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Abstract: In this work, we extend the Heston stochastic volatility model by including a time-
dependent correlation that is driven by isospectral flows instead of a constant correlation, being
motivated by the fact that the correlation between, e.g., financial products and financial institutions is
hardly a fixed constant. We apply different numerical methods, including the method for backward
stochastic differential equations (BSDEs) for a fast computation of the extended Heston model. An
example of calibration to market data illustrates that our extended Heston model can provide a better
volatility smile than the Heston model with other considered extensions.

Keywords: correlation flow; isospectral flow; the Heston stochastic volatility; backward stochastic
differential equation; time-dependent correlation

1. Introduction

The Heston model [1] is one of the most widely used affine stochastic volatility models
for equity prices, which is an extension of the Black and Schloes model [2] by taking
into account stochastic volatility that is driven by a Cox-Ingersoll-Ross (CIR) process [3].
However, it is well-known that, in many cases, the Heston model cannot provide enough
skews or smiles in the implied volatility as market requires, in particular with short maturity.
To tackle this problem, several extensions have been proposed in the literature: the Heston
model by allowing time-dependent parameters [4–6]; the double Heston model with an
additional volatility process [7]; the Heston model extended with a stochastic interest
rate [8]; the Heston model that is extended by imposing a stochastic correlation [9,10]; and,
the Heston model with a time-dependent correlation function [11]. The contribution of
this work can be categorized into the class of extensions by including a time-dependent
correlation. Our aim is to improve the pure Heston model to provide better smiles in
the implied volatility as market requires, and to add an economic concept of nonlinear
relationship between the asset and its volatility.

In [11], a novel time-dependent correlation function has been embedded into the
Heston model, four additional parameters (compared to the pure Heston model) are gained
to increase the fitting quality. However, that time-dependent model is semi-analytical with
numerical integral, i.e., more computational complexity. In this work, we improve the
Heston model by including a novel correlation flow that is given in an analytical form in
the context of isospectral flow [12]. Using this new method, one can arbitrarily add many
additional parameters to improve the fitting quality on one hand but also add an economic
concept (nonlinear relationship) on the other hand. Furthermore, the time-dependent
correlation matrix that is embedded in the Heston model is valid at each time instance, i.e.,

1. all diagonal elements are equal to one and absolute values of all non-diagonal elements
are less than one,

2. non-negative eigenvalues (positive semidefinite).

Furthermore, we show how to represent the extended Heston model by a (two-
dimensional) backward stochastic differential equations (BSDEs), and solve them using
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numerical method for BSDEs, e.g., [13]. We also fit our new model to a real market data,
and show the better performance than that in [11].

The outline of the remaining part is as follows. In the next section, we introduce
the correlation flow. Section 3 is devoted to the specification of a correlation flow for the
Heston model. In Section 4, we incorporate the correlation flow into the Heston model,
and represent the extended model by a BSDE. Section 5 illustrates the calibration. Finally,
in Section 6 we conclude.

2. The Correlation Flows

In this section, we first review the idea of covariance and correlation flows proposed
in Teng, L.; Wu, X.; Günther, M.; Ehrhardt, M. 2020 [12]. Following that idea, we propose a
new correlation flow and extend the Heston model by including that correlation flow.

Let G be the Lie group of all non-singular matrices in Rn×n, and X0 ∈ Rn×n be given.
An isospectral surface is defined by

M(X0) :=
{

Z−1X0Z|Z ∈ G(n)
}

.

From now on we consider the subgroup O(n) of all orthogonal matrices and define

M̃(P0) :=
{

Q−1P0Q|Q ∈ On

}
,

and start with the following main theorem, which can be used to define isospectral curves.

Theorem 1 ([12]). Given that Q(t), with Q(0) = I (Identity matrix), represents a differential
curve on the manifold O(n). It holds that

P(t) = Q(t)>P0Q(t), (1)

which is the solution (upon differentiation) of the initial value problem{
dP(t)

dt = [P(t), k(t)], t ≥ 0
P(0) = P0,

(2)

where, for t ≥ 0, [P(t), k(t)] = P(t)k(t)− k(t)P(t) denotes the Lie bracket and k(t) is defined by

k(t) := Q(t)>
dQ(t)

dt
, t ≥ 0. (3)

Note that (1) defines a differentiable curve on the surface
∼
M(P0) with P(0) = P0.

Furthermore, if k(t) ∈ Rn×n is known, the differentiable curve (1) can be obtained by
solving (2). We see that the solution of (2) can be formulated in the form of (1), where
Q(t) satisfies {

dQ(t)
dt = Q(t)k(t), t ≥ 0

Q(0) = I.
(4)

By using (2) with different values of k(t), one can define different isospectral curves.
Obviously, the aim is to create covariance flows (P(t))t∈R+

, which must be valid,
i.e., positive semi-definite for all t ≥ 0. With the aid of the singular value decomposition
(SVD), we obtain

P(t) = Q̃(t)>S(t)Q̃(t), (5)

where S(t) is a diagonal matrix that consists of singular values of P(t) and Q̃(t) is a unitary
matrix consisting of singular vectors. Without a loss of generality, we assume that Q̃(t)
is a rotation matrix whose determinant is always 1. Because the covariance flows are
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modelled as the isospectral flows, they then must have the same singular values for t ≥ 0.
Therefore, (5) can be given via (1) as

P(t) = Q̃(t)>S(t)Q̃(t) := Q(t)> Q(0)>S(0)Q(0)︸ ︷︷ ︸
:=P(0)

Q(t),

by which a valid covariance flow can be created with the given initial value P0 and rota-
tion matrices Q(t). Obviously, a valid corresponding correlation flow can be obtained by
converting the covariance flow.

3. Time-Dependently Correlated Brownian Motions (BMs) via Flow

We fix a probability space (Ω,F ,P) and an information filtration (Ft)t∈R+ , satisfying
the usual conditions, see e.g., Øksendal, B. 2003 [14]. At a time t > 0, the correlation
coefficient of two Brownian motions (BMs) W1

t and W2
t is defined as

ρ1,2(t) =
E
[
W1

t W2
t
]

t
.

If one assumes that ρ1,2(t) is constant, ρ1,2
t = ρ1,2 for all t > 0, say W1

t and W2
t are

correlated with the constant ρ1,2.
Therefore, we give the definition of time-dependently correlated BMs.

Definition 1. Teng, L.; Günther, M.; Ehrhardt, M. 2016 [11] Two Brownian motions W1
t and W2

t
are called dynamically correlated with correlation function ρ(t), if they satisfy

E
[
W1

t W2
t

]
=
∫ t

0
ρ(s)ds,

where ρ(t) : [0, t] → [−1, 1]. The average correlation of W1
t and W2

t , ρAv, is given by ρAv :=
1
t
∫ t

0 ρ(s)ds.

In [12], the authors show how to construct Q(t), namely k(t), as given in (3) for both
the cases whether k(t) and

∫ t
0 k(s) ds are commutative or non-commutative. We propose a

new correlation flow in the commutative case, and then apply it into the Heston model.
Suppose that the initial correlation matrix ρ(0) and standard deviations σS, σν are given,
which can be converted to the initial covariance matrix

P(0) := P0 =

(
(σS)2 ρ(0)σSσν

ρ(0)σSσν (σν)2

)
. (6)

Let ∫ t

0
k(s) ds = (αt + cos(βt + cos(ζt)) + 2πn)

(
0 −1
1 0

)
,

which is skew-symmetric, where n is an integer. Thus, we see that the unique solution of
(4) is given by

Q(t) = e
∫ t

0 k(s) ds =

(
cos(αt + cos(βt + cos(ζt))) − sin(αt + cos(βt + cos(ζt)))
sin(αt + cos(βt + cos(ζt))) cos(αt + cos(βt + cos(ζt)))

)
, (7)

which are rotation matrices. Thus, the covariance flow can be defined as

P(t) = Q(t)>P0Q(t), (8)

where P0 and Q(t) are given in (6) and (7), respectively. Finally, the correlation flow can
be obtained by converting the latter covariance flow, which is denoted by (ρ(t))t∈R+

and
used in the sequel.
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For two independent BMs W1
t and W3

t , we define

W2
t =

∫ t

0
ρ(s)dW1

s +
∫ t

0

√
1− ρ2(s) dW3

s ,

with the symbolic expression

dW2
t = ρ(t)dW1

t +
√

1− ρ2(t) dW3
t .

It can be easily verified that W2
t is a BM and correlated with W1

t time-dependently by
ρ(t), namely

dW1
t dW2

t = ρ(t) dt

Note that, in our setting above, the correlation flow is specified with 6 parameters,
which are ρ0, σS, σν, α, β and ζ. However, more parameters can be included for a better
fitting, e.g., setting

∫ t

0
k(s) ds = (α1t + cos(α2t + cos(α3t + · · ·+ cos(αmt) · · · )) + 2πN)

(
0 −1
1 0

)
.

for N + 3 parameters.

4. The Heston Model with Correlation Flow

The pure Heston’s stochastic volatility model is specified as

dSt = µSStdt +
√

νt St dWS
t , (9)

dνt = κν(µν − νt)dt + σν
√

νt dWν
t , (10)

where St is the spot price of the underlying asset, νt is the volatility (variance), and the
Brownian motions WS

t and Wν
t are correlated by the constant correlation ρSν. To include

a time-dependent correlation, we let dSt and dνt be related with the time-dependent
correlation ρ(t) instead of ρSν. Therefore, the Heston model extended with time-dependent
correlation ρ(t) is defined as

dSt = µSStdt +
√

νt St dW̃S
t ,

dνt = κν(µν − νt)dt + σν
√

νt(ρ(t) dW̃S
t +

√
1− ρ2(t) dW̃ν

t ),
(11)

where W̃S
t and W̃ν

t are independent. In this work, we consider, e.g., a European call op-
tion with strike price K and maturity T, and solve (11) numerically using BSDE-based Teng,
L. 2019 [13] and ODE-based [11] methods.

4.1. The BSDE-Based Numerical Approximation

The BSDE for the pure Heston model is derived in [13]:

−dYt =

(
−λ
√

νt

σν
Z1

t +

(
ρλ
√

νt√
1− ρ2σν

− (µS − r)√
1− ρ2√νt

)
Z2

t − rYt

)
dt− Zt

(
dW̃ν

t
dW̃S

t

)

with Zt = (Z1
t , Z2

t ), where r is the interest rate, λ is the parameter for the market price of the
volatility risk as that in [1], and W̃ν

t and W̃S
t are independent BMs. Let YT = max(ST −K, 0),

Yt is thus the Heston option value V(t, St, νt, ρSν), and Zt presents the hedging strategies
with (Z1

t , Z2
t ) =

(
∂V
∂ν σν
√

νt +
∂V
∂S Stρ

√
νt, ∂V

∂S St
√

1− ρ2√νt

)
. Analogously, the correspond-

ing BSDE for the extended Heston model in (11) can be directly adopted as

−dYt =

(
− λ̃
√

νt
σν

Z1
t +

(
ρ(t)λ̃

√
νt√

1−ρ2(t)σν
− (µS−r)√

1−ρ2(t)
√

νt

)
Z2

t − rYt

)
dt− Zt

(
dW̃ν

t
dW̃S

t

)
, (12)
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where the correlation flow ρ(t) is constructed in the previous section, and with the param-
eters ρ0, σS, σν, α, β and ζ. λ̃, which is the parameter for the market price of the volatility
risk and depends also on the correlation flow, can be written as λ̃(S, ν, ρ(t), t). This is to
say that the price of correlation risk has been embedded in the price of volatility risk.
The option value and corresponding hedging strategies are given by Yt = V(t, St, νt, ρ(t))
and (Z1

t , Z2
t ) =

(
∂V
∂ν σν
√

νt +
∂V
∂S Stρ(t)

√
νt, ∂V

∂S St
√

1− ρ(t)2√νt

)
for YT = max(ST − K, 0),

respectively. Finally, the two-dimensional BSDE shown in (12) can be solved using a
BSDE-based numerical method, and we choose the regression tree-based approach in [13].

4.2. The ODE-Based Numerical Approximation

For comparative purposes, we also apply the method proposed in [11] to numerically
solve (11). Applying Itô’s lemma and no-arbitrage argument, it yields [1]

1
2

νS2 ∂2U
∂S2 + ρ(t)σννS

∂2U
∂S∂ν

+
1
2

σ2
ν ν

∂2U
∂ν2 + rS

∂U
∂S

+ [κν(µν − ν)− λ̃(S, ν, ρ(t), t)ν]
∂U
∂ν
− rU +

∂U
∂t

= 0.
(13)

We consider, e.g., a European call option with maturity T and strike price K

V(S, ν, t, ρ(t)) = SP1 − KP(t, T)P2, τ = T − t, (14)

with the discount factor P(t, T). We see that both the in-the-money probabilities P1, P2 must
satisfy the PDE (13) as well as their characteristic functions that are defined by

f j(St, νt, ρ(t), φ, t) = E[eiφ ln ST |St, νt, ρ(t)] = eCj(τ,φ)+Dj(τ,φ)ν+iφ ln St , j = 1, 2, (15)

where Cj(0, φ) = 0 and Dj(0, φ) = 0. We substitute (15) into the PDE (13) and, thus, obtain
the following ordinary differential equations (ODEs) for the unknown functions C and D :

−1
2

φ2 + ρ(t)σνφiDj +
1
2

σ2
ν D2

j + ujφi− bjDj +
∂Dj

∂t
= 0, (16)

rφi + κνµνDj +
∂Cj

∂t
= 0, (17)

with the initial conditions Cj(0, φ) = Dj(0, φ) = 0

u1 = 0.5, u2 = −0.5, b1 = κν + λ− ρ(t)σν and b2 = κν + λ.

We apply the explicit Runge–Kutta method to numerically solve (16) and (17) for
C and D and, thus, also the characteristic functions (15). Before that, the correlation flow
needs to be generated using (8). Finally, we employ the COS method Fang, F.; Oosterlee,
C.W. 2008 [15] to obtain the option price V(S, ν, t, ρ(t)) in (14). The error consists of the
error using the explicit Runge–Kutta method and error using the COS method. The detailed
analysis of error using COS method has been provided in [15].

4.3. Numerical Results

For the numerical results, we set the maturity: T = 0.5, the interest rate: r = 0.03, the
parameter for market price of volatility risk: λ̃ = 0, stochastic volatility: ν0 = 0.04, κν = 1.9,
µν = 0.04, σν = 0.1, correlation flow: ρ(0) = −0.5, σS = 0.5, σν = 0.3, α = 2.1, β = 1.1,
ζ = −0.1. Note that the risk-neutral probability measure is not needed in the BSDE-based
method; thus, we still have µS in the model, and set µS = 0.05. In Table 1, we report the
numerical prices using both numerical methods, but varying the strike K.
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Table 1. Numerical approximations of option prices using both the BSDE- and ODE-based methods,
in the BSDE-based method we use 10 time steps, 50,000 samples, and perform 10 runs; numbers in
parentheses are standard deviations.

K BSDE-Based Method ODE-Based Method

70 31.07 (0.06) 31.07
80 21.49 (0.05) 21.50
90 12.89 (0.05) 12.89

100 6.35 (0.03) 6.36
110 2.47 (0.03) 2.50
120 0.74 (0.01) 0.77
130 0.17 (0.00) 0.19

5. Calibration of the Heston Model with Correlation Flow

In this section, we calibrate the Heston model extended by the correlation flow to
the real market data and compare these to the pure Heston model Heston, S.L. 1993 [1],
the Heston model with a time-dependent correlation function [11], and the time-dependent
Heston model Mikhailov, S.; Nögel, U. 2003 [6]. For comparable purposes, we take the data
of Nikk300 index Call-options on July 16, 2012 (spot price 150.9) used in [11], and use the
ODE-based numerical method.

We perform the calibration that was considered in [11] for our new model. Given that
the market prices VM(Ti, Kj) = VM

ij , for N maturities Ti, i = 1, . . . , N and M strikes Kj,

j = 1, . . . , M, the corresponding model prices V(Ti, Kj; Θ) = VΘ
ij are computed with (14).

One can minimize the relative mean error sum of squares (RMSE) for the loss function
1

M×N ∑i,j
(VM

ij −VΘ
ij )

2

VM
ij

to obtain the parameter estimates

Θ̂ = arg min
1

M× N ∑
i,j

(VM
ij −VΘ

ij )
2

VM
ij

.

Firstly, the estimated parameters and errors for the pure Heston model (abbr. PH),
the Heston model with time-dependent correlation (CH) [11], and the time-dependent He-
ston model by Mikhailov and Ngel [6] (MN) are reproduced and reported in Tables 2–4,
respectively. We report the estimated parameters and error for the Heston model extended
with the correlation flow (FH) in Table 5.

We observe that the estimation error with the FH model is clearly less than the
errors with the PH, CH, and MN (sum of errors for each maturity) models. Furthermore,
in Figure 1, we display and compare the implied volatilities for all of the models to the
market volatilities for a clear illustration.

Table 2. The estimated parameters and errors for the pure Heston model [1] for the maturities
T = 1/12, 1/4, 1/2, 1.

ν̂0 κ̂ν µ̂ν σ̂ν ρ̂ Error

0.029 4.746 0.053 1.108 −0.355 1.10× 10−3

Table 3. The estimated parameters and errors for the extended Heston model with time-dependent
correlation function [11] for the maturities T = 1/12, 1/4, 1/2, 1.

ν̂0 κ̂ν µ̂ν σ̂ν ˆ̄ρ0 κ̂ρ µ̂ρ σ̂ρ Error

0.027 5.542 0.055 1.224 −0.165 5.333 −0.752 0.434 2.38 × 10−4
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Table 4. The estimated parameters and errors for the time-dependent Heston model by Mikhailov
and Nögel [6] for the maturities T = 1/12, 1/4, 1/2, 1, respectively.

Maturity ν̂0 κ̂ν µ̂ν σ̂ν ρ̂ Errors

1/12 0.025 2.749 0.095 1.172 −0.201 1.78× 10−4

1/4 0.012 2.936 0.076 0.524 −0.411 2.45× 10−5

1/2 0.011 2.890 0.058 0.592 −0.430 1.14× 10−5

1 0.001 2.911 0.051 0.558 −0.389 4.28× 10−6

Table 5. The estimated parameters and errors for the Heston model extended with correlation flow
for the maturities T = 1/12, 1/4, 1/2, 1.

The Extended Heston Model with Correlation Flow

ν̂0 κ̂ν µ̂ν σ̂ν ρ̂(0) σ̂S σ̂ν α̂ β̂ ζ̂ Error

0.026 6.711 0.052 1.267 −0.034 0.601 0.327 2.162 1.080 −0.021 7.66× 10−5
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Figure 1. The comparison of implied volatilities for all the models to the market volatilities.

One see that the implied volatilities for our new model (FH) are much closer to the
market volatilities than that for the PH model, especially when that T = 1/12. Furthermore,
the implied volatilities for our model are slightly better when compared with both the CH
and MN models.

6. Conclusions

In this work, we proposed a new correlation flow that is driven by isospectral flow,
which provides the valid time-dependent correlation matrix at each time instance. Fur-
thermore, we showed that the proposed correlation flow can be easily incorporated into
another financial model via the time-dependently correlated BMs. The included correlation
flow allows us to choose, in a reasonable way, additional (arbitrarily many) parameters to
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increase the fitting quality. We incorporated our proposed correlation flow into the Heston
model, and analyzed its numerical approximation using both the BSDE- and ODE-methods.
For comparative purposes, we fit several different models to the same market data. The nu-
merical calibration results show that the Heston model extended by using correlation flow
provides better volatility smiles than the Heston model with other considered extensions.
Our findings show, again, that a non-constant correlation should be used in practical appli-
cations, and the behavior of real market can thus be described better. Furthermore, note
that the correlation flow can also be applied to some other financial models for pricing and
hedging by replacing the constant correlation for a better performance, as market requires.
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