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Abstract: The advancement of an intelligent automobile sound switching system has the potential to
elevate the market standing of automotive products, with the pivotal prerequisite being the selection
of automobile sounds based on the driver’s subjective perception. The subjective responses of diverse
individuals to sounds can be objectively manifested through EEG signals. Therefore, EEG signals
are employed herein to attain the recognition of automobile sounds. A subjective evaluation and
EEG signal acquisition experiment are designed involving the stimulation of three distinct types of
automobile sounds, namely comfort, power, and technology sounds, and a comprehensive database
of EEG signals corresponding to these three sound qualities is established. Then, a specific transfer
learning model based on a convolutional neural network (STL-CNN) is formulated, where the method
of training the upper layer parameters with the fixed bottom weights is proposed to adaptively extract
the EEG features related to automobile sounds. These improvements contribute to improving the
generalization ability of the model and realizing the recognition of automobile sounds fused with
EEG signals. The results of the comparison with traditional support vector machine (SVM) and
convolutional neural network (CNN) models demonstrate that the accuracy of the test set of the
STL-CNN model reaches 91.5%. Moreover, its comprehensive performance, coupled with the ability
to adapt to individual differences, surpasses that of both SVM and CNN models. The demonstrated
method in the recognition of automobile sounds based on EEG signals is of significance for the future
implementation of switching driving sound modes fused with EEG signals.

Keywords: automobile sound; recognition; specific learning model; convolutional neural network;
EEG signal

MSC: 37M99

1. Introduction

The intelligent sound mode control system for automobiles is designed to enhance
driving satisfaction by intelligently controlling the sound modes in accordance with the
driving requisites of both the driver and passengers. In order to achieve the above automo-
tive functions, it becomes imperative to construct a classification recognition algorithm to
achieve the switching of pre-designed sounds. Furthermore, a foundational prerequisite
for achieving precise sound mode switching involves an investigation into the subjective
evaluations provided by evaluators. Nevertheless, it has been reported that the evaluator’s
subjective evaluation of the sound quality is still perceived based on the physical and
psychological acoustic indicators [1–4]. Traditional subjective evaluations face challenges in
accurately capturing the genuine sentiments of evaluators when dealing with sounds char-
acterized by intricate semantics, exemplified by terms like “comfort” [5], “powerful” [6],
and “luxury” [7] emanating from sound design. Therefore, it is imperative to introduce a
novel mechanism for the recognition of sound quality characterized by complex semantics.

Mathematics 2024, 12, 1297. https://doi.org/10.3390/math12091297 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091297
https://doi.org/10.3390/math12091297
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-4547-0893
https://doi.org/10.3390/math12091297
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091297?type=check_update&version=1


Mathematics 2024, 12, 1297 2 of 17

Recent studies have suggested that EEG signals are a physiological indicator that con-
tributes to reflecting individual variability and objectively mapping the intuitive perception
of different evaluators for sound [8,9]. There are existing studies that have proved that EEG
signals can be utilized to evaluate automobile sound quality [10,11]. In addition, different
drivers have different demands for the sound quality of different automobiles, and the
design of switching modes with multiple types of driving sounds helps to enhance the
brand image and competitiveness of automobiles [12]. Therefore, EEG signals as a physio-
acoustic indicator to realize the classification of diverse types of vehicle sound qualities are
of great significance for the system development of switching between different driving
sound modes. EEG signals are of importance in applying ergonomics/human factors to
the development of automobiles.

In this paper, three types of automobile sound qualities, namely the comfort, power,
and technology sound quality, are focused on, and an intelligent classification model (STL-
CNN) that combines the convolutional neural network (CNN) and the individual-specific
transfer learning model is constructed to realize the above three types of automobile sounds
based on EEG signals. This effort will provide a research basis for the future realization of
switching between driving sound modes fused with EEG signals.

1.1. Related Work

The brain is the most complex component of the central nervous system in the human
body and is the basis for the control of human activities [13]. The EEG signal is a relatively
objective physiological indicator, and it has gradually evolved from clinical research to the
field of brain–computer interfaces [14]. In terms of research on auditory evoked EEG signals,
in 2007, Lenz D et al. [15] analyzed changes in γ waves under familiar and unfamiliar
audio stimuli and found that audio with long-term memory was subjectively recognized
more quickly due to the subject’s prior cognition. In 2013, Cong F et al. [16] investigated
the correlation between EEG features and audio features, and an independent component
clustering analysis was used to reveal that α waves in the occipital region and θ waves in the
parietal region were significantly correlated with audio features. They also demonstrated
that the fluctuating center of audio was the most effective feature for evoking EEG signals.
In 2014, Li Z G et al. [17] investigated the relationship between EEG signals and subjective
annoyance. Transient and steady-state stimulation comparison experiments were set up
using pure tones of different frequencies as the stimulus, and they found that the sum
of the average power of θ and α waves could be used to assess noise-induced subjective
annoyance. In 2021, Zhang R et al. [18] proposed a “brain-ID” framework based on a hybrid
deep neural network with transfer learning (HDNN-TL) to deal with individual differences
in a four-class task. In 2022, Xie L et al. [19] focused on the evaluation of sound quality,
where the evaluation method was equated to a 10-classification problem to achieve the
score prediction of acceleration sound quality fused with EEG signals.

A summary of the above relevant studies demonstrates that the EEG signals have some
certain regularity under different sound stimuli, and the qualitative relationship between
different audio stimuli and EEG regularity can be obtained by quantitatively calculating
the statistical characteristics of the EEG signal. Therefore, it is plausible to explore research
on the identification of automobile sounds based on EEG signals through a rational design
of brain-evoked tests.

1.2. Critical Issues

In recent years, the research on the sound-induced EEG laws has been deepened.
EEG signals have the characteristics of a high temporal resolution; thus, the processing
of EEG signals is a challenging research task [20]. The analysis methods of EEG signals
mainly include EEG signal pre-processing, feature extraction and selection of EEG signals,
and construction of classification models [21]. The pre-processing of EEG signals mainly
involves the removal of irrelevant noise and the optimization of the data format after
acquisition of the raw EEG signal [22]. The EEG signal features are mainly extracted from
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time domain, frequency domain, and entropy features. Most EEG devices acquire EEG
time–domain signals, and the time–domain features are most intuitive and easy to obtain,
including skewness [23], kurtosis [24], first- and second-order differences [25], Hjorth
parameters [26,27], etc. In addition, the brain can be divided into the frontal, temporal,
parietal, and occipital lobes according to its fissures, which all serve different perceptual
functions and govern different physiological states [19,28]. EEG signals in the frequency
domain can be divided into five frequency bands, namely δ, θ, α, β, and γ. The frequency
domain features are obtained mainly by converting the acquired time domain signals into
the frequency domain, decomposing the frequency bands into five sub-frequency bands,
and then calculating the frequency features from them [29,30]. Differential entropy is a
common entropy feature [31]. Unfortunately, there is no uniform standard for the extraction
and selection of EEG features.

On the other hand, the construction of a classification algorithm that contributes to
extracting effective features from a large amount of EEG signal data is the key to realizing
the recognition of vehicle sounds based on EEG features. EEG signals are used in a variety
of fields, such as emotion recognition, emotion computing, and audio recognition. In
terms of classification algorithms, mathematical models such as support vector machines
(SVMs) [32], linear discriminant analysis [33], and neural networks [34,35] have relatively
good classification effects on the validation set. Nevertheless, the generalization ability
is poor on the whole, and the individual differences between multiple subjects are often
overlooked. Simultaneously, in the construction of data sets based on EEG signals, the
“dimensional disaster” is often encountered for the high-dimensional EEG feature vectors
in pattern classification research, which easy results in the data redundancy in the feature
matrix, increases the computational load of the computer, and decreases the accuracy of
the model’s identification [21]. To achieve this, a transfer learning model based on a CNN
model is built to extract potential features related to automobile sound from massive EEG
features. We aim to construct an intelligent classification model for automobile sound to
enhance the current level of accuracy and the generalization by combining deep learning
and EEG signals.

1.3. Our Contribution

In this investigation, the main aim is to identify the types of automobile sounds
based on EEG signals using a constructed intelligent classification model. The feasibility
of mapping human subjective perception of vehicle sound based on EEG signals will be
further explored in this paper. This exploration will lay the groundwork for future research
on switching between different driving sound modes using EEG signals and provide
guidance for data analysis methods that fuse EEG signals to evaluate sound.

The remaining structure of this paper is organized as follows: the experimental
procedure for EEG signal acquisition is described in Section 2. The next section presents
the principles of the construction of the STL-CNN model proposed in this paper, and the
performance of the constructed STL-CNN model is evaluated to validate the recognition
effect of automobile sounds fused with EEG signals in Section 4. In the next section,
the results, methodological innovations, shortcomings, and future research directions are
discussed, and a summary of the main findings are described in Section 6.

2. Data Collection and Experimental Setup
2.1. Sound Stimulus

The sound test is organized to acquire the acceleration sounds in the internal combus-
tion engine vehicle that meet the requirements of sound quality. Equally, the automobile
acceleration sounds with a good quality are downloaded from internet links and game
software. The above acquired sounds are gathered to form a sound sample library with a
total of 50 sounds. In this paper, three sound qualities of comfort, power, and technology
are chosen as the subjective evaluation indicators of abstract semantics, and 22 evaluators
with acoustics experience who are automobile engineers, teachers, or PhD students are
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recruited to evaluate the above three sound qualities of 50 selected sounds using the method
of a rating scale.

The scores of the above three sound qualities are calculated for each sound after the
evaluators have completed their evaluation, and the top three sounds of each sound quality
type are screened. A total of 9 sounds are used as the sound stimulus for the next EEG test.
The semantic descriptions of the three sound qualities of comfort, power, and technology
and information regarding the 9 sound stimuli are shown in Table 1.

Table 1. Information regarding sound stimuli.

Types Semantic Description Sound Source

Comfort Smooth acceleration, noiseless, soft,
and comfortable sounds

Driver’s right ear, sound of Peugeot 4008 4th gear
Driver’s right ear, sound of Golf 5th gear

Driver’s right ear, sound of Peugeot 4008 5th gear

Power Thick sound, strong acceleration,
no metallic clatter sounds

Driver’s right ear, sound of Audio R8 3th gear
Driver’s right ear, sound of Audio R8 4th gear

Engine sound of Peugeot 4008 3rd gear

Technology High acceleration frequency, rapid sounds,
science fiction feels

Web resource 1
Web resource 2
Web resource 3

2.2. EEG Experimental Setup
2.2.1. EEG Data Acquisition

15 subjects are recruited to participate in the EEG experiment, including 12 males and
3 females. The information regarding the subjects is shown in Table 2. All the subjects
are right-handed, have normal vision and hearing, and are free of brain disorders such as
epilepsy. Adequate sleep and a clean scalp are required to ensure a good signal-to-noise
ratio during the procedure of EEG data acquisition.

Table 2. Information regarding the subjects.

Subject Characteristics Quantity
Age

Mean Standard Deviation

Gender
Male 12 24.81 5.32

Female 3 23.2 4.3

Occupation
postgraduate 10 20.0 0
PhD student 3 24.0 2.42

Professor 2 43.5 1.52

The EEG signal is a physiological signal that is susceptible to external interference;
thus, an environment with a low background noise must be ensured during the process of
the EEG signal acquisition. The ActiCHamp EEG signal acquisition amplifier developed by
Brain Products in Gilching, Germany is used as the EEG signal acquisition equipment, as
shown in Figure 1a, and the data acquisition system is connected directly to the computer
via a USB for real-time data transfer. To ensure sufficient spatial resolution of the EEG
signal, an Ag/Agcl EEG cap (as shown in Figure 1b) that has 64 electrodes is utilized to
synchronously acquire the EEG signal. The electrode arrangement meets the international
lead 10–20 standard [36].

The EEG evoked experiment is designed using the E-Prime 2.0 software, and the
9 sound stimuli are stored in the audio playback module of the E-Prime software. The
software is run by the data communication host during the experiment. The display text
prompts the corresponding operation process information, and the subject completes the
experimental process based on the presented information while their EEG signals are
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acquired. The transmission and storage of EEG data are completed in real time by the EEG
acquisition equipment. The EEG acquisition process is shown in Figure 2.
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The entire EEG experiment is divided into three groups of experiments. The first
group of experiments consists of three sounds with a comforting sound quality, and the
subjects control the playback of the sounds using a designated button. The subjects take
a short break after one sound is played, then the next sounds are presented using the
designated button based on the text prompted in the display. Three comfort sounds are
played randomly, and each sound is repeated 27 times. There are a total of 81 sound stimuli
in each group of trials for each subject. Then, the second group of experiments employing
three powerful sounds is initiated after a short break based on the state of the subjects. The
procedure is the same as for the previous group. The EEG experiment is complete after the
third group of experiments when the three technology sounds have been cyclically played.

A total of 243 (81 × 3) sets of EEG signals are obtained throughout the entire duration
of the EEG experiment with the three types of sound stimuli. The duration of each sound is
5s, and there are 27 repetitions for each sound stimulus. The entire experimental procedure
theoretically lasts at least 20 min for each subject, excluding the stage of wearing the EEG
equipment and preparation before the formal trial. The EEG signal test scenario is shown
in Figure 3.

2.2.2. EEG Data Preprocessing

In this paper, EEG data preprocessing is conducted using the EEGLAB V2019.1 toolkit
on the MATLAB platform, which is primarily employed for EEG signal analysis. The
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toolkit supports multiple data formats, including .edf, .bdf, and .vhdr. A finite impulse
response filter (FIR) is utilized in this study for EEG signal processing. Considering the
high-frequency sensitivity of EEG signals to auditory stimulation, a bandpass filter of
0.1~100 Hz is applied. Simultaneously, to eliminate power frequency interference at 50 Hz
and its harmonics, frequencies of 49~51 Hz and 99~101 Hz are attenuated. Additionally,
the EEG signal is decomposed into independent components using independent principal
component analysis in this experiment. The artifact signals are then removed based on
feature screening of the ocular artifacts.
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3. A Method for the Recognition of Vehicle Sounds Fused with EEG Signals

The aim of the present research is to implement EEG-based recognition of automobile
sounds when the individual variability of the subjects is synchronously considered. In
order to solve the problem of a poor generalization ability on a new subject data that
traditional classification models encounter, a transfer learning model based on a CNN
model with deep learning theory is built.

3.1. Architecture of the CNN Model

The potential features associated with the target object can be automatically extracted
from the raw EEG dataset by a CNN, which usually consists of an input layer, a convolu-
tional layer, a pooling layer, a fully connected layer, and an output layer. The design and
parameter selection of the CNN model constructed in our study will be expounded from
two perspectives: the design of the feature extraction module and the network structure.

3.1.1. Design of the Feature Extraction Module

In the evoked EEG experiments described in Section 2, the sound stimulus is time-
sensitive, while the EEG signal, as a physiological signal that reflects the subject’s state, also
shows some regularity in the temporal dimension. Thus, the EEG data are processed along
the temporal dimension, which is beneficial for the extraction of potential EEG features
associated with automobile sounds. The time-varying characteristics of the time series are
considered, and EEG feature extraction is designed sequentially from the bottom layer and
the upper layer.

Firstly, the bottom layer of the feature extraction module is designed as shown in
Figure 4, where the dimension of the input EEG data is n × 5000, n is the number of data
samples, and 5000 is the number of data points for a 5s sound stimulus with a sampling rate
of 1000 Hz. To expand the data sample, a 1s Hamming time window is used to segment the
raw EEG data without overlap, and the dimension of each convolutional layer input data
becomes n × 1000 × 5 after segmentation. The reconstructed EEG data is batch normalized
after the non-linear transformation of the activation function and the pooling operation,
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and the first round of feature extraction is completed. The bottom layer of the feature
extraction module is consisted with 5 identical modules.
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Figure 4. Schematic diagram of the bottom layer of feature extraction module.

The underlying low-dimensional features of the EEG data are extracted from the
perspective of the time domain through the bottom layer of the feature extraction module,
and the feature dimension is further increased by continuously expanding the convolutional
kernel dimension. The upper layer of the feature extraction module is built to merge
with the feature matrix extracted from the bottom layer after several iterations, as shown
in Figure 5.
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Figure 5. Schematic diagram of the upper layer of the feature extraction module.

The input data of the upper layer are the output feature matrix of the bottom layer
of the feature extraction module, and 5 input feature matrices are merged in the upper
layer to further increase the dimensionality of the feature matrix. The time-varying features
of the EEG signals are extracted based on the merged feature matrix. In addition, due
to the dimensional expansion from the time–domain superposition, there may be some
redundancy in the output feature matrix. Thus, a suitable number and size of convolution
kernels are selected to further convolve the merged feature matrix, and maximum pooling
is used for down sampling after the action of the Relu activation function. The batch
normalization is finally completed to achieve the feature extraction of the upper layer.

3.1.2. Design of Network Architecture

The feature extraction of the EEG data through the bottom layer and the upper layer
of the feature extraction module is completed. Subsequently, the final feature matrix is
integrated through the fully connected layer to achieve the output of the type of vehicle
sound based on the EEG signals. The architecture of the CNN model designed in this paper
is shown in Figure 6.
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The construction of the CNN model is mainly divided into three stages, namely data
preprocessing, feature extraction, and classification. The EEG data acquired in Section 2.2.1
are pre-processed using the method presented in Section 2.2.2. An EEG signal matrix with
a dimension of 61 × 5000 × 243 × 15 is first constructed, where 61 represents the number
of EEG channels, 5000 is the number of sample points for 5s data with a sampling rate
of 1000 Hz, 243 is the total number of sounds played with each of the 9 sounds repeated
27 times, and 15 is the number of subjects. Then, to avoid the effects of the redundancy of
the EEG channels, only the EEG data of the 6 channels related to auditory perception are
selected according to related studies [37], including the T7, T8, F7, F8, P7, and P8 channels.
The final EEG feature matrix for a single subject is 1458 (243 × 6) × 5000 dimensions, where
1458 represents the number of samples. Then, a 1s time window is used to segment the
data into the dimension of 1458 × 1000 × 5.

Furthermore, 5 entrances of model input are created after completing the stage of data
pre-processing, and the segmented EEG data are simultaneously input into the bottom layer
of the feature extraction module for feature extraction by the internal convolution kernel.
A total of 5 feature matrices with the time dimensions are merged after three rounds of
iterations of the bottom layer of feature extraction module. Subsequently, the feature matrix
extracted by the bottom layer enters the upper layer of the feature extraction module, and
the strategy of global average pooling is used for down sampling by the convolution kernel
designed for feature extraction. Then, the data are integrated in the fully connected layer,
where some neurons are randomly deactivated based on the dropout method to reduce the
risk of model overfitting. Finally, the final extracted features are fed into the Softmax layer
to complete the label output of vehicle sounds, and the recognition of comfort, power, and
technology sound qualities based on the EEG signals is achieved. The model parameters of
the CNN architecture are shown in Table 3.
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Table 3. Model parameters of the CNN architecture.

Model Component Name Component Size Number of
Components Output Dimension Component

Parameters

Input layer Input data \ 5 1458 × 1000 × 1 0

Bottom layer

Convolutional layer 1_1 3 × 1 16 1458 × 1000 × 16 48 × 5
Pooling layer 1_1 2 × 1 \ 1458 × 500 × 32 0

Convolutional layer 1_2 5 × 1 32 1458 × 500 × 32 2560 × 5
Pooling layer 1_2 2 × 1 \ 1458 × 250 × 32 0

Convolutional layer 1_3 7 × 1 64 1458 × 250 × 32 14,336 × 5
Pooling layer 1_3 2 × 1 \ 1458 × 125 × 64 0

Feature merge \ 1458 × 125 × 320 0

Upper layer Convolutional layer 2_1 3 × 1 128 1458 × 125 × 128 122,880
Pooling layer 2_1 125 × 1 \ 1458 × 128 0

Classification Fully connected layer \ 10 1458 × 10 1290
Softmax \ 3 1458 × 3 33

3.2. Developing the CNN with Specific Transfer Learning

In order to further improve the generalization ability of the CNN model, the idea of
transfer learning is proposed to build an individual-specific transfer learning model based
on parameter sharing, which is named specific transfer learning based on CNN (STL-CNN).
The EEG data of 14 subjects are used as training samples to complete the construction of the
CNN model, and the idea of transfer learning using the strategy of bottom weight sharing
is used. The model is fine-tuned on the basis of the constructed CNN model to achieve the
classification of vehicle sound based on the 15th subject, namely the target task.

As shown in the structure of the CNN model described in Section 3.1, it can be seen
that the basic communal features of the subject’s EEG signal are respectively extracted layer
by layer from the time–domain dimension in the bottom layer of the feature extraction
module. Then, the basic communal features are merged, and the feature dimension is
increased in the upper layer of the feature extraction module to further complete the
extraction of high-dimensional features.

The data of the new subjects are used as a new test sample. On the one hand, these
data have the basic communal features of EEG signals, and on the other hand, the feature
components of individual differences is also considered. Therefore, in this paper, the
transfer learning model is designed, where the method of fixing the weights of the bottom
layer of the feature extraction module and training the weights of the upper layer of the
feature extraction module and the fully connected layer is proposed to build the STL-CNN
model. The architecture of STL-CNN is shown in Figure 7.

3.3. Learning Rule of STL-CNN

The overall EEG data of the 15 subjects are divided into the training set and test set,
and the 15th subject’s data are used as the test set to test the stability of the constructed
STL-CNN model on the new subject data. The EEG data of the remaining 14 subjects are
selected as the training set to complete the parameter training of the STL-CNN model. The
training is conducted in PyCharm 2021.3 on a mobile workstation equipped with an Intel
i7-10875 CPU, Nvidia RTX 2060 GPU, and 16 GB of memory. The learning rule of STL-CNN
includes mainly the forward propagation process and the backpropagation process.

There are three steps in the forward propagation process, namely the feature extraction
of the bottom layer, the feature extraction of upper layer, and the full connection. Three
rounds feature extraction of the convolutional pooling layer are performed sequentially
in the bottom layer of the feature extraction module. Suppose Xl

t is the input matrix of
the lth layer in the tth input channel, and the shared weight parameter matrix extracted is
defined as W l

t . Then, the result after convolution and activation of the lth layer is created
by the following:

Yl
t = Relu(Xl

tW
l
t ) (1)
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It can be given after passing the maximum pooling layer:

Yl
t = Max(αl

(t,i,j), αl
(t,i,j+1)) (2)

where αl
(t,i,j) is the jth element of the ith feature channel of the convolution output result in

the tth input channel. The combined feature matrix is obtained after multiple rounds of
feature extraction as follows:

Ycontact =
5

∑
t=1

Y3
t (3)

where Yt
3 is the output of the third layer of the network in the tth input channel, and the

final feature matrix is Ycontact.
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Then, the internal parameter matrix of the upper layer is Wc. The feature matrix is
expanded and integrated in the fully connected layer after finishing the feature extraction,
and the final classification output is completed by Softmax function as follows:

Yf inal = Softmax(Relu(YcontactWc)) (4)

where Yfinal is the final output vector of the model.
The backpropagation process is an update of the parameters using a loss function.

The parameter matrix Wp of the bottom layer is shared in the CNN model, whose back-
propagation process fails to be involved in the parameter update. However, the upper layer
does involve. The parameter matrix of the upper layer of the feature extraction module is
updated after the error is calculated, where the learning rate parameters are also updated
according to the above-defined strategy until the iteration is completed.
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4. Performance Evaluation of STL-CNN

The hyperparameters of the convolutional and pooling layers in the upper feature
extraction module of the STL-CNN model are the same as those of the CNN model, as
shown in Table 3. The Adam optimizer is still used to improve the training efficiency. The
initial learning rate is set to 0.05, the batch size is set to 64, and the Epoch is set to 100.
The model training is activated after completing the format conversion of the input test
data, in which the output labels “0”, “1”, and “2” are used as the representation of the
comfort, power, and technology vehicle sound quality. The final parameters of STL-CNN
model are shown in Table 4. The 84,720 weights in the convolutional kernel are same as
the CNN model parameters after fixing the bottom feature extraction module, and the
upper feature extraction module and classification module can be trained with a total of
124,203 parameters.

Table 4. STL-CNN model parameters.

Model Component Name Component Parameters Component Trainable Parameters

Bottom layer \ 84,720 0

Upper layer Convolutional layer 122,880 122,880
Pooling layer 0 0

Classification modules
Fully connected layer 1290 1290

Softmax 33 33

The 15th subject’s data are used as the test set, and the accuracy and loss values of
the test set are shown in Figure 8. As can be seen from the analysis of the accuracy and
loss values in Figure 8a,b, the accuracy is 44.5% in the first iteration of training. The reason
for the above phenomenon is that the upper layer weights are randomly initialized at the
beginning of training based on the bottom weights of the CNN model. Subsequently, an
accuracy of 79.4% is reached at the sixth iteration, and the weights in the upper layer of
the feature extraction module gradually fit the new test data as the number of iterations
is increased. The test accuracy fluctuates upwards and finally stabilizes at 91.5%. The
above results validate the ability of the STL-CNN model to adapt the new subject data and
demonstrate that the STL-CNN model can take into account the individual variability of
the new subject’s EEG signals.
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4.1. Comparison of Classification Models

To highlight the advantages of the constructed STL-CNN model, the traditional SVM
and CNN are constructed as comparative experiments, which are effective intelligent
models for solving pattern recognition problems. STL-CNN and the CNN are trained using
the same datasets, and in each trial, the same parameters are used for them. The inputs of
the SVM model are the extracted EEG features from three perspectives of the time domain,
frequency domain, and entropy characteristics. Among them, there are seven time features,
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five frequency features, and one differential entropy feature. Thus, the input dimension of
the SVM model is 1458 × 65 × 15, and 1458 = 243 × 6 represents the number of samples;
65 = (7 + 6) × 5 represents the dimension of the features, and 15 represents the number of
subjects. The accuracies of the training set and test set using the SVM, CNN, and STL-CNN
are shown in Figure 9.
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It can be clearly illuminated from the results in Figure 9 that the training set of the
CNN model has a significant advantage over the typical SVM model, with an accuracy
improvement of 37.1%. The accuracy of the test set of the CNN model is reduced by
16.3% compared to the accuracy of the training set; however, the accuracy is improved
by 29.8% compared to the test set of the SVM model. Furthermore, it can be seen that the
accuracy of the test set of the STL-CNN model is further improved by 12.2% compared to
the CNN model, and there is a significant improvement of 42% that is out of the reach of
the traditional SVM model. There is a reduction of only 4.1% compared to the training set
of STL-CNN.

To further compare the performance of the above three models, the confusion matrix
of the three models on the test set is analyzed, as showed in Figure 10. Each row of the
confusion matrix represents the target category, and each column represents the output of
the predicted category by the classification model. The classification performance of the
three models is evaluated using precision, recall, and accuracy.
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The accuracy and recall of each category of the vehicle sounds are shown in Figure 10,
where “0”, “1”, and “2” represent the vehicle sounds with comfort, power, and technology
sound qualities, respectively. The SVM model is relatively effective in the recognition of the
comfort and power sound qualities, while the lowest precision and recall rates are found
for the recognition of the technology sounds: the recall rate of 39.3% is much lower than
the classification results of the other two categories, which indicate that the SVM model is
weak in identifying the vehicle sounds with the technology quality. The performance of the
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CNN model is substantially improved compared to the SVM model; however, the recall
rate for the technology sounds is still low, at 70.8%. The precision for the power sounds is
also low, at 75.4%, which indicates that there are some instabilities in the CNN model. It
can be clear seen from Figure 10 that the STL-CNN model has the best overall performance,
where the recall rate of the technological sounds reaching 89.3%. There is a significant
improvement in the overall stability of the model and a good recognition ability for the
selected three categories of sounds, where the accuracy of the test set is 91.5%.

The above results validate the effectiveness of the constructed STL-CNN model and
also demonstrate the advantages of the STL-CNN model in dealing with the problem
of individual variability of EEG signals. Specifically, the changes in the new dataset can
be adapted by the STL-CNN model to achieve the classification of EEG signals and the
recognition of the vehicle sounds.

4.2. Comprehensive Evaluation of Classification Models

Five metrics are utilized to reflect the comprehensive performance of the model,
including the minimum recall (min_recall), minimum precision (min_presicion), training
set accuracy (val_acc), test set accuracy (test_acc), and test set kappa index. Among them,
the kappa index is calculated as shown in Formula (5), and the radar plot of the five metrics
of the three models for the test set is shown in Figure 11.

Kappa =
po − pe

1 − pe
(5)

Here, po is the accuracy of the model, and Pe is calculated as follows:

Pe =

N
∑

i=1
ai+a+i

N2 (6)

where i is the category number, N is the total number of categories, ai+ represents the
number of true samples in category i, and a+i is the number of predicted samples in
category i. The range of the kappa metric is [0, 1], and the larger the value, the better the
model classification effect.
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It can be concluded from Figure 11 that the CNN model significantly outperforms
the SVM model across all metrics, while the STL-CNN model has a better generalization
ability and the best performance on the test set. This is due to the proposed weight sharing
strategy, where the value of the kappa metric is 88.9%, which is out of the reach of the
CNN and SVM models. In general, the STL-CNN model has the best overall performance
compared the other two models and contributes to realizing the decoding of EEG-based
vehicle sounds while simultaneously considering individual differences.
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5. Discussion

In this paper, a deep learning hybrid model (STL-CNN) combining a CNN and specific
transfer learning model is constructed to adaptively extract EEG features for the recognition
of automobile sounds fused with EEG signals. Several important issues are explored. EEG
signals can objectively characterize evaluators’ subjective perceptions of sound [8,9], and
it possible to utilize EEG signals as an evaluation index of automotive sound quality due
to the popularity of miniaturization and portability of wearable devices equipped with
brain electrophysiological signal sensors [38]. It has been demonstrated that there are some
fluctuating changes in human brain signals that occur to map the differences between
signals of different sound features. And human subjective emotions can be improved by
driving in-vehicle audio systems to play pre-designed music based on EEG signals [17,39].
Therefore, the exploration of recognition of automobile sounds based on the EEG signals
investigated in this paper is of great research significance in achieving the switching
between driving sound patterns based on EEG signals.

In the present investigation, concerning target classification based on EEG signals,
two primary challenges are evident: it is difficult to extract the EEG feature that is strongly
related to the target object from the massive number of EEG signals and the suboptimal
generalization performance exhibited by traditional machine classification models. In
the STL-CNN model constructed in this paper, the bottom layer of the feature extrac-
tion module is designed to perform three rounds of feature extraction, where the basic
communal features of the subject’s EEG signal are extracted from the perspective of the
time domain, layer by layer, then the extracted basic communal features are merged. The
feature dimension is further increased in the designed upper feature extraction module
to complete the adaptive extraction of potential EEG features related to vehicle sound.
The constructed STL-CNN model uses a method of sharing the bottom weights to train
the upper layer network, which significantly improves the model’s generalization ability
and increases the test set accuracy from 79.3% to 91.5%. It can be observed from the data
analysis results presented in Section 4 that both the fundamental communal features of
the EEG signals and the distinctive components of the individual differences have been
taken into account when using subject data as a new test set. This enables the recognition of
automobile sounds to consider individual differences. The advantages of using intelligent
models in the extraction of latent features related to vehicle sounds have been elaborately
demonstrated in the literature [40,41].

In addition, the superiority of the proposed STL-CNN model is also demonstrated
by comparing the SVM and CNN models. The results presented in Sections 3 and 4.2
also manifest the advantages of the constructed STL-CNN model compared to the SVM
and CNN models concerning the recognition accuracy of vehicle sound quality based on
the EEG signals. As can be seen from Figures 10 and 11, the CNN model has obvious
advantages compared with the typical SVM model. The accuracy of the CNN model on the
training set is 37.1% higher than that of the SVM model, indicating that the EEG signal, as a
physiological signal related to vehicle sound stimuli, possesses potential EEG features. The
convolutional layer of the CNN model can complete the extraction of the potential EEG
feature from the raw EEG data, and the constructed STL-CNN model further optimizes
the structure of the CNN model and improves the ability of CNN deep learning to learn
complex and non-linear EEG features. This is achieved through a fine-tuning process of the
supervised parameter, which contributes to optimizing the model’s performance. The low
recognition efficiency of the technology sounds for the three models presented in Figure 10
is mainly due to the fact that the technology sounds come from online science fiction game
sounds that may not be familiar to the subjects; thus, there is a lower recognition rate.
Generally, the constructed STL-CNN model can adaptively extract EEG features to achieve
the recognition of vehicle sounds combining EEG data.

Currently, there are different feature selections for different EEG matrices, and there
are also various options for the model accuracy optimization methods in the research field
of EEG data analysis. Neural networks designed with ad hoc interpretable elements can
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automatically identify the most relevant spatial and frequency neural signatures. These
elements have been extensively investigated in Borra et al.’s studies [42–44]. The results
presented in this paper are of importance for the future research of personalized sound
design and the switching between preferred driving sound patterns based on EEG signals.

Research of the correlation between EEG signals and automobile sounds is still in
its infancy. In future investigations, the number of sound quality types can be increased,
and the range of subjects can be expanded to improve the comprehensiveness of the
EEG experiment. In addition, a simulated driving pedestal can be built in future EEG
signal acquisition experiments, where the changes in the subjects’ perceptions for different
scenarios can be considered and the real driving environment can be recreated as naturally
as possible.

6. Conclusions

In this paper, EEG physiological signals are applied to recognize automobile sound
quality with the complex semantics, and the construction of intelligent classification models
is mainly explored. Then, in order to improve the generalization ability of the classification
model, the bottom layer and upper layer of the EEG feature extraction modules are designed
to adaptively extract the EEG features from the time–domain perspective. The method
of sharing the bottom weights is proposed to train the upper layer network, where the
STL-CNN model is established to achieve the recognition of vehicle sounds fused with
EEG signals. The results of the performance comparison with traditional SVM and CNN
models show that the deep learning model has obvious advantages. The test set accuracy
of the CNN model is improved by 29.8% compared to the SVM model, and the accuracy
of the constructed STL-CNN model is further improved by 12.2% compared to the CNN
model. This demonstrates the effectiveness of the STL-CNN model constructed to deal
with the problem of individual variability in EEG signals. The results presented in this
paper provide a basis for future research on switching between different driving sound
modes based on EEG signals, as well as a reference for data analysis methods fused with
EEG signals to evaluate vehicle sound quality.
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