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and Ovidiu Bagdasar

Received: 27 March 2024

Revised: 27 April 2024

Accepted: 28 April 2024

Published: 3 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Average Widths and Optimal Recovery of Multivariate Besov
Classes in Orlicz Spaces
Xinxin Li 1,2,3 and Garidi Wu 1,2,3,*

1 College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022, China;
l2663639021@163.com

2 Laboratory of Infinite-Dimensional Hamiltonian System and Its Algorithm Application,
Hohhot 010022, China

3 Center for Applied Mathematical Science, Hohhot 010022, China
* Correspondence: wgrd@imnu.edu.cn
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1. Introduction

Ref. [1] has studied the average Kolmogorov σ–widths and average linear σ–widths of
multivariate isotropic and anisotropic Besov classes in Lp spaces. Research on the widths
and optimal recovery of multivariate Besov classes in Orlicz spaces has not been conducted
so far, and there are few related articles. This paper carries out some of this work. Orlicz
spaces are introduced by Polish mathematician W. Orlicz. Since more than half a century,
Orlicz spaces theory has been widely used. It not only provides intuitive background
material for functional analysis, but also has many applications in differential equations,
integral equations, probability theory, approximation theory of functions, harmonic analysis
and other disciplines. As well known, the activity world and metrics provided by Lp spaces
are very effective for discussing problems such as equation solving and approximation
theory of functions. However, Lp spaces are only suitable for dealing with linear and at
best polynomial type nonlinear problems. Whenever nonlinear problems appear, Lp spaces
will show its limitations. At this time, people naturally use the expansion of Lp spaces–
Orlicz spaces as an alternative tool. With the emergence of more complexity problems
and nonlinear problems, it has become a choice to study the approximation problems in
Orlicz spaces, which is the practical significance of this paper. Orlicz spaces are larger than
continuous function spaces and Lp spaces; they are an extension of Lp spaces. In particular,
the Orlicz spaces generated by N-functions that do not satisfy the ∆2-condition are a
substantial generalization and promotion of Lp spaces. Considering that the norm structure
of Orlicz spaces is more complex than that of continuous function spaces and Lp spaces, it is
difficult and of theoretical significance to study the widths and optimal recovery problems
in Orlicz spaces, and it can also reflect the characteristics of the function spaces of the study
of the approximation problem from ‘small’ to ‘large’.

In this paper, let M(u) and N(v) be complementary N-functions; the definition of an
N-function is as follows.
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Definition 1. A real valued function M(u) defined on R is called an N-function if it has the
following properties.

(1) M(u) is an even continuous convex function, and M(0) = 0;
(2) M(u) > 0 for u > 0;
(3) limu→0

M(u)
u = 0, and limu→∞

M(u)
u = ∞.

The complementary N-function is given by N(v) =
∫ v

0 (M′)−1(u)du. Properties of
N-functions are discussed in reference [2]. The norm in Orlicz spaces is

∥u∥M(Rd) = sup
ρ(v;N)≤1

∣∣∣∣∫Rd
u(x)v(x)dx

∣∣∣∣.
All measurable functions {u(x)} with finite Orlicz norms constitute the Orlicz space

L∗
M(Rd) associated with the N-function M(u), where ρ(v; N) =

∫
Rd N(v(x))dx expresses

the modulus of v(x) with respect to N(v). Here, u(x) = u(x1, . . . , xd), v(x) = v(x1, . . . , xd),
etc., are functions of d elements. For convenience, denote ∥ · ∥M = ∥ · ∥M(Rd). According to
ref. [2], the Orlicz norm can also be calculated by

∥u∥M = inf
β>0

1
β

(
1 +

∫
Rd

M(βu(x))dx
)

.

In this paper, C is used to represent a constant, and in different places its value can
be different.

Let α > 0 and Pα := χα(·)x(·) be the continuous linear operator on L∗
M(Rd), where

χα(·) is the characteristic function of [−α, α]d. Let ε > 0 and L be the subspace of L∗
M(Rd),

and define

Kε

(
α, L, L∗

M(Rd)
)

:= min{n ∈ Z+|dn

(
Pα(L ∩ BL∗

M(Rd)), L∗
M(Rd)

)
< ε},

where dn(A, X) represents the Kolmogorov n-widths of A in X, see refs. [3,4]. The average
dimension of L in L∗

M(Rd) is defined as

dim
(

L, L∗
M(Rd)

)
:= lim

ε→0
lim inf

α→∞

Kε

(
α, L, L∗

M(Rd)
)

(2α)d .

Let σ > 0 and S be the centrally symmetric subset of L∗
M(Rd). The average Kolmogorov

σ–widths (average σ − K widths) of S in L∗
M(Rd) are defined by

dσ(S, L∗
M(Rd)) := inf

L
sup

x(·)∈S
inf

y(·)∈L
∥x(·)− y(·)∥M,

where the first infimum takes all subspaces L ⊂ L∗M(Rd), which satisfy dim
(

L, L∗M(Rd)
)
≤ σ.

The average linear σ–widths (average σ − L widths) of S in L∗
M(Rd) are defined by

d′σ(S, L∗
M(Rd)) := inf

(Y,Λ)
sup

x(·)∈S
∥x(·)− Λx(·)∥M,

where the infimum takes all pairs (Y, Λ) such that, for each pair (Y, Λ), Y is the normed
space, which is continuously imbedded in L∗

M(Rd), S ⊂ Y, Λ is the continuous linear

operator from Y to L∗
M(Rd), and dim

(
ImΛ, L∗

M(Rd)
)
≤ σ, where ImΛ represents the range

of the operator Λ.
By definition, we have

dσ(S, L∗
M(Rd)) ≤ d′σ(S, L∗

M(Rd)). (1)
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Suppose that k ∈ N, for every f ∈ L∗
M(Rd),

∆k
t f (x) =

k

∑
l=0

(−1)l+k
(

k
l

)
f (x + lt)

is the k-th difference of f at the point x with step t, where (k
l) =

k!
l!(k−l)! . We use ∆k

tj
f (x) to

denote ∆k
t f (x) when t = (0, . . . , 0, tj, 0, . . . , 0).

Definition 2. Let k ∈ N, r > 0, k − r > 0, 1 ≤ θ ≤ ∞, and we say f ∈ Br
Mθ(Rd) if f satisfies

the following conditions:
(1) f ∈ L∗

M(Rd),
(2)

∥ f ∥br
Mθ(Rd) :=


{∫

Rd

(
∥∆k

t f (·)∥M
|t|r

)θ
dt
|t|d

}1/θ

< ∞, 1 ≤ θ < ∞,

sup|t|̸=0
∥∆k

t f (·)∥M
|t|r < ∞, θ = ∞,

where | · | is the Euclidean norm.

By ref. [5], the linear space Br
Mθ(Rd) is a Banach space with the norm

∥ f ∥Br
Mθ(Rd) := ∥ f ∥M + ∥ f ∥br

Mθ(Rd)

and is an isotropic Besov space.

Definition 3. Let k = (k1, . . . , kd) ∈ Zd
+, r = (r1, . . . , rd), rj > 0, k j > rj, j = 1, . . . , d,

1 ≤ θ ≤ ∞. We say f ∈ Br
Mθ(Rd) if f satisfies the following conditions:

(1) f ∈ L∗
M(Rd),

(2) For j = 1, . . . , d, we have

∥ f ∥
b

rj
xj Mθ(Rd)

:=



∫R


∥∥∥∥∆

kj
tj

f (·)
∥∥∥∥

M
|tj |

rj

θ

dtj
|tj |


1/θ

< ∞, 1 ≤ θ < ∞,

suptj ̸=0

∥∥∥∥∆
kj
tj

f (·)
∥∥∥∥

M
|tj |

rj < ∞, θ = ∞.

By ref. [5], the linear space Br
Mθ(Rd) is a Banach space with the norm

∥ f ∥Br
Mθ(Rd) := ∥ f ∥M +

d

∑
j=1

∥ f ∥
b

rj
xj Mθ(Rd)

and is an anisotropic Besov space. By ref. [5], Br
Mθ(Rd) = Br,...,r

Mθ (Rd) when r1 = · · · = rd.
For real vector M = (M1, . . . , Md), Mj > 0, j = 1, . . . , d, we define

Sr
Mθb(Rd) := { f ∈ L∗

M(Rd) : ∥ f ∥br
Mθ(Rd) ≤ 1},

Sr
Mθ B(Rd) := { f ∈ L∗

M(Rd) : ∥ f ∥Br
Mθ(Rd) ≤ 1},

Sr
Mθb(Rd) := { f ∈ L∗

M(Rd) : ∥ f ∥
b

rj
xj Mθ(Rd)

≤ Mj, j = 1, . . . , d},

Sr
Mθ B(Rd) := { f ∈ L∗

M(Rd) : ∥ f ∥Br
Mθ(Rd) ≤ 1}.



Mathematics 2024, 12, 1400 4 of 15

Let ρ > 0, ν = (ν1, . . . , νd), νi > 0, i = 1, . . . , d. Define BM
ν (Rd) as the set of all

those functions from L∗
M(Rd) in which, for each function f , the support of the Fourier

transform f̂ in the distributional sense of f is contained in [−ν1, ν1]× · · · × [−νd, νd]. The
Schwartz theorem states that BM

ν (Rd) coincides with the set of all continued analytically
entire functions of type ω ≤ ν in L∗

M(Rd). Here, ω ≤ ν means that ωj ≤ νj, j = 1, . . . , d for
every ω ∈ Rd

+ = {x ∈ Rd : xj > 0, j = 1, . . . , d}.
In this paper, we study the average Kolmogorov widths, average linear widths, and

the optimal recovery problem of the Besov classes Sr
Mθb(Rd), Sr

Mθ B(Rd), Sr
Mθb(Rd), and

Sr
Mθ B(Rd).

2. Average Widths Problem

Lemma 1 ([6,7]). Let ρ > 0, ν = (ν1, . . . , νd), νi > 0, i = 1, . . . , d. Then,

dim
(

BM
ν (Rd), L∗

M(Rd)
)
=

ν1 · · · νd

(π)d .

Let BX represent the unit ball of X.

Lemma 2 ([3]). If 1 ≤ n < dim(X), then

dn(BX , X) = 1,

where dn(A, X) represents the usual Kolmogorov n-width of A in X, while X is a normed linear
space, and A is the subset of X.

Theorem 1. Let k = (k1, . . . , kd) ∈ Zd
+, r = (r1, . . . , rd), k j > rj > 0, j = 1, . . . , d,

1 ≤ θ ≤ ∞, σ ≥ 1. Then,
(1)

µσ−a ≪ dσ

(
A, L∗

M(Rd)
)
≤ d′σ

(
A, L∗

M(Rd)
)
≤ sup

f∈A
∥ f − Tρ1,...,ρd f ∥M ≪ µσ−a,

where

A = Sr
Mθb(Rd) or Sr

Mθ B(Rd), a = (
d

∑
j=1

1/rj)
−1,

µ =
d

∏
j=1

M
a/rj
j (µ = 1 when A = Sr

Mθ B(Rd)),

and the definition of Tρ1,...,ρd f is given in the proof below.

(2) BM
ρ(σ)

(Rd) is the weakly asymptotic optimal subspace of average ≤ σ for dσ

(
A, L∗

M(Rd)
)

,

where ρ(σ) = (ρ1(σ), . . . , ρd(σ)), ρi(σ) > 0 is defined by ρj(σ) = (µ−1Mjσ
a)1/rj (ρj(σ) = σa/rj

when A = Sr
Mθ B(Rd)) , j = 1, . . . , d.

Proof. To find the upper bound, first of all, we construct the following continuous linear
operators from Br

Mθ(Rd) to L∗
M(Rd). For every f ∈ L∗

M(Rd), t ∈ Rd and natural number l,
we have

(−1)l+1∆l
t f (x) =(−1)l+1

l

∑
j=0

(−1)l+j
(

l
j

)
f (x + jt)

=
l

∑
j=1

dj f (x + jt)− f (x),
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where ∑l
j=1 dj = 1. For any real number ν > 0, let

gν(t) = λ−1
ν,s

(
sin νt

t

)2s
(t ∈ R, 2s > 1)

be an even entire function of one variable exponential type 2sν, where λν,s =
∫

R(sin νt/t)2sdt ≍
ν2s−1, ν → ∞. Let ρ = (ρ1, . . . , ρd), ρi > 0, i = 1, . . . , d. For every f ∈ Br

Mθ(Rd), let

Tρi ( f , x) :=
∫

R
gρi (ti)

(
(−1)ki+1∆ki

ti
f (x) + f (x)

)
dt1

=
∫

R
gρi (ti)

ki

∑
j=1

dj f (x1, . . . , xi−1, xi + jti, xi+1, . . . , xd)dti

=
∫

R
Gρi (ti − xi) f (x1, . . . , xi−1, ti, xi+1, . . . , xd)dti,

where Gρi (t) = ∑ki
j=1(dj/j)gρi (t/j). By ref. [5], Gρi (t) is an entire function of one variable

of exponential type 2ρis. Let

Tρ1,...,ρn( f , x)

:=
∫

Rn
Gρ1(u1) . . . Gρn(un) f (x1 + u1, . . . , xn + un, xn+1, . . . , xd)du,

1 ≤ n ≤ d. Then, Tρ1,...,ρn is the d variables entire function of exponential type ρ = (2sρ1, . . . , 2sρd).
Let 2s > d + max{ri, i = 1, . . . , d}. Using the Minkowski inequality and Hölder inequality,
we have

∥ f (·)− Tρ1( f , ·)∥M

= sup
ρ(v,N)≤1

∣∣∣∣∫Rd

(
f (x)− Tρ1( f , x)

)
v(x)dx

∣∣∣∣
≤ sup

ρ(v,N)≤1

∫
Rd

∣∣ f (x)− Tρ1( f , x)
∣∣v(x)dx

= sup
ρ(v,N)≤1

∫
Rd

∣∣∣∣ f (x)−
∫

R
gρ1(t1)

[
(−1)k1+1∆k1

t1
f (x) + f (x)

]
dt1

∣∣∣∣v(x)dx

= sup
ρ(v,N)≤1

∫
Rd

∫
R

gρ1(t1)∆
k1
t1

f (x)dt1v(x)dx

≤ sup
ρ(v,N)≤1

∫
R

∫
Rd

∆k1
t1

f (x)v(x)dxgρ1(t1)dt1

≤
∫

R

∥∥∥∆k1
t1

f (·)
∥∥∥

M
gρ1(t1)dt1

=
∫

R


∥∥∥∆k1

t1
f (·)

∥∥∥
M

|t1|r1+(1/θ)

|t1|r1+(1/θ)gρ1(t1)dt1

≤

∫
R


∥∥∥∆k1

t1
f (·)

∥∥∥
M

|t1|r1+(1/θ)

θ

dt1


1/θ

×
(∫

R
|t1|(r1+(1/θ))θ′ |gρ1(t1)|θ

′
dt1

)1/θ′

≤Cρ−r1
1 ∥ f ∥b

r1
x1 Mθ(Rd)

,

(2)
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where 1/θ + 1/θ′ = 1. In addition, we have

∥Tρ1( f , ·)− Tρ1,ρ2( f , ·)∥M

=

∥∥∥∥ ∫R
Gρ1(t1) f (x1 + t1, x2, . . . , xd)dt1

−
∫

R2
Gρ1(t1)Gρ2(t2) f (x1 + t1, x2 + t2, x3, . . . , xd)dt1dt2

∥∥∥∥
M

=

∥∥∥∥∫R
Gρ1(t1)h1(x1 + t1, x2, . . . , xd)dt1

∥∥∥∥
M

≤
∫

R
gρ1(t1)∥h(·)∥Mdt1 = ∥h(·)∥M,

where

h(x1, x2, . . . , xd) = f (x1, x2, . . . , xd)−
∫

R
Gρ2(t2) f (x1, x2 + t2, x3, . . . , xd)dt2.

Similar to (2), we have

∥h(·)∥M ≤ Cρ−r2
2 ∥ f ∥br2

x2 Mθ(Rd)
.

Inductively, for 2 ≤ j ≤ d, we have

∥Tρ1,...,ρj−1( f , ·)− Tρ1,...,ρj( f , ·)∥M ≤ Cρ
−rj
j ∥ f ∥

b
rj
xj Mθ(Rd)

. (3)

Therefore, from (3), we have

∥ f (·)− Tρ1,...,ρd( f , ·)∥M

=∥ f (·)− Tρ1( f , ·) + Tρ1( f , ·)− Tρ1,ρ2( f , ·) + · · · − Tρ1,...,ρd( f , ·)∥M

≤C
d

∑
j=1

ρ
−rj
j ∥ f ∥

b
rj
xj Mθ(Rd)

.
(4)

By (4), we have

∥Tρ1,...,ρd( f , ·)∥M ≤
(
∥ f ∥M +

d

∑
j=1

∥ f ∥
b

rj
xj Mθ(Rd)

)
max{1, C},

where C = C max{ρ
−rj
j , 1 ≤ j ≤ d}. Therefore, the operator Λ2 : Br

Mθ(Rd) → L∗
M(Rd),

Λ2 f (·) = Tρ1,...,ρd( f , ·) is continuous and linear. Let 2sρj = ρj(σ) = (µ−1Mjσ
a)1/rj (let

ρj(σ) = σa/rj when A = Sr
Mθ B(Rd)). Hence, by (4) and Lemma 1, we have

d′σ(A, L∗
M(Rd)) ≤ sup

f∈A
∥ f (·)− Tρ1,...,ρd( f , ·)∥M

≤C sup
f∈A

d

∑
j=1

ρ
−rj
j ∥ f ∥

b
rj
xj Mθ(Rd)

≪ µσ−a.

To estimate the lower bound, let λ = (λ1, . . . , λd), λi = (Miµ
−1(2σ)a)1/ri (λi = (2σ)a/ri

when A = Sr
Mθ B(Rd)), i = 1, . . . , d, and the non-zero function ϕ(x) ∈ C∞(R) with

supp(ϕ) ⊂ [0, 1]. For every j = (j1, . . . , jd) ∈ Zd and every t = (t1, . . . , td) ∈ Rd, let
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Φj,λ(t) :=
d

∏
k=1

ϕ(λ−1
k tk − jk),

then, Φj,λ(t) ∈ C∞(Rd), suppΦj,λ ⊂ ∆j,λ := [j1λ1, (j1 + 1)λ1]× · · · × [jdλd, (jd + 1)λd].
For any N > 0, let mi(N) := [Nλ−1

i ]. Define the following set of functions

Lm,λ = span{Φj,λ(t) : −mk ≤ jk ≤ mk − 1, k = 1, . . . , d},

then the dimension of space Lm,λ is m2 = ∏d
i=1(2mi). For any f ∈ Lm,λ, it is easy to see that

supp f ⊂ [−m1λ1, m1λ1]× · · · × [−mdλd, mdλd] ⊂ [−N, N]d.

If

f (t) =
m1−1

∑
ji=−m1

· · ·
md−1

∑
jd=−md

aj1,...,jd Φj,λ(t),

then

∥ f ∥M = sup
ρ(v,N)≤1

∣∣∣∣∣
∫

Rd

(
m1−1

∑
j1=−m1

· · ·
md−1

∑
jd=−md

aj1,...,jd Φj,λ(t)

)
v(t)dt

∣∣∣∣∣
= sup

ρ(v,N)≤1

∣∣∣∣∣
∫

Rd

(
m1−1

∑
j1=−m1

· · ·
md−1

∑
jd=−md

aj1,...,jd

d

∏
k=1

ϕ(λ−1
k tk − jk)

)
v(t)dt

∣∣∣∣∣
=

(
d

∏
j=1

λj

)
∥ϕ∥d

M[0,1]∥aj∥lm2 ,

(5)

where ∥aj∥lm2 = ∑m1−1
j1=−m1

· · ·∑md−1
jd=−md

aj1,...,jd .

By the Minkowski inequality, we have

∥∆ki
ti

f (·)∥M =

∥∥∥∥ ∫ ti

0
du1 · · ·

∫ ti

0

∂ki

∂xki
i

× f (x1, . . . , xi + u1 + · · ·+ uk, xi+1, . . . , xd)duki

∥∥∥∥
M

=

∥∥∥∥ ∫ ti

0
du1 · · ·

∫ ti

0

m1−1

∑
j1=−m1

· · ·
md−1

∑
jd=−md

aj1,...,jd ϕ(ki)

×(λ−1
i (xi + u1 + · · ·+ uki

)− ji)λ
−ki
i

d

∏
s ̸=i

ϕ(λ−1
s xs − js)duki

∥∥∥∥
M

≤
∫ |ti |

0
du1 · · ·

∫ |ti |

0

∥∥∥∥ m1−1

∑
j1=−m1

· · ·
md−1

∑
jd=−md

aj1,...,jd ϕ(ki)

×(λ−1
i (xi + u1 + · · ·+ uki

)− ji)λ
−ki
i

d

∏
s ̸=i

ϕ(λ−1
s xs − js)

∥∥∥∥
M

du

=

(
d

∏
j=1

λj

)
λ
−ki
i ∥ϕ(ki)∥M[0,1]∥ϕ∥d−1

M[0,1]∥aj∥lm2 |ti|ki

=C

(
d

∏
j=1

λj

)
λ
−ki
i |ti|ki∥aj∥lm2 .

(6)
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By (6), we have

∥∆ki
ti

f (·)∥M ≤ C∥ f ∥M ≤ C

(
d

∏
j=1

λj

)
∥aj∥lm2 . (7)

Hence, by (6) and (7), we have

∥∆ki
ti

f (·)∥M ≤ C

(
d

∏
j=1

λj

)
∥aj∥lm2 min{1, (λ−1

i |ti|)ki}.

In addition, for 1 ≤ θ < ∞, we have

∥ f ∥b
ri
ti Mθ(Rd)

=

∫
R

∥∆ki
ti

f (·)∥M

|ti|ri

θ

dti
|ti|


1/θ

≤C

(
d

∏
j=1

λj

)
∥aj∥lm2 ×

(∫ λi

0
λ
−kiθ
i R(ki−ri)θ−1dR +

∫ ∞

λi

R−riθ−1dR
)1/θ

=C

(
d

∏
j=1

λj

)
λ
−ri
i ∥aj∥lm2 .

(8)

For θ = ∞, (8) is also valid. Let

δN :=

(
d

∏
j=1

λj

)
µ−1(2σ)aCN (CN = ∥ϕ∥d

M[0,1] + max C), (9)

QN(δN) := { f ∈ Lm,λ : ∥aj∥lm2 ≤ δ−1
N }. (10)

Then, QN ⊂ A.
Now, we estimate the quantity dσ(A, L∗

M(Rd)). Let A be the subspace of L∗
M(Rd) and

its average dimension dim
(

A, L∗
M(Rd)

)
≤ σ. By the definition of the average dimension,

for any N > 0, ε > 0, there exists a subspace A1 ⊂ L∗
M(Id

N) with dimension K := dim A1 =
Kε(N, A, L∗

M(Id
N)) such that

E
(

B(A)|Id
N

, A1, L∗
M(Id

N)
)
≤ ε,

where B(A) represents the unit ball of space A. In addition, for any g ∈ A, we have

e
(

g|Id
N

, A1, L∗
M(Id

N)
)
≤ ε∥g∥M;

here, e(x, B, X) := infy(·)∈B ∥x(·)− y(·)∥X denotes the distance of element x and B, while
B is the subset of linear normed space X. Hence, for any f ∈ A and any g ∈ A, we have

∥ f − g∥M ≥∥ f − g∥M(Id
N)

≥e( f , A1, L∗
M(Id

N))− e(g, A1, L∗
M(Id

N))

≥e( f , A1, L∗
M(Id

N))− ε∥g∥M

≥e( f , A1, L∗
M(Id

N))− ε∥ f − g∥M − ε∥ f ∥M.

Hence,
(1 + ε)∥ f − g∥M ≥ e( f , A1, L∗

M(Id
N))− ε∥ f ∥M.



Mathematics 2024, 12, 1400 9 of 15

In addition, we also have

(1 + ε)E(A, A, L∗
M(Id

N)) ≥ E(QN , A1, L∗
M(Id

N))− ε sup
f∈QN

∥ f ∥M. (11)

By (5), (9), (10), and Lemma 2, we have

E(QN , A1, L∗
M(Id

N)) ≥C
d

∏
j=1

λjδ
−1
N dK(B(lm2), lm2)

=C
d

∏
j=1

λjδ
−1
N = Cµσ−a.

(12)

By (11) and (12), let N → ∞, ε → 0, and we obtain

dσ(A, L∗
M(Rd)) ≫ µσ−a.

By (1), we finish the proof of the Theorem.

Since Br
Mθ(Rd) = Br,...,r

Mθ (Rd), taking Mj = 1, rj = r, j = 1, . . . , d, by Theorem 1, we have
the following.

Corollary 1. Let k ∈ N, r > 0, k − r > 0, 1 ≤ θ < ∞, σ ≥ 1. Then,
(1)

σ−r//d ≪ dσ

(
U, L∗

M(Rd)
)
≤ d′σ

(
U, L∗

M(Rd)
)
≤ sup

f∈U
∥ f − Tρ1,...,ρd f ∥M ≪ µσ−r/d,

where U = Sr
Mθb(Rd) or Sr

Mθ B(Rd).

(2) BM
ρ(σ)

(Rd) is a weakly asymptotic optimal subspace of average dimension σ for dσ

(
U, L∗M(Rd)

)
,

where ρ(σ) ≥ 0 is defined by ρ(σ) = σ1/d.

3. Optimal Recovery Problem

By ref. [8], be similar to the definition in [9,10], for σ > 0, let Θσ be the set of all
sequences ξ = {ξν}ν∈Zd of points ξν in Rd, which satisfies the following conditions:

(1) For ν, ν′ ∈ Zd, |ξν| ≤ |ξν′ | if and only if |ν| ≤ |ν′|,
(2) For ν, ν′ ∈ Zd, ξν ̸= ξν′ if and only if ν ̸= ν′,
(3)

cardξ := lim inf
c→∞

card
(

ξ ∩ [−c, c]d
)

(2c)d ≤ σ,

where | · | is the usual Euclidean norm, and for any c > 0, card
(

ξ ∩ [−c, c]d
)

denotes the

number of elements of the set ξ ∩ [−c, c]d.
Let X(Rd) be the normed space of functions on Rd with the norm ∥ · ∥X, and for the

set A, B of X(Rd), let

E(A, B, X) := sup
x(·)∈A

inf
y(·)∈B

∥x(·)− y(·)∥X .

Let K ⊂ X(Rd), and the quantity

d(K) := sup
x(·),y(·)∈K

∥x(·)− y(·)∥X
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is called the diameter of K. For ξ ∈ Θσ , the information of f ∈ K is defined by
Iξ f = { f (ξν)}ν∈Zd . Iξ is called a standard sampling operator of the average cardinality
≤ σ. The quantity

∆σ(K, X) := inf
ξ∈Θσ

sup
f∈K

d
(

I−1
ξ Iξ f ∩ K

)
is called the minimum information diameter of the set K in space X(Rd). If K is the balanced
and convex subset of X(Rd), then

∆σ(K, X) = 2 inf
ξ∈Θσ

sup{∥ f ∥X : Iξ f = 0, f ∈ K}.

For every ξ ∈ Θσ, the mapping φ : Iξ(K) → X(Rd) is called an algorithm, and φ · Iξ f
is called a recovering function of f in X(Rd). Use Φξ to represent the set of all algorithms on
K. If φ can be extended to a linear operator on the linearized set of K, we call the algorithm
φ linear. Use ΦL

ξ to represent the set of all linear algorithms on the linearized set of K.
The quantity

Eσ(K, X) := inf
ξ∈Θσ

inf
φ∈Φξ

sup
f∈K

∥ f − φ(Iξ f )∥X (13)

is called the minimum intrinsic error of the optimal recovery of the set K in the space X.
Taking ΦL

ξ to replace Φξ in (13), and corresponding to this, we obtain EL
σ(K, X), which we

call the minimum linear intrinsic error. If K is a convex and centrally symmetric subset of
X, then by ref. [11], the following inequality holds.

1
2

∆σ(K, X) ≤ Eσ(K, X) ≤ EL
σ(K, X). (14)

Let l be an even number, 0 < α < l, similar to ref. [12], for every f ∈ L∗
M(Rd), and

define the following differential operator

(Dα f )(x) := lim
L∗

M(Rd),ε→0+
(Dα

ε f )(x),

where Dα
ε is defined by

(Dα
ε f )(x) :=

1
md,l(α)

∫
|y|≥ε

∆l
y f (x)

|y|d+α
dy,

md,l(α) :=
∫

Rd

(
eiy1/2 − e−iy1/2

)l

|y|d+α
dy,

where y = (y1, y2, . . . , yd) ∈ Rd. For α > 0, let

Wα
M(Rd) := { f ∈ L∗

M(Rd) ∩ C(Rd) : ∥Dα f ∥M < ∞}.

Let r be an even number, for any f ∈ L∗
M(Rd), and let

∆r
y f (x) =

r

∑
j=0

(−1)j
(

j
r

)
f
(

x +
( r

2
− j
)

y
)
=
(

τ−y/2 − τy/2

)r
f (x),

where τy f (x) = f (x − y), x, y ∈ Rd. For any real number ρ ≥ 1 and s ∈ N, the function

kρ,s(t) =
{

sin ρt
t

}2s
, t ∈ R, 2s > d + α
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is a univariate entire function of exponential type 2sρ. kρ,s(|x|)(x ∈ Rd) is a multivariate
entire function of spherical exponential type 2sρ. Let

Kρ,s(x) = λ−1
ρ,s kρ,s(|x|),

where λρ,s =
∫

Rd kρ,s(|x|)dx ≍ ρ2s−d, ρ → ∞ (See ref. [13]).
Define

(Tρ,r f )(x) =: f (x)− (−1)r/2
(

r/2
r

)−1 ∫
Rd

∆r
y f (x)Kρ,s(y)dy;

then, we have

Lemma 3. For α > 0, let r ∈ N(r > α) be an even number, when α − d ̸= 0, 2, 4, . . .; then,
we have

∥ f − Tρ,r f ∥M ≤ Cρ−α∥Dα f ∥M.

Proof. By the Minkowski inequality, we have

∥ f − Tρ,r f ∥M

= sup
ρ(v;N)≤1

∣∣∣∣∣
∫

Rd

[
f (x)−

(
f (x)− (−1)r/2

(
r/2

r

)−1 ∫
Rd

∆r
y f (x)Kρ,s(y)dy

)]
v(x)dx

∣∣∣∣∣
≤ sup

ρ(v;N)≤1

∫
Rd

(
r/2

r

)−1 ∫
Rd

∆r
y f (x)Kρ,s(y)dyv(x)dx

≤
∫

Rd
∥∆r

y f ∥MKρ,s(y)dy.

(15)

By ref. [12], we have

∆r
y f (x) =

∫
Rd
(∆r

y φα)(u)(Dα f )(x − u)du, (16)

where φα ≤ C|x|α−d for α − d ̸= 0, 2, 4, . . . and φα ≤ C|x|α−d log |x| for α − d = 0, 2, 4, . . ..
For (16), by the Minkowski inequality, we have

∥∆r
y f ∥M = sup

ρ(v;N)≤1

∣∣∣∣∫Rd

∫
Rd
(∆r

y φα)(u)(Dα f )(x − u)duv(x)dx
∣∣∣∣

≤
∫

Rd
(∆r

y φα)(u) sup
ρ(v;N)≤1

∫
Rd
(Dα f )(x − u)v(x)dxdu

≤∥∆r
y φα∥1∥Dα f ∥M.

(17)

By ref. [12], it can easy to see that ∥∆r
y φα∥1 ≤ C|y|α, |y| → 0 for α − d ̸= 0, 2, 4, . . .,

and ∥∆r
y φα∥1 ≤ C|y|α log |y|−1, |y| → 0 for α − d = 0, 2, 4, . . .. So for α − d ̸= 0, 2, 4, . . .,

we have

∥ f − Tρ,r f ∥M ≤∥Dα f ∥M

∫
Rd

C|y|αKρ,s(y)dy

≤Cρ−α∥Dα f ∥M (ρ → ∞).

The proof of the Lemma 3 is complete.

For ρ > 0, let

Sβ,ρ f (x) := ∑
ν∈Zd

f
(

ν

ρ

)
Lβ(ρx − ν),
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where Lβ(x) satisfies that Lβ(ν) = δν,0, ν ∈ Zd, and its generalized Fourier transform is

L̂β(y) = (2π)−d/2 |y|−β

∑ν∈Zd |y − 2νπ|−β
.

Similar to the proof of Lemma 3, we obtain the following.
Let α > 0, ρ > 0, β ≥ α, and β > d; then, for every f ∈ Wα

M(Rd)(α − d ̸= 0, 2, 4, . . .),
there exists a constant C > 0 such that

∥ f − Sβ,ρ f ∥M ≤ Cρ−α∥Dα f ∥M. (18)

For λ > 0, define SBM
λ (Rd) as the set of all the entire functions of spherical exponential

type ≤ λ; then, we have the following.

Lemma 4. Let λ > 0, σ > 0, and, for almost all f ∈ SBM
λ (Rd), there exists a constant C > 0

such that
∥Dα f ∥M ≤ Cλα∥ f ∥M.

Proof. By the definition of Dα f , we have

∥Dα f ∥M = sup
ρ(v;N)≤1

∫
Rd

1
md,l(α)

∫
|y|≥ε

∆l
y f (x)

|y|d+α
dyv(x)dx

≤C
∫

Rd

∥∆l
y f ∥M

|y|d+α
dy.

(19)

Because f ∈ SBM
λ (Rd), it is easy to prove that

∥∆l
y f ∥M = sup

ρ(v;N)≤1

∣∣∣∣∣
∫

Rd

r

∑
j=0

(−1)j
(

j
r

)
f
(

x +
( r

2
− j
)

y
)

v(x)dx

∣∣∣∣∣
≤

r

∑
j=0

sup
ρ(v;N)≤1

∫
Rd

(
j
r

)
f
(

x +
( r

2
− j
)

y
)

v(x)dx

≤C∥ f ∥M min{1, (|y|λ)l}.

(20)

So by (19) and (20), we have

∥Dα f ∥M ≤ C∥ f ∥M

(
λl
∫ λ−1

0
tl−α−1dt +

∫ ∞

λ−1
t−α−1dt

)
= Cλα∥ f ∥M.

Thus, the proof of the Lemma is complete.

Theorem 2. Let k ∈ N, r > 0, k − r > 0, 1 ≤ θ ≤ ∞, σ ≥ 1; then,

σ−r/d ≪1
2

∆σ(Sr
Mθ B(Rd), L∗

M(Rd)) ≤ Eσ(Sr
Mθ B(Rd), L∗

M(Rd))

≤EL
σ(S

r
Mθ B(Rd), L∗

M(Rd)) ≪ σ−r/d.

Proof. Let us complete the upper estimate first. For every f ∈ Sr
Mθ B(Rd), by ref. [5], in the

sense of L∗
M(Rd), f can be represented by the series that converges it; i.e., f (x) = ∑l∈Z+

Qal (x),
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Z+ := {0, 1, . . .}, while the terms of series are an entire function of spherical exponential
type al , a > 1 such that

∥ f ∥Br
Mθ(Rd) ≍


{

∑l∈Z+
alrθ∥Qal∥θ

M

}1/θ
, 1 ≤ θ < ∞

supl∈Z+
alr∥Qal∥M, θ = ∞.

(21)

Let α ∈ (0, r), β > r, for ρ > 1, let N be a natural number that satisfies ρ < aN < 2ρ,
for 0 ≤ l ≤ N − 1, by (18) and Lemma 4, we have

∥Qal − Sβ,ρQal∥M ≤Cρ−β∥DβQal∥M

≤Cρ−βalβ∥Qal∥M,
(22)

and for l ≥ N, we have

∥Qal − Sβ,ρQal∥M ≤ Cρ−α∥DαQal∥M ≤ Cρ−αalα∥Qal∥M. (23)

Hence, by (22) and (23), we have

∥ f − Sβ,ρ f ∥M ≤
∞

∑
l=0

∥Qal − Sβ,ρQal∥M =

(
N−1

∑
l=0

+
∞

∑
l=N

)
∥Qal − Sβ,ρQal∥M

≪ρ−β
N−1

∑
l=0

alβ∥Qal∥M + ρ−α
∞

∑
l=N

alα∥Qal∥M.

(24)

By (21) and Hölder inequality, we have

N−1

∑
l=0

alβ∥Qal∥M ≤
(

N−1

∑
l=0

alrθ∥Qal∥θ
M

)1/θ(N−1

∑
l=0

al(β−r)θ′
)1/θ′

≪∥ f ∥Br
Mθ(Rd)a

N(β−r)

≪ρβ−r∥ f ∥Br
Mθ(Rd),

(25)

and

∞

∑
l=N

alα∥Qal∥M ≤
(

∞

∑
l=N

alrθ∥Qal∥θ
M

)1/θ( ∞

∑
l=N

al(α−r)θ′
)1/θ′

≪∥ f ∥Br
Mθ(Rd)a

−N(r−α)

≪ρα−r∥ f ∥Br
Mθ(Rd),

(26)

for 1 < θ < ∞.
By (24) to (26), we have

∥ f − Sβ,ρ f ∥M ≪
(

ρ−β · ρβ−r + ρ−α · ρα−r
)
∥ f ∥Br

Mθ(Rd)

≪ρ−r∥ f ∥Br
Mθ(Rd).

(27)

For θ = 1, ∞, (27) is also valid. Let ρ = σ1/d. By (27), we have

EL
σ(S

r
Mθ B(Rd), L∗

M(Rd)) ≤ sup
f∈Sr

Mθ B(Rd)

∥ f − Sβ, d√σ f ∥M ≪ σ−r/d.
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Now, let us complete the lower estimate. For every ξ ∈ Θσ, i.e.,

cardξ = lim inf
c→∞

card
(

ξ ∩ [−c, c]d
)

(2c)d ≤ σ,

there exists a cube with the following form

Q = {x ∈ Rd : aj ≤ xj ≤ aj + m−1, j = 1, . . . , d}, m = (2σ)1/d

such that its interior IntQ does not contain any point of ξ, that is IntQ ∩ ξ = ∅. Thus, it can
be seen that |Q| = (2σ)−1. Let λ(t), t ∈ R be the univariate function satisfing the following
conditions: λ(t) ∈ C(R), suppλ ⊂ [0, 1], 0 ≤ λ(t) ≤ 1 for t ∈ R, λ(t) = 1 for t ∈ [ 1

4 , 3
4 ].

For 1 ≤ θ < ∞, let

f0(x) = η
d

∏
j=1

λ(m(xj − aj)),

where η is a positive number to be determined. It is easy to see that f0(x) ∈ C∞(Rd),
supp f0 ⊂ Q, Iξ f0 = 0, and by ref. [1], we have

∥ f0∥M = sup
ρ(v;N)≤1

∫
Rd

f0(x)v(x)dx

≤C
∫

Rd
f0(x)dx

≤Cηm−d.

(28)

It is easy to see that

∥∆k
t f0(·)∥M ≤ Cηm−d min{1, (m|t|)k}.

In addition, we have

∥ f0∥br
Mθ(Rd) ≤Cηm−d

(∫ m−1

0
mkθt(k−r)θ−1dt +

∫ ∞

m−1
t−rθ−1dt

)1/θ

≤Cηm−d+r.

(29)

For θ = ∞, (29) is also valid. By (28) and (29), if we let η = md−rC−1, then f0 ∈
Sr

Mθ B(Rd). Let

Q =

{
x ∈ Rd : ai +

1
4m

≤ xi ≤ ai +
3

4m
, i = 1, . . . , d

}
,

and for every ξ ∈ Θσ, we have

d
(

I−1
ξ

(
Iξ f0

)
∩ Sr

Mθ B(Rd)
)
≥∥ f0∥M ≥ ∥ f0∥M(Q)

≥Cmd−r(2m)−d ≫ σ−r/d.
(30)

By (30) and the definition of ∆σ

(
Sr

Mθ B(Rd), L∗
M(Rd)

)
, we have

∆σ

(
Sr

Mθ B(Rd), L∗
M(Rd)

)
≫ σ−r/d.

By (14), the proof of the Theorem is complete.

Comparing refs. [10,14,15], the study of approximation problems in Orlicz spaces has
potential application value and development prospect.
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