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Abstract: Growth differentiation factor 15 (GDF-15) is a stress-induced cytokine associated with
acute and chronic inflammatory states. This prospective observational study aimed to investigate the
prognostic roles of GDF-15 and routine clinical laboratory parameters in COVID-19 patients. Upon
the admission of 95 adult hospitalized COVID-19 patients in Croatia, blood analysis was performed,
and medical data were collected. The patients were categorized based on survival, ICU admission,
and hospitalization duration. Logistic regression and ROC curve methods were employed for the
statistical analysis. Logistic regression revealed two independent predictors of negative outcomes:
CURB-65 score (OR = 2.55) and LDH (OR = 1.005); one predictor of ICU admission: LDH (OR = 1.004);
and one predictor of prolonged hospitalization: the need for a high-flow nasal cannula (HFNC) upon
admission (OR = 4.75). The ROC curve showed diagnostic indicators of negative outcomes: age,
CURB-65 score, LDH, and GDF-15. The largest area under the curve (AUC = 0.767, specificity = 65.6,
sensitivity = 83.9) was represented by GDF-15, with a cutoff value of 3528 pg/mL. For ICU admission,
significant diagnostic indicators were LDH, CRP, and IL-6. Significant diagnostic indicators of
prolonged hospitalization were CK, GGT, and oxygenation with an HFNC upon admission. This
study reaffirms the significance of the commonly used laboratory parameters and clinical scores in
evaluating COVID-19. Additionally, it introduces the potential for a new diagnostic approach and
research concerning GDF-15 levels in this widespread disease.

Keywords: COVID-19; growth differentiation factor 15; inflammation; L-Lactate Dehydrogenase;
mortality; SARS-CoV-2

1. Introduction
1.1. GDF-15 Expression and Its Role as an Immune Mediator

Growth differentiation factor 15 is a member of the transforming growth factor-β
(TGF-β) superfamily, expressed in the cells of reproductive organs such as the placenta and
prostate. However, under stress conditions, its expression can be induced in endothelial
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cells, vascular smooth muscle cells, cardiomyocytes, adipocytes, and macrophages. Addi-
tionally, research indicates that local blood circulation obstruction can trigger the release of
GDF-15 [1].

Under normal physiological conditions, the GDF-15 levels remain low in healthy
individuals, in contrast to patients with certain malignant diseases, pregnant women, and
obese individuals [1–5]. Moreover, GDF-15 expression increases with age and is associated
with tissue stress and injury [1,6–8], as well as with chronic inflammatory conditions, such
as rheumatoid arthritis, Behçet’s disease, and type I diabetes mellitus. Therefore, it can
be assumed that not only acute but also chronic inflammation can lead to an increase in
GDF-15 levels, likely due to its protective role in both cases [1,9–11].

Additionally, despite its presumed protective role in tissues, since it is typically trig-
gered by more severe forms of underlying disease, GDF-15 is commonly identified as a
biomarker associated with an unfavourable disease course.

1.2. GDF-15 and COVID-19

As mentioned, GDF-15 is likely released from the endothelial cells. Given that SARS-
CoV-2 is known for both direct and indirect endothelial damage, an elevation of GDF-15 in
COVID-19 can be anticipated [12].

In two proteomics analyses, a positive correlation was observed between a higher GDF-
15 expression, disease severity, and the duration of intensive care unit (ICU) recovery [13,14].
Additionally, there are indications that the GDF-15 levels could be higher in hospitalized
SARS-CoV-2 patients than in discharged patients who do not require hospitalization [15,16]
and also in patients with poorer respiratory function at hospital admission [17,18], as well
as those with a worse clinical outcome [19–21]. Furthermore, a study on autopsy lungs and
plasma samples correlated GDF-15 levels with tissue damage and fibrotic remodelling of
the lungs in COVID-19 patients [22]. On the contrary, a study by Delaye et al. reported
lower median levels of GDF-15 in COVID-19 patients compared to SARS-CoV-2-negative
patients [23], and another study implied that there is no association between GDF-15 and
the need for hospitalization in SARS-CoV-2 patients [24].

1.3. Study Design, Objectives, and Hypothesis

This prospective observational cohort pilot study, conducted at the University Hospital
Centre Osijek, aimed to investigate the prognostic significance of GDF-15 in COVID-19
patients in relation to mortality, ICU admission, and length of hospitalization. Our hy-
pothesis suggested that patients with higher initial levels of GDF-15 would be more likely
to experience fatal outcomes, ICU admission, and extended hospitalization. Addition-
ally, we evaluated the prognostic value of routine clinical laboratory parameters in this
study. Ethical approval for this research was obtained from both the Ethics Commit-
tee of the University Hospital Centre Osijek and the Ethics Committee of the Faculty of
Medicine Osijek.

To the best of our knowledge, this study is the first to investigate the correlation
between GDF-15 expression and three crucial indicators for evaluating disease severity:
clinical outcomes, ICU admission, and the length of hospitalization.

2. Materials and Methods
2.1. Participants

The participants of this prospective study were patients aged 18 years and older,
initially hospitalized in the Clinic for Infectious Diseases at the University Hospital Centre
Osijek during a 45-day period amid the COVID-19 pandemic. The study’s inclusion criteria
involved hospitalization necessity and a positive SARS-CoV-2 polymerase chain reaction
(PCR) test, with the sample obtained using a nasopharyngeal swab. Patients who had not
survived 72 h after admission were excluded from the study. In total, 95 patients were
enrolled in this study, and all the patients were followed up from hospital admission until
discharge or a lethal outcome. Informed consent was obtained from the patients enrolled
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in the study or their legal guardians, and the research was conducted in accordance with
the previously mentioned ethics committee approvals and the Declaration of Helsinki.

To detect differences in continuous variables with an effect size (f) of 0.25, a test power
of 0.80, and a significance level of 0.05, the minimum sample size is determined to be
44 patients. Furthermore, for regression analysis with a test power of 80%, a minimum
sample size of 56 participants is required. In conclusion, the established minimum sample
size for the research was 56 patients (G*Power, 3.1.2).

2.2. Methods

Upon admission, a blood analysis was immediately performed on each patient enrolled
in the study. The samples were obtained via venipuncture, and sampling was undertaken
using a 4 mL BD Vacutainer® CAT (Clot Activator Tube); a 3 mL BD Vacutainer® K2EDTA
Tube; and a 2.7 mL BD Vacutainer® 9NC Trisodium Citrate Tube (Becton Dickinson and
Company, Belliver Industrial Estate, Plymouth, UK).

The analysis of the samples collected in the 3 mL BD Vacutainer® K2EDTA for complete
blood count (CBC) and differential blood count (DBC) was conducted using a hematology
analyzer Sysmex XN-2000 (Sysmex Corporation, Kobe, Japan).

The sample collected in the 2,7 mL BD Vacutainer® 9NC Trisodium Citrate Tube
was centrifuged for 10 min at 2000× g, and subsequently, the prothrombin time (PT), D-
dimers, fibrinogen (Fbg), antithrombin 3 (AT 3), and activated partial thromboplastin time
(aPTT) were measured using a BCS XP coagulometer (Siemens Healthineers AG, Erlangen,
Germany).

The sample from the 4 mL BD Vacutainer® CAT (Clot Activator Tube) was centrifuged
for 10 min at 2000× g. In the serum sample, urea (BUN), creatinine, aspartate amino-
transferase (AST), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), alkaline
phosphatase (ALP), gamma-glutamyltransferase (GGT), creatine kinase (CK), and albumin
were determined using the spectrophotometric method; C-reactive protein (CRP) and fer-
ritin were measured using the immunoturbidimetric method; and sodium (Na), potassium
(K), and chloride (Cl) were measured using indirect potentiometry, all using the AU480
analyzer (Beckman Coulter, Brea, CA, USA) and using the same reagents according to the
manufacturer’s instructions.

Additionally, interleukin-6 (IL-6), procalcitonin (PCT), and growth differentiation
factor 15 (GDF-15) were measured in the serum sample using an electrochemiluminescent
method (ECLIA) using the COBAS e601 immunoassay analyzer (Roche Diagnostics GmbH,
Mannheim, Germany), and high-sensitivity troponin I (hsTnI) was measured using a
homogeneous immunoassay method based on LOCI technology using the Dimension EXL
analyzer with LM (Siemens Healthcare Diagnostics, Newark, NJ, USA).

All the mandatory laboratory health and safety procedures were complied with during
the course of conducting the experimental work reported in this paper.

Chest X-rays were performed upon admission to radiologically confirm or rule out
pneumonia, to the extent permitted by this recording method.

In addition to the aforementioned measurements, patients’ data were collected from
their medical history. The collected data included age, sex, vaccination information, in-
formation about earlier SARS-CoV-2 infection, comorbidities (diabetes mellitus, cardiac
disease, lung disease, chronic kidney disease), clinical signs and symptoms of disease at
admission, systolic and diastolic blood pressure, peripheral blood oxygen saturation, heart
rate, respiratory rate, Glasgow Coma Scale (GCS) score, length of hospitalization, the need
for ICU admission, and clinical outcomes.

Additionally, it was documented whether the patient required a high-flow nasal
cannula (HFNC) and/or invasive mechanical ventilation (IMV) during hospitalization.

The CURB-65 score [25] (1 point for confusion, urea >7 mmol/L, respiratory rate ≥30,
systolic blood pressure <90 mmHg or diastolic blood pressure ≤60 mmHg, age ≥65 years;
maximum 5 points) and the quick Sequential Organ Failure Assessment (qSOFA) score [26]
(1 point for altered mental status, GCS <15, respiratory rate ≥22, systolic blood pressure



Biomedicines 2024, 12, 757 4 of 17

<100 mmHg; maximum 3 points) were calculated of each participant, as well as their mean
arterial pressure (MAP). MAP was calculated using systolic and diastolic blood pressure:
(systolic blood pressure + double diastolic blood pressure) divided by 3.

2.3. Statistical Methods

Categorical data were presented using absolute and relative frequencies. Differences
in the categorical variables were assessed using the Chi-square test and Fisher’s exact
test. The normality of the distribution of the continuous variables was tested using the
Shapiro–Wilk test. Continuous data were described using the median and interquartile
range. Differences in the continuous variables between two independent groups were
examined using the Mann–Whitney U test. Correlation was evaluated using Spearman’s
correlation coefficient (ρ). Logistic regression analysis (bivariate, multivariate—stepwise
method) was used to analyze the independent factors associated with the outcomes. The
receiver operating curve (ROC) was used to determine the optimal threshold, area under
the curve (AUC), specificity, and sensitivity of the tested parameters. All the p values were
two-tailed. The significance level was set at Alpha = 0.05. The statistical analyses were
performed using MedCalc® statistical software version 22.018 (MedCalc Software Ltd.,
Ostend, Belgium; https://www.medcalc.org; 2024, accessed on 8 January 2024) and SPSS
version 23.0 (Released 2015. IBM. Armonk, NY, USA: IBM Corp.).

3. Results

After the exclusion of patients who did not meet the inclusion criteria or met exclusion
criteria, our study comprised 95 participants. The baseline demographic and clinical
characteristics of the participants are summarized in Table 1.

Table 1. Baseline demographic and clinical characteristics of participants.

Sex [n (%)]
Male 41 (43)
Female 54 (57)

Age [Median (range)] 76 (22–93)

Length of hospitalization [Median (IQR)] 9 (6–13)

Mean arterial pressure—MAP (mmHg) 83.3 (76.7–93.3)

Vaccinated [n (%)] 34 (36)

Comorbidities [n (%)]
Type 2 diabetes mellitus 21 (22)
Hypertension 68 (72)
Cardiomyopathy 21 (22)
Atrial fibrillation 9 (10)
Lung disease 10 (11)
Chronic kidney disease 4 (4)

Clinical symptoms [n (%)]
General symptoms

Fever 71 (75)
Cephalea 5 (5)
Chills/shivering 19 (20)
General weakness 63 (66)
Nausea 15 (16)
Myalgia or arthralgia 21 (22)
Confusion 15 (16)

Respiratory symptoms
Cough 81 (85)
Sore throat 5 (5)
Chest pain 28 (30)
Hemoptysis 3 (3)

https://www.medcalc.org
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Table 1. Cont.

Dyspnea (anamnestic) 60 (63)
Dyspnea (at examination) 73 (77)

Gastrointestinal symptoms
Diarrhea 26 (27)
Vomiting 6 (6)

Skin changes 2 (2)

Complications [n(%)]
Pulmonary complications

Pneumonia 91 (96)
Unilateral involvement 10/91 (11)
Bilateral involvement 81/91 (89)

Pulmonary embolism 1 (1)
Pleural effusion 36 (38)
Oxygenation (nasal catheter or mask) 89 (94)
Oxygenation (high-flow nasal cannula—HFNC) 36 (38)
Invasive mechanical ventilation (IMV) 20 (21)

IQR—interquartile range.

A total of 34 patients (36%) were vaccinated, and none of them had a prior history
of COVID-19 infection. The most prevalent comorbidity among the cohort was arterial
hypertension, followed by type 2 diabetes mellitus and cardiomyopathy (Table 1).

Concerning the clinical symptoms and signs, fever was the most frequently reported
general symptom, followed by general weakness. Among the respiratory symptoms, cough
was the most common, while dyspnea was reported during the examination in 77% of
cases and in the anamnesis of 63% of patients. The majority of the patients presented with
pneumonia, predominantly bilateral, necessitating oxygen therapy in most cases. Some
individuals encountered complications, including pleural effusion, and required high-flow
nasal cannula (HFNC) support, as detailed in Table 1.

The patients were divided into groups, as shown in the figure (Figure 1).
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Regarding the clinical outcomes, patients with a fatal outcome are significantly older
and have a higher frequency of cardiomyopathy as a comorbidity. Additionally, their
qSOFA score and CURB-65 score upon admission are significantly higher. In terms of the
laboratory findings upon admission, patients with a fatal outcome, compared to those
who survived, have significantly lower values of MCHC, platelets, and eosinophils. They
also exhibit significantly higher values of RDW-CV, AST, CK, LDH, urea, creatinine, CRP,
high-sensitivity troponin I, IL-6, and GDF-15 (Table 2).

Table 2. Baseline characteristics of the participants according to the studied outcomes.

Clinical Outcome

p 3

ICU Admission

p 3

Length of Hospitalization

p 3

Survivors
(n = 64)

Non-
Survivors

(n = 31)

Non-ICU
(n = 71)

ICU
(n = 24)

Less than 10
Days (n = 52)

10 and More
Days (n = 43)

Demographic data
Female, n (%) 36 (56) 18 (58) 0.870 1 41 (58) 13 (54) 0.760 1 31 (59) 23 (54) 0.550 1

Age in years, median
(range) 71 (22–90) 79 (56–93) 0.003 74 (22–93) 77 (56–89) 0.400 77 (22–93) 76 (33–89) 0.550

Vaccinated, n (%) 25 (39) 9 (29) 0.340 1 28 (39) 65 (25) 0.200 1 22 (42) 12 (28) 0.150 1

Length of
hospitalization in
days, median (IQR)

8 (6–13) 11 (7–15) 0.090 8 (6–12) 13 (8–15) 0.002 7 (5–8) 14 (12–16) <0.001

MAP in mmHg,
median (IQR) 83.3 (80–93.3) 83.3

(73.3–86.7) 0.120 83.3 (73.3–90) 85 (78.3–83.3) 0.240 83.3
(73.3–89.6) 83.3 (80–93.3) 0.340

Comorbidity, n (%)
Type 2 diabetes
mellitus 15 (23) 6 (19) 0.650 1 15 (21) 6 (25) 0.690 1 13 (25) 8 (19) 0.460 1

Hypertension 42 (66) 26 (84) 0.070 1 50 (70) 18 (75) 0.670 1 36 (69) 32 (74) 0.580 1

Cardiomyopathy 10 (16) 11 (36) 0.030 1 13 (18) 8 (33) 0.130 1 10 (19) 11 (26) 0.460 1

Atrial fibrillation 4 (6) 5 (16) 0.15 2 7 (10) 2 (8) >0.990 2 4 (8) 5 (12) 0.730 2

Lung disease 6 (9) 4 (13) 0.720 1 7 (10) 3 (13) 0.710 1 5 (10) 5 (12) 0.750 1

Chronic kidney
disease 2 (3) 2 (7) 0.600 2 3 (4) 1 (4) >0.990 2 3 (6) 1 (2) 0.620 2

Clinical scores, median (IQR)
qSOFA score 1 (1–1) 1 (1–2) 0.010 1 (1–2) 1 (1–2) 0.760 1 (1–2) 1 (1–1) 0.670
CURB-65 score 2 (2–3) 3 (3–4) <0.001 1 (2–3) 2 (2–4) 0.200 3 (2–3) 3 (2–3) 0.580
Laboratory findings, median (IQR)
WBC (×109/L) 6.6 (5.3–9.4) 6.8 (4.6–11.9) 0.990 6.4 (5.1–10.1) 7.5 (4.8–10.1) 0.870 7.1 (5.1–10.5) 6.3 (5.1–9.3) 0.570
RBC (×1012/L) 4.5 (4–5) 4.3 (4–4.9) 0.380 4.46 (4–5) 4.48 (4–4.9) 0.840 4.39 (3.9–4.9) 4.64 (4.1–5) 0.060

Hb (g/L) 136
(119–146)

131
(120–146) 0.850 135

(119–144)
135

(122–1501) 0.470 130
(116–143)

138
(125–150) 0.050

Hct (L/L) 0.4 (0.4–0.4) 0.4 (0.4–0.4) 0.810 0.4 (0.4–0.4) 0.41 (0.4–0.4) 0.340 0.39 (0.4–0.4) 0.41 (0.4–0.4) 0.040

MCV fL) 87.8
(84.6–91.8)

89.9
(87–93.7) 0.110 88.2

(84.5–92.6)
89.05

(87–93.4) 0.330 88.9
(86.1–92.9)

87.4
(84.3–92.3) 0.220

MCHC (g/L) 334
(327–342)

331
(320–338) 0.040 333

(326–342)
332

(321–342) 0.410 334 (325–341) 333 (326–342) 0.920

RDW-CV (%) 13.3
(12.9–14.1)

14.3
(13.4–15.9) 0.002 13.4

(13.1–14.6)
13.95

(13–15.2) 0.330 13.4
(13–14.7)

13.7
(13.1–14.6) 0.620

Platelets (×109/L) 213
(155–273)

195
(138–224) 0.220 210

(148–281) 197 (159–222) 0.390 204
(159–307)

195
(138–251) 0.130

Neutrophils (%) 76 (68–86) 79 (73–87) 0.200 76 (68–86) 80 (74–88) 0.110 76 (68–87) 78 (70–86) 0.320
Lymphocytes (%) 15 (8–22) 12 (7–17) 0.190 15 (8–21) 12 (6–16) 0.120 15 (8–23) 12 (7–17) 0.170
Band cells (%) 0 (0–0) 0 (0–0) 0.080 0 (0–0) 0 (0–0) 0.930 0 (0–0) 0 (0–0) 0.230
Monocytes (%) 8 (5–9) 6 (4–9) 0.170 8 (5–9) 6 (4–9) 0.270 8 (5–9) 7 (5–10) 0.590
Basophils (%) 0 (0–0) 0 (0–0) 0.110 0 (0–0) 0 (0–0) 0.180 0 (0–0) 0 (0–0) 0.240
Eosinophils (%) 0 (0–7) 0 (0–0) 0.030 0 (0–0) 0 (0–0) 0.070 0 (0–7) 0 (0–1) 0.410
PT (INR) 0.9 (0.9–1) 1 (0.9–1) 0.160 0.94 (0.9–1) 0.97 (0.9–1) 0.950 0.95 (0.9–1) 0.96 (0.9–1) 0.790
Fbg (g/L) 6.4 (5.7–7.9) 6.1 (5.4–8.6) 0.830 6.4 (5.4–7.9) 6.4 (5.6–9.5) 0.450 6.35 (5.4–7.4) 6.6 (5.6–9.5) 0.140
APTT (1) 0.8 (0.8–0.9) 0.9 (0.8–1) 0.110 0.85 (0.8–0.9) 0.82 (0.8–0.9) 0.560 0.85 (0.8–0.9) 0.82 (0.8–0.9) 0.400

D-dimers (µg/L FEU) 1281
(799–2173)

1514
(1124–3117) 0.330 1335

(808–2120)
1438

(1037–3356) 0.430 1286
(816–2110)

1506
(840–2685) 0.710

AT-3 (1) 1.1 (1–1.3) 1.1 (1–1.2) 0.060 1.1 (1–1.3) 1.1 (0.9–1.2) 0.200 1.1 (1–1.2) 1.1 (1–1.3) 0.650
AST (U/L) 44 (31–66) 57 (43–98) 0.003 44 (34–66) 67 (44–98) 0.008 45 (29–68) 50 (41–86) 0.060
ALT (U/L) 34 (19–51) 36 (23–51) 0.510 31 (16–50) 39 (30–53) 0.100 31 (17–52) 36 (23–50) 0.330
ALP (U/L) 68 (56–89) 57 (51–75) 0.180 63 (53–89) 63 (50–75) 0.240 61 (55–86) 64 (50–89) 0.570
GGT (U/L) 41 (24–101) 37 (20–96) 0.630 39 (22–90) 38 (23–111) 0.720 30 (17–86) 50 (30–116) 0.030
CK (U/L) 82 (50–228) 142 (74–386) 0.030 83 (55–223) 112 (73–430) 0.080 76 (49–233) 107 (78–288) 0.030

LDH (U/L) 309
(255–382)

405
(278–491) 0.003 314

(253–392)
405

(298–492) 0.005 296
(252–400)

365
(282–432) 0.030

Urea (mmol/L) 6.9 (5.5–9.4) 9.1 (6.9–16) 0.010 7.1 (5.6–10.3) 7.5 (6.2–11.8) 0.390 7.1 (6–10.7) 7.4 (5.5–10.7) 0.850
Creatinine (µmol/L) 80 (65–96) 93 (79–152) 0.004 83 (66–107) 90 (78–114) 0.160 82 (65–108) 86 (72–116) 0.340

Albumin (g/L) 34.7
(31.2–36.8)

32.2
(30.2–37.2) 0.220 34.45

(30.6–36.6)
33.8

(31.4–37.7) 0.510 34.8
(31.1–37.1)

33.6
(30.5–36.3) 0.420

CRP (mg/L) 64
(30.5–110.9)

116.6
(73.3–158.4) 0.002 71.9

(30.9–114.2)
116.8

(60.9–152.8) 0.010 72.6
(30.1–109.1)

101.7
(48.3–152.1) 0.020

PCT (µg/L) 0.1 (0.1–0.2) 0.2 (0.1–0.4) 0.002 0.13 (0.1–0.3) 0.18 (0.1–0.3) 0.150 0.14 (0.1–0.3) 0.17 (0.1–0.3) 0.310

hsTnI (ng/L) 16.8
(8.9–35.5)

29.8
(21.4–64.8) 0.020 24.6

(9.9–57.7)
26.2

(12.6–53.1) 0.960 21.4
(9.8–66)

26.7
(12.3–37.9) 0.550
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Table 2. Cont.

Clinical Outcome

p 3

ICU Admission

p 3

Length of Hospitalization

p 3Survivors
(n = 64)

Non-Survivors
(n = 31)

Non-ICU
(n = 71)

ICU
(n = 24)

Less than 10
Days (n = 52)

10 and More
Days (n = 43)

IL-6 (ng/L) 50.4
(24.5–115.6)

96.9
(58.6–179.5) 0.003 55.6

(26.2–121.2)
76.3

(58.7–154) 0.080 53
(20.5–124)

70.6
(36–136.3) 0.16

Ferritin (µg/I) 582.8
(200–1036.6)

559.8
(234–1275.4) 0.700 528.3

(199.5–1071.7)
594.2

(291.1–1185.9) 0.650 422.8
(191.8–1101.3)

653.5
(361–1070.8) 0.260

Na (mmol/L) 138 (136–140) 138 (137–141) 0.350 138 (136–141) 138 (137–141) 0.750 139 (136–141) 138 (136–141) 0.400
K (mmol/L) 4.1 (3.7–4.4) 4.2 (3.7–4.4) 0.640 4.1 (3.7–4.4) 4.2 (3.8–4.4) 0.450 4.2 (3.7–4.4) 4.1 (3.7–4.4) 0.990
Cl (mmol/L) 101 (96–103) 101 (99–104) 0.360 100 (96–103) 101 (99–104) 0.450 102 (98–104) 100 (96–102) 0.060
Glucose (mmol/L) 7.1 (6.1–9) 7.2 (6–9.8) 0.970 6.9 (6.1–8.6) 7.4 (6.1–10.2) 0.280 6.8 (6–8.5) 7.4 (6.2–9.9) 0.150

GDF-15 (pg/mL) 3078.0
(1671.5–5041.3)

5762.0
(4213.0–10,795) <0.001 3298

(2144–6282)
4845.5

(3039–6700) 0.080 3517
(1957.3–6419)

4143
(2842–5762) 0.590

1 Chi-square test; 2 Fisher’s exact test; 3 Mann–Whitney U test, IQR—interquartile range; ICU—intensive
care unit; WBC—white blood cells; RBC—red blood cells; Hb—hemoglobin; Hct—hematocrit, MCV—mean
cell volume; MCHC—mean corpuscular hemoglobin concentration; RDW-CV—red blood cell distribution
width—coefficient of variation; PT—prothrombin time; INR—international normalized ratio; Fbg—fibrinogen;
APTT—activated partial thromboplastin time; AT-3—antithrombin 3; AST—aspartate aminotransferase;
ALT—alanine aminotransferase; ALP—alkaline phosphatase; GGT—gamma-glutamyltransferase; CK—creatine
kinase; LDH—lactate dehydrogenase; CRP—C-reactive protein; PCT—procalcitonin; hsTnI—high-sensitivity
troponin I; IL-6—interleukin 6; Na—sodium; K—potassium; Cl—chloride; GDF-15—growth differentiation
factor 15.

Patients transferred to the ICU show significantly higher values of AST, LDH, and
CRP compared to other patients (Table 2).

Patients hospitalized for 10 days or more exhibit significantly higher levels of GGT,
CK, LDH, and CRP upon admission, in contrast to those with a hospitalization period of
up to 10 days (Table 2).

We used Spearman’s correlation coefficient (Rho) to examine the association of GDF-15
with age and the qSOFA and CURB-65 scores, as well as the values of inflammatory markers
(CRP, PCT, IL-6) upon admission, considering the outcome and transfer to the ICU. In the
group of subjects with a negative outcome, a positive and significant association was found
between GDF-15 and the qSOFA score, as well as with the values of PCT upon admission.
For patients transferred to the ICU, an association was observed between GDF-15 and PCT
upon admission (Table 3).

Table 3. The association of GDF-15 with age and qSOFA and CURB-65 scores, as well as inflammatory
values upon admission, in relation to the outcome and transfer to the ICU in the group of all patients.

Spearman’s Rank Correlation Coefficient Rho (p Value) GDF-15

All Patients
Clinical Outcome ICU Admission

Survivors Non-Survivors Non-ICU ICU

Age 0.442 (<0.001) 0.479 (<0.001) 0.152 (0.420) 0.541 (<0.001) −0.011 (0.960)
qSOFA score 0.307 (0.003) 0.055 (0.660) 0.644 (<0.001) 0.248 (0.040) 0.499 (0.010)

CURB-65 score 0.537 (<0.001) 0.427 (<0.001) 0.541 (0.002) 0.534 (<0.001) 0.448 (0.030)

Inflammatory markers
CRP 0.337 (0.001) 0.319 (0.010) 0.042 (0.820) 0.380 (0.001) −0.012 (0.960)
PCT 0.586 (<0.001) 0.482 (<0.001) 0.619 (<0.001) 0.541 (<0.001) 0.656 (0.001)
IL-6 0.461 (<0.001) 0.401 (0.001) 0.424 (0.030) 0.520 (<0.001) 0.106 (0.650)

ICU—intensive care unit; CRP—C-reactive protein; PCT—procalcitonin; IL-6—interleukin 6.

Logistic regression was conducted to investigate the influence of multiple factors on
the likelihood of a negative treatment outcome. Independent predictors are variables that
exhibited a change concerning the treatment outcome. The individual impact of each pre-
dictor on a negative outcome is detailed in Table 4. The model considered predictors that
were significant in the bivariate analysis. Comprising two predictors, the model is entirely
statistically significant (χ2 = 23.7, p < 0.001) and explains between 23% (according to Cox and
Snell’s method) and 32% (according to Nagelkerke’s method) of the variance in the presence
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of a negative outcome, accurately classifying 79% of cases. Only two independent predictors
made a unique statistically significant contribution to the model: CURB-65 score and LDH
upon admission. The stronger predictor is the CURB-65 score, meaning that patients with
higher score values have a 2.55 times greater chance of a fatal outcome (Table 4).

Table 4. Prediction of the probability of a negative outcome (bivariate and multivariate regression).

Negative Outcome β Wald p Value Odds Ratio 95% CI

Bivariate regression
Age 0.07 8.48 0.004 1.07 1.02 to 1.12

Cardiomyopathy 1.09 4.57 0.030 2.97 1.09 to 8.6
CURB-65 score 0.99 14.6 <0.001 2.7 1.62 to 4.5

MCHC −0.05 6.32 0.010 0.95 0.91 to 0.98
RDW-CV 0.25 4.4 0.040 1.29 1.02 to 1.64

AST 0.02 6.95 0.008 1.02 1.005 to 1.03
CK 0.001 4.05 0.040 1.001 1.00 to 1.0003

LDH 0.005 7.99 0.005 1.005 1.002 to 1.009
Urea 0.12 7.27 0.007 1.13 1.03 to 1.23

Creatinine 0.01 7.33 0.007 1.01 1.004 to 1.03
CRP 0.008 6.54 0.010 1.01 1.002 to 1.01
PCT 0.96 3.36 0.070 2.60 0.94 to 7.22

hsTnI −0.001 0.01 0.910 0.99 0.99 to 1.001
IL-6 0.002 3.87 0.040 1.002 1.00 to 1.005

GDF-15 0.0002 7.99 0.005 1.0002 1.0001 to 1.0003

Multivariate regression
CURB-65 score 0.99 11.21 <0.001 2.55 1.48 to 4.42

LDH 0.005 5.05 0.020 1.01 1.001 to 1.009
Constant −5.31 18.01 <0.001

β—regression coefficient; MCHC—mean corpuscular hemoglobin concentration; RDW-CV—red blood
cell distribution width—coefficient of variation; AST—aspartate aminotransferase; CK—creatine kinase;
LDH—lactate dehydrogenase; CRP—C-reactive protein; PCT—procalcitonin; hsTnI—high-sensitivity troponin I;
IL-6—interleukin 6; GDF-15—growth differentiation factor 15.

The independent predictors significant in predicting the probability of transfer to
the ICU are presented in Table 5. Through multivariate logistic regression, one predictor
stood out, LDH upon admission, which was entirely statistically significant (χ2 = 5.18,
p = 0.02), explaining between 5% (according to Cox and Snell’s method) and 8% (according
to Nagelkerke’s method) of the variance in the likelihood of ICU transfer, accurately
classifying 73% of cases (Table 5).

Table 5. Prediction of the probability of ICU admission (bivariate and multivariate regression).

ICU Admission β Wald p Value Odds Ratio 95% CI

Bivariate regression
Age 0.03 1.91 0.170 1.03 0.98 to 1.07

Cardiomyopathy 0.80 2.29 0.130 2.23 0.79 to 6.31
CURB-65 score 0.23 1.19 0.270 1.26 0.84 to 1.89
Pleural effusion 1.14 5.45 0.020 3.12 1.20 to 8.10

AST 0.005 1.47 0.230 1.01 0.99 to 1.01
LDH 0.004 4.65 0.030 1.004 1.0003 to 1.007
CRP 0.005 3.37 0.070 1.005 0.99 to 1.01
IL-6 −0.001 0.39 0.530 0.99 0.99 to 1.002

GDF-15 0 0.79 0.370 1.00 1.00 to 1.0001

Multivariate regression
LDH 0.004 4.33 0.030 1.004 1.0003 to 1.007

Constant −2.55 12.8 <0.001

β—regression coefficient; ICU—intensive care unit; AST—aspartate aminotransferase; LDH—lactate dehydroge-
nase; CRP—C-reactive protein; IL-6—interleukin 6; GDF-15—growth differentiation factor 15.



Biomedicines 2024, 12, 757 9 of 17

The predictors significant in predicting the probability of hospitalization for 10 days or
more are presented in Table 6. Through multivariate logistic regression, one predictor stood
out, HFNC upon admission, which was entirely statistically significant (χ2 = 12.6, p < 0.001),
explaining between 12% (using Cox and Snell’s method) and 17% (using Nagelkerke’s
method) of the variance in hospitalization for 10 days or more, accurately classifying 69%
of cases (Table 6).

Table 6. Prediction of the probability of hospitalization for 10 days or more (bivariate and multivariate
regression).

Length of Hospitalization ≥ 10 Days β Wald p Value Odds Ratio 95% CI

Bivariate regression
Age 0.007 0.20 0.650 1.01 0.97 to 1.03
Bilateral pneumonia 1.39 4.12 0.040 4.0 1.05 to 15.3
Pleural effusion 0.86 3.93 0.040 2.35 1.01 to 5.49
High-flow nasal cannula (HFNC) 1.44 10.2 0.001 4.21 1.74 to 10.17
IMV 1.62 8.07 0.005 5.04 1.65 to 15.36
GGT 0.002 0.32 0.570 1.002 0.99 to 1.01
CK 0.001 2.09 0.150 1.001 0.99 to 1.002
LDH 0.003 2.52 0.110 1.003 0.99 to 1.01
CRP 0.007 5.25 0.020 1.01 1.001 to 1.01
GDF-15 −0.0003 0.49 0.480 1.00 0.99 to 1.0001

Multivariate regression
High-flow nasal cannula (HFNC) 1.56 11.8 <0.001 4.75 1.95 to 11.6
Constant −0.99 11.4 <0.001

β—regression coefficient; IMV—invasive mechanical ventilation; GGT—gamma-glutamyl transferase;
CK—creatine kinase; LDH—lactate dehydrogenase; CRP—C-reactive protein; GDF-15—growth differentiation
factor 15.

The ROC curve method was chosen to assess the difference in individual indicators
between groups concerning a negative outcome, ICU admission, and length of hospital-
ization, based on specificity and sensitivity. To assess the value of individual parameters
found to significantly contribute to previous analyses, the ROC curve calculation method
was employed. This involved gradually changing the values that distinguished subjects
concerning the outcome, creating the ROC curve objectively (Figures 2–4) to determine
which value best distinguished the compared groups. In these data, considering a negative
outcome, significant diagnostic indicators include the age of the subjects, CURB-65 score,
LDH, and GDF-15. The diagnostic indicator with the largest area under the curve is repre-
sented by GDF-15, although the other values presented in Table 7 also serve as significant
diagnostic indicators.
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Table 7. Diagnostic value of patient’s age, GDF-15, CURB-65, and LDH (ROC analysis) with respect
to a negative outcome.

GDF-15

AUC 95% CI Sensitivity Specificity Cut Off Youden
Index p Value

GDF-15 (pg/mL) 0.767 0.669–0.848 83.9 65.6 >3528 0.50 <0.001

Age (years) 0.691 0.588–0.782 77.4 57.8 >74 0.35 <0.001

CURB-65 score 0.752 0.653–0.835 80.6 60.9 >2 0.42 <0.001

LDH (U/L) 0.691 0.587–0.781 58.1 82.8 >395 0.41 0.002

AUC—area under the curve; GDF-15—growth differentiation factor 15; LDH—lactate dehydrogenase.

For ICU admission, significant diagnostic indicators are LDH, CRP, and IL-6 (Table 8).
Furthermore, considering the length of hospitalization, significant diagnostic indicators are
CK, GGT, and oxygenation with an HFNC (Table 9).
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Table 8. Diagnostic value of patient’s LDH, CRP, and IL-6 (ROC analysis) with respect to an ICU
admission.

AUC 95% CI Sensitivity Specificity Cut Off Youden
Index p Value

Pleural effusion 0.637 0.532–0.733 58.3 69.0 >0 0.27 0.020

LDH (U/L) 0.694 0.591–0.784 54.2 80.3 >404 0.34 0.002

CRP (mg/L) 0.676 0.572–0.768 70.8 64.8 >95.9 0.36 0.004

IL-6 (ng/L) 0.629 0.521–0.728 81.0 52.9 >58.5 0.34 0.030

AUC—area under the curve: ICU—intensive care unit; LDH—lactate dehydrogenase; CRP—C-reactive protein;
IL-6—interleukin 6.

Table 9. Diagnostic value of patient’s need for HFNC and levels of GGT and CK (ROC analysis) with
respect to hospitalization for 10 days or more.

AUC 95% CI Sensitivity Specificity Cut Off Youden
Index p Value

High-flow nasal
cannula (HFNC) 0.679 0.575–0.771 59.0 76.8 >0 0.36 <0.001

GGT (U/L) 0.621 0.516–0.719 82.1 48.2 >28 0.30 0.030

CK (U/L) 0.635 0.530–0.731 76.9 50.0 >76 0.27 0.020

AUC—area under the curve, GGT—gamma-glutamyltransferase; CK—creatine kinase.

4. Discussion

This study evaluated the predictive and diagnostic value of routine laboratory param-
eters, clinical scores (CURB-65 and qSOFA scores), and GDF-15 in hospitalized COVID-19
patients. It is worth noting that it showed an association between elevated levels of GDF-15
and negative outcome in COVID-19 patients. Furthermore, certain measured laboratory pa-
rameters, clinical scores, and interventions showed associations with mortality, admission
to the ICU, and the prolonged hospitalization of the mentioned group of patients.

The observed patient cohort primarily consisted of elderly individuals who were
unvaccinated and had not experienced COVID-19 before. Additionally, a significant pro-
portion of the patients had at least one comorbidity, with nearly all of them complicated
by pneumonia. It is worth noting that these findings align with expectations given that
the study exclusively focused on hospitalized patients and are in line with the previous
research, which has consistently identified an older age and the presence of comorbidities
as significant risk factors for hospitalization among COVID-19 patients. Moreover, vaccina-
tion has been reported in prior studies to effectively reduce the risk of hospitalization in
individuals afflicted with COVID-19 [27,28].

4.1. Findings Regarding GDF-15

In this research, we assessed not only mortality but also ICU admission and the length
of hospitalization, as all these findings can indicate the severity of COVID-19. The study
aimed to introduce a possible novel biomarker for predicting COVID-19 severity, GDF-15.
Generally speaking, the median values of GDF-15 in all the observed groups were higher
than those expected in healthy individuals according to Doerstling et al. [29], implying
the effect of SARS-CoV-2 on the GDF-15 levels in hospitalized patients. GDF-15 was more
highly expressed in the non-survivor group compared to the survivor group, with a median
value of 5762.0 pg/mL. The ROC analysis marked GDF-15 as a diagnostic indicator of
a negative outcome with moderate specificity and sensitivity. Nevertheless, there was
no statistically significant relationship between the GDF-15 levels and ICU admission
and length of hospitalization. It has already been shown that GDF-15 levels rise in stress
states, and its expression can be induced by hypoxia and endothelial damage [1,8,9,12],
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as well as aging [6,7]. SARS-CoV-2 has affinity for causing such states—tissue hypoxia
as part of pneumonia-caused respiratory failure and endothelial damage due to direct
impact of virus, coagulopathy, complement activation, and hypovolemia in severe forms of
COVID-19 [12,30–32]. When considering the above, it is reasonable to anticipate elevated
levels of GDF-15 in patients with severe manifestations of COVID-19, as detailed in the
hypothesized mechanism explained in Figure 5. Our findings align with this expectation,
supporting similar observations made by other authors [19–21]. However, this pilot study
examines the associations between GDF-15 and clinical outcomes; it does not directly
demonstrate causality. Furthermore, the specified cutoff value of 3528 pg/mL, determined
through the ROC analysis, can assist clinicians in assessing the mortality risk in hospi-
talized COVID-19 patients when observing this parameter, thereby enabling timely and
appropriate treatment to reduce negative outcomes.
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Figure 5. Proposed mechanism of SARS-CoV-2, GDF-15, and iron metabolism interaction. SARS-
CoV-2 causes endothelial damage, tissue hypoxia, and inflammation due to the direct impact of
the virus, coagulopathy, complement activation, and hypovolemia in severe forms of COVID-19.
Endothelial damage, hypoxia, and inflammation have all been previously reported to result in higher
expression of GDF-15 and an increase in its levels. Both GDF-15 and hypoxia have been shown to
lower hepcidin levels, leading to the loss of the normal role of hepcidin—an acute-phase reactant—in
reducing serum iron during an infection. This disruption leads to impaired iron homeostasis, elevated
serum iron values, and oxidative stress. Additionally, GDF-15 directly reduces the release of various
inflammation mediators by binding to the GDNF family receptor α–like (GFRAL) in the brainstem,
thereby decreasing the extent of inflammation. These findings suggest a possible dual role of GDF-15
in acute inflammation: a protective one through GFRAL receptors and a non-protective role through
hepcidin regulation [5,12,30–33]. However, further research is needed.

This is not to neglect that higher GDF-15 levels were associated with a higher CURB-65
score, as well as a higher qSOFA score, older age, and elevated CRP, PCT, and IL-6 levels.
Our results suggest that older age, a higher CURB-65 score, raised CRP values, and elevated
IL-6 levels could predict a negative outcome. It is also recognized that an age greater than
74 years and a CURB-65 score higher than 2 serve as possible diagnostic indicators of a
negative outcome. These findings make us believe that GDF-15 could potentially provide
stronger evidence as a biomarker for severe COVID-19 in a larger cohort of patients.

The found association of GDF-15 with the PCT levels of non-survivors and ICU
patients in this cohort also introduces the need for further research into GDF-15’s possible
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connections with other, more studied inflammatory markers. Considering the speculated
mechanism of GDF-15’s interaction with SARS-CoV-2 and endothelial tissue, further studies
should concentrate on the association between GDF-15 and other inflammatory markers
elevated in endothelial dysfunction, such as platelet factor 4 (PF-4, CXCL4) [34,35], which
has recently been studied in COVID-19 patients [36,37]. The findings of such studies
could help us better understand the pathophysiological mechanisms of GDF-15 release in
COVID-19 and in general.

Given that increases in GDF-15 values do not always align with those of other inflam-
matory markers, we should also consider research aimed at investigating how early in
the course of infectious or inflammatory diseases GDF-15 levels rise. Understanding the
precise dynamics of GDF-15 levels throughout disease progression could help us confirm or
dismiss its role as an early diagnostic biomarker. It is plausible that its values peak earlier
or later in the disease course compared to established acute-phase reactants.

Since there is a receptor for GDF-15 in the brainstem, it would be interesting to observe
its levels in patients with COVID-19 and neurological comorbidity. An umbrella review of
9,228,588 COVID-19 patients by Jong Mi Park et al. showed an increased mortality risk in
patients with certain neurological conditions [38]. Further exploration of the mechanisms
behind such events, which could be linked to the inflammatory process and biomarkers
like GDF-15, is warranted. Another interesting field for further exploration of GDF-15 is in
patients with low seropositivity after COVID-19 vaccination, as described in a systematic
review by Kyuyeon Cho et al. Low seropositivity is often found in patients with weakened
immunity due to comorbidities, and an adequate biomarker to differentiate such patients
in the general population has yet to be found [39]. Such a biomarker could be helpful in
distinguishing these patients and providing the appropriate care.

4.2. Highlighted Findings on Other Laboratory Parameters

The study demonstrates that various routinely determined parameters can be benefi-
cial during the initial evaluation of patients concerning each observed criterion—clinical
outcomes, ICU admission, and length of stay.

When considering the population observed in this research, both higher CRP values
and higher LDH values were expressed in the less favourable groups—non-survivors, ICU-
admitted patients, and those hospitalized for 10 or more days. Additionally, LDH stood
out as predictor of negative outcomes and of transfer to the ICU, as well as a diagnostic
indicator of a negative outcome with a cutoff value of 395 U/L and of transfer to the
ICU with a cutoff value of 404 U/L. C-reactive protein is a known inflammatory marker,
and its levels are usually higher in acute inflammation, especially with a larger extent of
inflammation [40]. The results obtained in this study lead to the conclusion that higher
CRP levels are unfavorable in hospitalized COVID-19 patients. LDH is recognized as a
marker of tissue damage and is elevated in a large number of diseases, but our findings
also suggest that LDH levels should be considered when evaluating COVID-19 patients.
Such results for CRP and LDH are also supported by findings from other authors [41,42].

Both of the aforementioned biomarkers, as well as others proven statistically significant
in this study, are common in clinical use, widely available, and usually cost-effective.

4.3. The Study’s Limitations

This study is primarily a pilot study, as it involved a limited number of patients,
with a high proportion having cardiovascular comorbidities. It is a single-centre study
conducted in one country, and the generalizability of our results is unknown. Therefore,
further research in this field is warranted. Nonetheless, our study can certainly serve as a
foundation for such research. The main limitation of this study is the sample size, which
may explain the absence of statistically significant differences in the GDF-15 concentrations
between the groups of ICU and non-ICU patients and between those hospitalized for
less than ten days and those hospitalized for ten or more days. Despite this limitation,
the median values of GDF-15 were higher in the ICU group of patients and in those
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hospitalized for ten or more days. It is possible to presume that studies on a larger sample
of patients could potentially strengthen GDF-15’s diagnostic significance in survivors and
non-survivors, as well as possibly show its significance in ICU and non-ICU patients or
patients with prolonged hospitalization. Such studies are yet to be conducted to either
confirm or refute our findings.

This research also faces confounding bias, as some of the observed patients had
comorbidities that could theoretically have affected their GDF-15 levels, such as adiposity
or chronic diseases. Omitting comorbidities in the study was not feasible, as individuals
with COVID-19 requiring hospitalization tended to have such medical conditions.

Another limitation of this study is the lack of observation of the patients after hospi-
talization. Our study lacks an assessment of downstream morbidity and mortality. More
precisely, GDF-15 levels could also be measured after the clinical resolution of COVID-19,
and it remains to be determined whether the levels of GDF-15 will decrease to their basal
values. Such results could help better determine the impact of comorbidities (confounding
bias) on GDF-15 levels and shed light on GDF-15 levels in long COVID-19 compared to
patients who achieve full recovery.

5. Conclusions

Considering the obtained results, our hypothesis is partially accepted, and further
research is necessary.

To our knowledge, the reports on GDF-15 expression during COVID-19 are limited
and somewhat contradictory. Some studies have been conducted on specific patient groups,
such as patients on hemodialysis or those with chronic kidney disease, where underlying
diseases could affect the GDF-15 levels [14,43]. Most of the previously performed studies
support evidence of higher GDF-15 levels in COVID-19 patients requiring hospitalization
and those with a more severe form of the disease [15–22], while others have provided data
supporting lower levels of GDF-15 in hospitalized COVID-19 patients or no significant
difference between hospitalized and discharged patients, nor between SARS-CoV-2-positive
and -negative patients [18,23,24]. Our findings align with the majority of studies conducted
so far, indicating a higher expression of GDF-15 at the moment of hospitalization in patients
with a negative outcome of COVID-19. As far as we are aware, this is the first study
examining GDF-15 expression in relation to three key parameters in assessing disease
severity: clinical outcomes, ICU admission, and the duration of hospitalization. Since
studies are scarce, it is imperative to continue research on this topic with larger patient
cohorts to fully understand the potential of GDF-15 as a biomarker of COVID-19 severity
and to recognize its pathophysiological pathways in this disease, as well as in others.
Questions regarding the dynamics of GDF-15 elevation and its time interval for chronic
diseases, pregnancy, adiposity, and other prolonged clinical states, as well as the same
questions for acute diseases such as COVID-19 and sepsis, remain to be pondered. Also,
the expected levels of GDF-15 and cutoff values in those states require further study.

In conclusion, this study reaffirms the significance of commonly used laboratory
parameters and clinical scores in the evaluation of COVID-19, but it also introduces the
potential for a new diagnostic approach and research concerning GDF-15 levels in this
widespread disease.
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