119)

where wn = xn + γ f (xn). They argued that the memory-dependent method possesses at
least seven-order convergence.
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Let A = f ′(r) = −1/γ and B = −λ = a2. The new CLBT memory method (CLBTMM)
reads as (i) giving x0, a0, b0, c0 = (a0 + b0)/2 and computing A0 and B0 by Equation (53),
as well as (ii) performing, for n = 0, 1, . . .,

wn = xn −
f (xn)

An
, (120)

yn = xn −
f (xn)

f [xn, wn]− Bn f (wn)
, (121)

xn+1 = yn −
f (yn)

f [xn, yn] + (yn − xn) f [xn, wn, yn]
, (122)

An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − xn − wn), (123)

Bn+1 =
f [xn, wn, yn]

An+1
. (124)

Three evaluations of functions for f (xn), f (wn), and f (yn) are needed.

5. Numerical Verifications of the New Memory-Updating Method

We give some examples to assess the performance of the proposed iterative methods by
the numerically computed order of convergence (COC), which is approximated by [21,51]

COC1 :=
ln |(xn+1 − r)/(xn − r)|
ln |(xn − r)/(xn−1 − r)| , COC2 :=

ln | f (xn+1)/ f (xn)|
ln | f (xn)/ f (xn−1)|

. (125)

The triple (xn+1, xn, xn−1) is the last three values. If ln |(xn+1 − r)/(xn − r)| and
ln | f (xn+1)/ f (xn)| are not computable due to xn+1 = r and f (xn+1) = 0, we can shift
the triple forward to (xn, xn−1, xn−2).

To save space, we test three examples by

f1(x) = exp(x2 + 7x − 30)− 1, (126)

f2(x) = (x − 1)(x6 + 1/x6 + 4) sin(x2), (127)

f3(x) = (x − 1)3 − 1. (128)

The corresponding solutions are, respectively, r1 = 3, r2 = 1, and r3 = 2.
As noticed by Džunić [34], f2(x) shows a nontrivial behavior since two relatively close

roots, r = −1.772453850905516 and r = 1.772453850905516, appear, and a singularity is
close to the sought root r = 1. In practice, we solved f2(x) = 0 by the Newton method.
With x0 = 0.6, the NM spent 12 iterations to find r = 1; with x0 = ±2; the NM does not
converge to r = ±1.772453850905516 within 500 iterations.

With three evaluations of functions, the optimal order of convergence of the two-step
iterative scheme without memory is p = 4 and E.I. = 1.5874. In Table 1, we list the number
of iterations (NI) to satisfy fi = 0, i = 1, 2, 3, where, as expected, the value of E.I. is near
or larger than 1.5874. The roots of f3 = 0 are triple; however, FNMUM can still quickly
find the solution x = 2. Through the new memory-updating method, the convergence is
significantly increased by several orders.

Table 1. The NI, COC1, COC2, and E.I. for the first new memory-updating method (FNMUM).

Functions x0 [a0, b0] NI COC1 COC2 E.I. = (COC1)1/3

f1 2.9 [2.9, 3.1] 5 3.973 4.095 1.584

f2 0.5 [0.5, 1.5] 4 5.274 5.295 1.741

f3 1.5 [0.5, 1] 5 4.566 4.621 1.659



Mathematics 2024, 12, 581 15 of 21

Compared with the Newton method mentioned above, for f2(x) = 0, the FNMUM
with x0 = 0.6 spent five iterations to find r = 1; with x0 = −2, the FNMUM spent
eight iterations for r = −1.772453850905516; and with x0 = 2, it took six iterations for
r = 1.772453850905516.

For f1(x) = 0, the exact values of f ′(r) = 13 and f ′′(r) = 171 are obtained; hence, we
can estimate the errors of parameters’ values by ERR1 = |An − 13| and
ERR2 = |Bn − 171/26| = |Bn − 6.576923076923077|. Table 2 demonstrates that An and
Bn tended to exact ones.

Table 2. The values of An and Bn tend to exact ones.

n 1 2 3 4

ERR1 4.15 3.45 0.259 1.55 × 10−4

ERR2 0.802 2.86 1.85 × 10−2 4.69 × 10−2

In Table 3, we list the number of iterations (NI) to satisfy fi = 0, i = 1, 2, 3, where the
value of E.I. is near or larger than 1.5874. As expected, the second new memory-updating
method significantly increased the COC by more than 4.7 for f1(x) = 0 and f2(x) = 0.
But for f3(x) = 0, The SNMUM is weak.

Table 3. The NI, COC1, COC2, and E.I. for the second new memory-updating method (SNMUM).

Functions x0 [a0, b0] NI COC1 COC2 E.I. = (COC1)1/3

f1 2.9 [2.8, 3.1] 4 4.711 4.713 1.676

f2 0.5 [0.5, 1.5] 4 5.439 5.459 1.759

f3 1.5 [1.5, 2.5] 5 3.627 3.692 1.536

In Table 4, we list the results for the third new memory-updating method (TNMUM).
As expected, the COCs are greater than four for f2(x) = 0 and f3(x) = 0.

Table 4. The NI, COC1, COC2, and E.I. for the third new memory-updating method (TNMUM).

Functions x0 [a0, b0] NI COC1 COC2 E.I. = (COC1)1/3

f1 2.9 [2.95, 3.01] 5 3.677 3.794 1.544

f2 0.5 [−0.5, 1.4] 4 4.313 4.334 1.628

f3 1.5 [−0.5, 1.5] 5 4.839 5.015 1.691

In Table 5, we list the results for the accelerated third new memory-updating method
(ATNMUM). As expected, the COCs are larger than those in Table 3.

Table 5. The NI, COC1, COC2, and E.I. for the accelerated third new memory-updating meth-
od (ATNMUM).

Functions x0 [A0, B0] η0 NI COC1 COC2 E.I. = (COC1)1/3

f1 2.9 [13.97, 6.35] −2 4 6.913 6.959 1.905

f2 0.5 [14.44,−0.33] 1.5 4 10.296 10.354 2.176

f3 2.5 [1.75, 0.86] 2 5 5.635 5.625 1.780

We can estimate the errors by ERR1=|An − 13| and ERR2=|N2(xn)− f (xn)| for the
solution of f1(x) = 0 by using the ATNMUM. Table 6 demonstrates that An tends to an
exact one, and N2(xn) quickly approaches to f (xn) owing to the design of the relaxation
factor in Equation (75).
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Table 6. The values of An and N2(xn) tend to exact ones.

n 1 2 3

ERR1 4.22 7.82 × 10−2 1.60 × 10−4

ERR2 5.72 × 10−2 2.92 × 10−6 4.43 × 10−10

In Table 7, we list the number of iterations (NI) for solving fi = 0, i = 1, 2, 3 by the
WMM, of which four evaluations of functions are required; hence, we take E.I. = (COC1)1/4.
The good performance of the new memory method can be seen, which raises COC=4 to
values in the range [5.592, 7.576].

Table 7. The NI, COC1, COC2, and E.I. for the WMM method.

Functions x0 [a0, b0] NI COC1 COC2 E.I. = (COC1)1/4

f1 2.9 [2.9, 3.2] 5 6.447 6.369 1.594

f2 0.6 [0.5, 1.5] 3 5.592 4.459 1.538

f3 1.5 [0.5, 1] 5 7.576 6.796 1.659

In Table 8, we list the number of iterations (NI) for solving fi = 0, i = 1, 2, 3 by the
ZLHMM method.

Table 8. The NI, COC1, COC2, and E.I. for the ZLHMM method.

Functions x0 [a0, b0] NI COC1 COC2 E.I. = (COC1)1/3

f1 2.9 [2.8, 3.2] 4 5.388 7.291 1.753

f2 0.6 [0.6, 2.5] 6 5.854 5.754 1.802

f3 1.5 [0.5, 1] 4 5.011 4.743 1.711

In Table 9, we list the number of iterations (NI) to satisfy fi = 0, i = 1, 2, 3, where,
as expected, the value of E.I. is near or larger than 1.7. Moreover, with the same initial
value x0 = 2.5, the presented COC1 and NI for f3(x) = 0 are better than those computed
by Chicharro et al. [37], where NI=6 and ACOC=4.476. The values 1.705, 1.736, and 1.986
are also better than the E.I. = 81/4 = 1.682 obtained by the eighth-order optimal iterative
scheme with four evaluations of functions.

Table 9. The NI, COC1, COC2, and E.I. for the CCTMM method.

Functions x0 [a0, b0] NI COC1 COC2 E.I. = (COC1)1/3

f1 2.9 [2.5, 3.1] 3 4.959 5.695 1.705

f2 0.2 [0.2, 1.5] 4 5.236 4.967 1.736

f3 2.5 [−0.5, 1] 4 7.833 6.299 1.986

In Table 10, the presented COC2 for f2(x) = 0 is better than that computed by
Džunić [34], where COC = 6.9 is smaller than 7.3. Even if we do not use the full memory
information, the performance is better than that in [34].

Table 10. The NI, COC1, COC2, and E.I. for the DMM method.

Functions x0 [a0, b0] NI COC1 COC2 E.I. = (COC1)1/3

f1 2.7 [2.7, 3.2] 4 11.775 8.861 2.275

f2 0.6 [0.5, 2] 5 7.408 7.300 1.949

f3 2.5 [0.5, 3] 3 5.755 6.479 1.792



Mathematics 2024, 12, 581 17 of 21

In Table 11, the presented COC2 for f2(x) = 0 is better than that computed by
Džunić [34], where COC = 6.9 is smaller than 11.959. Even if we do not use the full memory
information, the performance is better than that in [34]. Compared with Table 10, the high
performance was gained in Table 11 by introducing a relaxation factor in the modified
Džunić’s memory method. The COC2 = 21.009 is abnormal for the solution of f3(x) = 0.

Table 11. The NI, COC1, COC2, and E.I. for the MDMM method.

Functions x0 [a0, b0] η0 NI COC1 COC2 E.I. = (COC1)1/3

f1 2.7 [2.7, 3.2] -0.2 4 14.894 13.222 2.460

f2 0.6 [0.5, 2] 0.15 5 10.658 11.959 2.200

f3 2.5 [0.5, 3] -0.47 3 6.533 21.009 1.869

In Table 12, the presented COC2 = 8.53 for f4(x) = x3 + 4x2 − 10 = 0 with the root
r4 = 1.365230013414097 is better than that computed in [52], where COC=7 is smaller than
8.53. Even if we do not use the full memory information, the performance is better than
that in [52], where γn = −1/N ′

3(xn+1) and λn = −N ′′
3 (wn+1)/[2N ′

3(wn+1)] were used for
the memory-dependent function N3(x; xn, yn−1, wn−1, xn−1) in Equation (119). N3(x) is
the third-degree Newton interpolation polynomial.

Table 12. The NI, COC1, COC2, and E.I. for the CLBTMM method.

Functions x0 [a0, b0] NI COC1 E.I. = (COC1)1/3 COC2 E.I. = (COC2)1/3

f1 2.8 [2.8, 3.2] 4 5.512 1.766 8.762 2.062

f3 1.5 [−1, 3] 3 7.519 1.959 9.579 2.124

f4 -0.5 [0.5, 2] 3 5.975 1.815 8.530 2.043

f5 1.8 [−0.5, 2.5] 3 10.309 2.176 9.686 2.132

The presented COC2 = 9.579 for f3(x) = (x − 1)3 − 1 = 0 is better than that com-
puted in [50], where COC = 6.9041 was obtained, which used γn = −1/N ′

3(xn+1), λn =
−N ′′

4 (wn+1)/[2N ′
4(wn+1)], N3(x; xn, yn−1, xn−1, wn−1), and N4(x; wn, xn, yn−1, wn−1, xn−1)

in Equation (119). N3(x) and N4(x) are, respectively, the third-degree and fourth-degree
Newton interpolation polynomials. For f5(x) = (x − 2)(x6 + x3 + 1)e−x2

= 0 with the root
r5 = 2, the presented COC2 = 9.686 is better than the COC = 6.9727 computed in [50].

6. Enhancing the Updating Speed of Parameters

To further accelerate the updating speed of the parameters An and Bn, according
to [52], we can take An = N ′

3(xn+1) and Bn = −N ′′
3 (wn+1)/[2N ′

3(wn+1)]. The memory-
dependent method of CLBTM reads as (i) giving x0, a0, b0, c0 = (a0 + b0)/2 and giving or
computing A0 and B0 by Equation (53), and w0 = x0 − f (x0)/A0, as well as (ii) performing,
for n = 0, 1, . . .,

yn = xn −
f (xn)

f [xn, wn]− Bn f (wn)
, (129)

xn+1 = yn −
f (yn)

f [xn, yn] + (yn − xn) f [xn, wn, yn]
, (130)

An+1 = f [xn, wn] + f [xn, wn, yn](2xn+1 − wn − xn) + f [xn, wn, yn, xn+1]

×[(xn+1 − wn)(xn+1 − yn) + (xn+1 − xn)(xn+1 − yn) + (xn+1 − xn)(xn+1 − wn)],

wn+1 = xn+1 − f (xn+1)
An+1

,

(131)
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Cn+1 = 2 f [xn, wn, yn] + f [xn, wn, yn, xn+1][(6wn+1 − 2xn − 2wn − 2yn)

Dn+1 = f [xn, wn] + f [xn, wn, yn](2wn+1 − wn − xn) + f [xn, wn, yn, xn+1]

×[(wn+1 − wn)(wn+1 − yn) + (wn+1 − xn)(wn+1 − yn) + (wn+1 − xn)(wn+1 − wn)],

Bn+1 = Cn+1
2Dn+1

,

(132)

where

f [xn, wn, yn, xn+1] =
f [xn, wn, yn]− f [wn, yn, xn+1]

xn − xn+1
. (133)

In Table 13, the presented COC2 = 9.157 for f4(x) = x3 + 4x2 − 10 = 0 is better
than that computed in [52]. The presented COC2 = 15.634 for f3(x) = (x − 1)3 − 1 = 0
is better than that computed in [50], where COC = 6.9041 was obtained. The presented
COC2 = 10.159 for f5(x) = (x − 2)(x6 + x3 + 1)e−x2

= 0 is better than that computed
in [50], where COC = 6.9727 was obtained.

Table 13. The NI, COC1, COC2, and E.I. for the CLBTM method.

Functions x0 [A0, B0] NI COC1 E.I. = (COC1)1/3 COC2 E.I. = (COC2)1/3

f1 2.85 [17.16, 5.78] 3 6.339 1.851 9.306 2.103

f3 1.6 [4, 0] 3 11.805 2.277 19.053 2.671

f4 1 [−10,−0.1] 3 11.827 2.278 13.027 2.353

f5 2.5 [1.08,−1.07] 3 9.896 2.147 18.327 2.637

Comparing Table 13 with Table 12, the convergence speed as reflected in the values of
COC and E.I. is enhanced by the CLBTM; however, the complexity is increased compared
with the iterative scheme CLBTMM in Section 4.5.

On this occasion, we can point out the difference between the new memory method
(NMM) and the memory method (MM): in the MM, f (xn+1) is computed, but it is not
needed in the NMM. The supplementary variable wn+1 is updated by Equation (131) in
the MM, but no update of w is required in the NMM; in the NMM, a lower-order N2
polynomial is sufficient, but for the MM, the higher orders polynomials of N3, N4, N5 are
necessary. According to the authors, the computational cost of the NMM saves much more
than the MM.

7. Concluding Remarks

Traub [33] was the first to develop a memory method from the Steffnensen’s itera-
tive scheme: 

wn = xn − γn f (xn),

xn+1 = xn − f (xn)
f [xn ,wn ]

,

γn+1 = f [xn, xn+1]

By giving x0 and γ0, the above iterative scheme can be initiated. We notice that in the
proposed new memory-updating method, we do not need to compute f (xn+1), which
saves one more evaluation of the functions than Traub’s memory method.

In [34], the accelerating technique is based on the memory of (wn, xn, yn−1, wn−1, xn−1) by

γn = − 1
N ′

3(xn)
, pn = −

N ′′
4 (wn)

2N ′
4(wn)

.

In addition to the cost of storing the information in the previous iteration, there is an
expensive computational cost for computing N3(xn), N4(wn), and N ′′

4 (wn). Since the work
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in [34], there has been extensive literature on this memory style using similar techniques.
The new memory approach for updating the accelerating parameters proposed in this paper
without using the information at the previous iteration, which takes the current values of
(xn, wn, yn) into N2(xn+1) for updating An and Bn, is more computationally cost-effective
than the previous techniques. The three new two-step iterative schemes developed together
with four updating techniques worked very well to quickly solve nonlinear equations.
Numerical examples revealed that without computing extra functions, the new memory-
updating methods can raise several orders of convergence and significantly enhance the
values of E.I.

We introduced an accelerating technique in the third new memory method by imposing
N2(xn+1) = f (xn+1) to determine the relaxation factor. The values of COC and E.I. are greatly
raised by this accelerated third new memory-updating method. When the relaxation factor
acceleration technique was combined with the modified Džunić’s memory method, very high
values of COC = 13.222 and E.I. = 2.46 were achieved. High performance is achieved by the
proposed two-step iterative methods to find the root of nonlinear equations.

The novelties involved in this paper are as follows:

• Developing three novel two-step iterative schemes with simple forms, which are
derivative-free.

• A second-degree Newton polynomial was used to update two critical parameters,
f ′(r) and f ′′(r), greatly saving computation cost by evaluating three functions and
using the new memory method (NMM).

• The NMM was applied to five existing two-step iterative schemes, WMM, ZLHMM,
CCTMM, DMM, and CLBTMM, with the high values of E.I. all being larger than 1.5874.

• The new idea of imposing N2(xn+1) = f (xn+1) to determine the relaxation factor
was developed, whose resulting E.I. ∈ [1.78, 2.176] is larger than E.I. = 1.5874 of the
fourth-order optimal iterative scheme.

• Combining the relaxation factor acceleration technique and Džunić’s new memory
method, very high values of COC and E.I. were achieved.
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Abbreviations
The following abbreviations are used in this manuscript:

ATNMUM Accelerated third new memory-updating method
BVP Boundary value problem
CCTMM Chicharro, Cordero, and Torregrosa’s memory method
CLBTM Cordero, Lotfi, Bakhtiari, and Torregrosa’s method
CLBTMM Cordero, Lotfi, Bakhtiari, and Torregrosa’s memory method
COC Computed order of convergence
DMM Džunić’s memory method
E.I. Efficiency index
FNMUM First new memory-updating method
MDMM Modification of Džunić’s memory method
NI number of iterations
NM Newton method
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NMM New memory method
ODE Ordinary differential equation
SNMUM Second new memory-updating method
TNMUM Third new memory-updating method
WMM Wang memory method
ZLHMM Zheng, Li, and Huang’s memory method
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