
Citation: Ma, Z.; Sharma, R.; Rogers,

A.N. Physiological Consequences of

Nonsense-Mediated Decay and Its

Role in Adaptive Responses.

Biomedicines 2024, 12, 1110.

https://doi.org/10.3390/

biomedicines12051110

Academic Editor: Manuela Cabiati

Received: 7 April 2024

Revised: 30 April 2024

Accepted: 13 May 2024

Published: 16 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biomedicines

Review

Physiological Consequences of Nonsense-Mediated Decay and
Its Role in Adaptive Responses
Zhengxin Ma 1,*, Ratna Sharma 2 and Aric N. Rogers 1,*

1 MDI Biological Laboratory, Bar Harbor, ME 04609, USA
2 Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA;

rs4241@columbia.edu
* Correspondence: zma@mdibl.org (Z.M.); arogers@mdibl.org (A.N.R.); Tel.: +1-207-288-9880 (ext. 436) (A.N.R.)

Abstract: The evolutionarily conserved nonsense-mediated mRNA decay (NMD) pathway is a quality
control mechanism that degrades aberrant mRNA containing one or more premature termination
codons (PTCs). Recent discoveries indicate that NMD also differentially regulates mRNA from
wild-type protein-coding genes despite lacking PTCs. Together with studies showing that NMD is
involved in development and adaptive responses that influence health and longevity, these findings
point to an expanded role of NMD that adds a new layer of complexity in the post-transcriptional
regulation of gene expression. However, the extent of its control, whether different types of NMD play
different roles, and the resulting physiological outcomes remain unclear and need further elucidation.
Here, we review different branches of NMD and what is known of the physiological outcomes
associated with this type of regulation. We identify significant gaps in the understanding of this
process and the utility of genetic tools in accelerating progress in this area.

Keywords: alternative splicing; nonsense-mediated decay; adaptive response; physiological
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1. Introduction

Eukaryotic cells have multiple mRNA surveillance mechanisms to ensure proper pro-
tein production. One of these mRNA surveillance pathways is nonsense-mediated decay
(NMD), which recognizes and eliminates mRNA containing one or more premature termi-
nation codons (PTCs). PTC-containing mRNA can lead to the production of non-functional
or deleterious proteins. NMD plays a fundamental role in maintaining cellular homeostasis
by regulating gene expression, controlling mRNA abundance, and modulating protein
diversity. Although first recognized for its ability to surveil mRNA as a quality control
mechanism to maintain the integrity and accuracy of gene expression, more recently, its
broader role in regulating gene expression was recognized [1]. Its intricate regulatory path-
ways and mechanisms have profound implications for a wide range of biological processes,
including development, disease, immune response, and stress adaptation. Understanding
the complexities of NMD not only advances our knowledge of basic cellular biology, but
also holds promise for developing targeted therapeutic interventions for NMD-related
disorders and optimizing gene expression in various biological contexts.

In this review, we discuss the recent advances in understanding the mechanisms
governing NMD and what is known about the role of particular NMD factors. Although
NMD has been investigated both in vitro and in vivo, limited information exists linking
NMD with physiological responses, which are made more important given our nascent
understanding of its role in mediating adaptive responses and the consequences associated
with altered NMD function. In addition, we discuss what models are available to further
explore NMD, especially its relationship with physiological adaptation.
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2. NMD Pathways

NMD is conserved across all eukaryotes and requires translation to identify its mRNA
targets. The central factor, UPF1, has RNA-dependent ATPase and 3′-to-5′ helicase activity
and is required in all eukaryotic NMD [2,3]. UPF1 is also known as NAM7 in fungi, SMG-2
in Caenorhabditis elegans, and RENT1 in mammals (Figure 1). The mechanisms of NMD
are mostly studied using mammalian cell lines and in vitro assays, but also in vivo using
Saccharomyces cerevisiae, C. elegans, and Drosophila melanogaster systems. Over the years,
several branches of NMD were discovered based on how different mRNA substrates are
targeted and the factors involved. The classical branch relies on the placement of the exon
junction complex (EJC), termed EJC-dependent NMD. There is also an EJC-independent
branch and one driven by alternative splicing (AS), referred to as regulated unproductive
splicing and translation (RUST), or AS-NMD. Based on factors that are recruited to the
pathway, other branches including UPF2-independent, UPF3-independent, and SMG1-
independent NMD, have been identified [4,5]. Here, we focus on the first three branches,
for which more information is available.

2.1. EJC-Dependent NMD

EJC-dependent NMD is the most well characterized branch (Figure 2) [1,6]. In mam-
malian cells, SMG1 kinase together with SMG8 and SMG9 form the SMG1 Complex
(SMG1C) [7]. UPF1 and SMG1C interact with translation elongation release factors eRF1
and eRF3 to form the surveillance complex (SURF) near the PTC. SMG1C kinase activity
is suppressed until the ribosome, in association with the SURF complex, reaches the EJC
downstream of the PTC [7]. The SURF complex, UPF2, UPF3b, and the EJC form the
decay-inducing complex (DECID), which triggers UPF1 phosphorylation by SMG1 and
dissociation of release factors and the ribosome. Subsequently, UPF1 helicase activity is
activated through association with UPF2. The NMD complex then moves through the
EJC toward the 3′ end, at which point UPF1 binds to either the SMG5:SMG7 complex or
SMG6 [1]. SMG5 and SMG7 can form a heterodimer and rapidly initiate Dcp2-dependent
decapping and XRN1-dependent 5′-to-3′ mRNA degradation. SMG6 is an endonuclease
that cleaves mRNA in the vicinity of the PTC [8]. The SMG5-SMG7 heterodimer and SMG6
endonuclease mediate UPF1 dephosphorylation, likely via the recruitment of phosphatase
2A (PP2A) [9–11]. Dephosphorylation is required before UPF1 can repeat NMD of the next
target mRNA.

One question that remains unclear is why NMD harbors two mRNA decay mech-
anisms (via either SMG6 or SMG5:SMG7 complex) and how is it decided which RNA
degrading factors to recruit. It is suggested that the phosphorylation of UPF1 at different
residues results in different recruitment. The phosphorylated residue T28 prefers binding to
SMG6, whereas phosphorylated site S1096 recruits SMG5:SMG7 [12] (Figure 1B). However,
UPF1 has more than two phosphorylation sites and whether the phosphorylation of the
other sites is involved in SMG factor recruitment remains unknown. Furthermore, it is
not addressed whether SMG6- and SMG7-mediated RNA degradation target the same or
distinct populations of mRNA. SMG5, SMG6, and SMG7 share similar structures. They
all contain a TPR domain that consists of the 14-3-3 and helical hairpins domain [13].
Colombo et al. demonstrated a high level of redundancy in the targets of human SMG6-
and SMG7-mediated decay [14]. In their study, the authors conducted RNA sequencing on
HeLa cells that performed shRNA-mediated knockdown of SMG6, SMG7, or both. When
SMG7 was knocked down, SMG6 mRNA was upregulated by 77% and compensated for
the activity of SMG7. However, when SMG6 was absent, SMG7 was less upregulated.
Nevertheless, these two factors acted on highly redundant targets and these targets in-
clude a significant portion of snoRNA and miRNA, which is consistent with previous
research [15]. However, evidence suggests that, regardless of the high target redundancy,
SMG6 and SMG7 have unique functions that cannot be compensated by each other. In C.
elegans, knockdown or knockout of SMG-6 or SMG-7 independently decreased lifespan
under dietary restriction (DR) [16]. In Arabidopsis thaliana, SMG7 is necessary to exit from
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meiosis and its disruption leads to embryonic lethality [17]. These studies revealed that
the roles of SMG6 and SMG7 are not entirely interchangeable, and the specific functions
distinguishing them remain unclear. The elusive nature of the essential functions of SMG6
and SMG7 may stem from their association with low-expressed targeted RNA, specific
gene isoforms, or cell-specific NMD efficiency. Bulk and single-cell RNA sequencing with
very high coverage are needed to answer this question.
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Figure 1. UPF1 is conserved across eukaryotic species. (A) Phylogenetic tree of the UPF1/SMG-
2/NAM7 homologs. Sequences from Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhab-
ditis elegans, and Saccharomyces cerevisiae are shown in the tree. (B) Alignment of UPF1 in human (H),
mouse (M), fruit fly (D), and C. elegans (C). The brown box corresponds to the cysteine-/histidine-rich
domain (CH domain), which binds to UPF2 and eRF3; the green box corresponds to the helicase
domain. T28 is the phosphorylation site important for SMG6 binding to UPF1. S1096 is the phospho-
rylation site important for SMG5:SMG7 complex.
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Figure 2. Exon junction complex (EJC)-dependent and -independent nonsense-mediated mRNA de-
cay (NMD) mechanisms. In the classical model, UPF1, SMG1 complex, eRF1, and eRF3 form the 
SURF complex. Subsequently, the SURF complex binds to UPF2, UPF3b, and the EJC proteins to 
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Figure 2. Exon junction complex (EJC)-dependent and -independent nonsense-mediated mRNA
decay (NMD) mechanisms. In the classical model, UPF1, SMG1 complex, eRF1, and eRF3 form the
SURF complex. Subsequently, the SURF complex binds to UPF2, UPF3b, and the EJC proteins to
form the decay-inducing (DECID) complex. UPF1 is phosphorylated and activated by SMG1. In the
EJC-independent model, NMD activation is triggered by the presence of a long 3′UTR. In both cases,
phosphorylated UPF1 recruits either SMG6 or the SMG5:SMG7 complex to initiate endonucleolytic
or exonucleolytic mRNA decay, respectively. In the figure, the illustration of SMG6 and SMG5:SMG7
recruitment and transcript degradations follow classical NMD. In EJC-independent NMD, UPF2 and
UPF3b should not exist. The dashed boxes indicate that there are UPF2- and UPF3b-independent
NMD pathways.

It is noteworthy that some NMD factors function not only in NMD, but also in other
mRNA surveillance regulatory pathways. They can even have roles outside of mRNA
regulation. The NMD key factor, UPF1, is involved in replication-dependent histone
mRNA decay, glucocorticoid receptor-mediated decay, regnase-1-mediated decay, and
Staufen-mediated mRNA decay [18]. In addition, UPF1 has nuclear functions in telomere
stability [19], DNA replication, and S phase progression [20]. These additional roles of UPF1
are independent from NMD. Thus, it is possible that the loss of this factor leads to lethality
due to non-NMD functions. Similarly, some other factors of NMD also have non-NMD
functions. The human SMG1 phosphorylates not only UPF1, but also p53 protein, a tumor
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suppressor, under genotoxic stress, indicating that SMG1 is involved in NMD-independent
responses to DNA and RNA damage [21]. Via immunoprecipitation assays, human SMG5
and SMG6 were found to interact with telomerase activity [22,23], suggesting their roles in
the regulation of telomere stability.

2.2. EJC-Independent NMD

The process by which NMD targets mRNA without an EJC is less well understood
(Figure 2). This branch of NMD targets aberrant transcripts with no introns downstream of
the termination codon, which cannot form an EJC. In S. cerevisiae, only a small fraction of
transcripts are spliced [24], but about 50% of transcripts are NMD targets [15], indicating
the main NMD branch in S. cerevisiae is EJC-independent. Sometimes referred to as long
3′UTR-mediated NMD, this branch is also observed in nematodes and mammals [1]. In
the EJC-independent model, experiments indicate that mRNA with a long 3′UTR places
polyadenylate-binding protein 1 (PABPC1) too far from the termination codon to efficiently
recruit ribosome release factors eRF1 and eRF3, which triggers NMD activation [25]. In
addition, the binding of UPF1 within long 3′UTRs increases the chance that it will be phos-
phorylated [26,27]. Such events lead to aberrant translation termination and NMD activation.

2.3. AS-NMD

AS-NMD is highly conserved in invertebrates, plants, and mammals [28–31]. The
interplay between AS and NMD provides a sophisticated layer of gene regulation, influenc-
ing transcriptome diversity, protein isoform expression, and cellular functions. The process
of AS allows pre-mRNA to be spliced in different ways to generate diverse mRNA products
and thereby enrich protein diversity. As a surveillance mechanism, NMD targets mRNA
with one or more PTCs due to mutation or unproductive splicing. In Morrison et al. [32]
and subsequent studies, evidence shows that AS and NMD are coupled to regulate gene
expression [31,33]. AS activates NMD by generating mRNA products with PTCs via
frameshifting exons, intron retention, or exon skipping [34]. These PTC-bearing mRNAs
trigger NMD to degrade them, preventing the translation of truncated or aberrant proteins.
Interestingly, many of the RNA splicing factors are observed to autoregulate themselves
via negative feedback loops [35]. For instance, the regulation of splicing factors SFRS2,
SFRS3, and SFRS7, as well as numerous ribosomal proteins, through AS-NMD is facilitated
by their corresponding proteins [36–40]. Jangi et al. revealed that the autoregulation of
splicing factors is mediated via AS-NMD, involving cross-regulation with Rbfox2 (RNA
binding FOX-1 homolog 2) [41]. These negative-feedback loops restrict expression and
prevent excessive accumulation. The varying intensity of the feedback reflects the dynamic
response of the system to the changing environment.

3. Tissue-Specific NMD Efficiency Variation

NMD efficiency is affected by many factors: targeted transcripts, PTC position in
the transcripts, cell and tissue types, and cellular environment. The variation in NMD
efficiency in different tissues is closely related to genetic diseases. In two human patients,
PTC mutation resulted in the complete degradation of the mRNA by NMD in cartilage,
but not in lymphoblasts or bone cells [42]. In human cell lines, it was found that NMD
was highly efficient in HeLa cells but not in MCF7 cells (a breast cancer cell line) [43].
Similarly, via single-cell analysis, Sato and Singer provided a detailed characterization
of NMD efficiency in individual cells [44]. While 72.1% of tested cells exhibited robust
NMD, 13.5% of cells displayed transcripts that evaded NMD nearly entirely. Similarly,
NMD efficiency across different tissues was investigated in mice [45]. In heterozygous
MenI mice, a PTC was introduced to exon 4 of MenI. In this mouse model, tissues including
testis, ovary, brain, and heart showed that the PTC-containing transcript was degraded
more significantly (18% mutant compared to wild type MenI transcripts). Another group
of tissues consisting of lung, intestine, and thymus had less NMD activity (35% MenI
transcripts compared to wild type). In C. elegans, although NMD efficiency in different
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tissues was not tested directly, the expression of key NMD factors UPF1 and SMG1 are
the highest in nervous, reproductive, and muscular systems, whereas the expression in
epithelial tissue is very low (https://worm.princeton.edu, accessed on 10 February 2024).
The complexity of NMD efficiency variation across different tissues highlights the intricate
regulatory mechanisms of RNA surveillance. This variability has direct implications for
understanding the pathogenesis of genetic diseases and developing targeted therapeutic
interventions. Further research into the tissue-specific regulation of NMD is essential
for advancing our knowledge of cellular biology and improving strategies for managing
genetic disorders. For this purpose, C. elegans can serve as a powerful model organism,
given the ready availability of tissue-specific RNA interference strains [46] and the ease of
monitoring their physiological responses. In the next section, we look at the physiological
consequences of normal and defective NMD in development, stress adaptation, and aging.

4. Physiological Consequences of NMD

Exploring the physiological consequences of NMD unveils a profound layer of cellular
regulation with far-reaching implications. NMD is a crucial quality control mechanism
that safeguards cells against the production of aberrant proteins and regulates normal gene
expressions. Understanding the phenotypes influenced by NMD provides valuable insights
into the intricate mechanisms governing biological systems. This section delves into the
diverse physiological consequences of NMD, shedding light on its multifaceted roles in
maintaining cellular homeostasis, shaping organism growth and health, and responding to
stress (Table 1).

Table 1. Physiological consequences of NMD.

Phenotypes Species In Vitro or
In Vivo References

Growth rates of NMD mutants is reduced on nonfermentable carbon sources S. cerevisiae [47,48]

NMD mutants are sensitive to Calcofluor white (cell wall disruptor) S. cerevisiae [49]

NMD mutants are more tolerant to toxic concentrations of copper S. cerevisiae [50]

NMD regulates magnesium homeostasis S. cerevisiae [51]

UPF1 is not essential for growth S. cerevisiae [52]

NMD mutants have abnormal morphogenesis on the genitalia and reduced
offspring numbers C. elegans In vivo [53]

NMD mutants rescued the worms from unc-54 (r293) movement defects C. elegans In vivo [54]

algn-2, a positive regulator of NMD, is essential for longevity C. elegans In vivo [55]

smg-1, -4, and -6 defects in C. elegans and depletion of SMG6 in HeLa cells cause
endoplasmic reticulum stress C. elegans; H. sapiens In vitro;

In vivo [56]

NMD is required for longevity through the insulin-like signaling pathway C. elegans In vivo [57]

NMD coupled with alternative splicing is required for longevity from dietary
restriction (DR) C. elegans In vivo [58]

smg-6 and smg-7 mutants showed reduced lifespan under DR C. elegans In vivo [16]

NMD mutants cause lethality during larval development Drosophila In vivo [59]

NMD is essential for zebrafish embryonic development and survival D. rerio In vivo [60]

RENT1/UPF1, UPF2, SMG1, and SMG6 are essential for mammalian
embryonic viability M. musculus In vitro;

In vivo [61–64]

Deletion of UPF2 led to extinction of hematopoietic stem and progenitor cells M. musculus In vivo [64]

Upf2 ablation leads to testicular atrophy and male sterility in embryonic
Sertoli cells M. musculus In vitro [65]

NMD is required in hypoxic stress response M. musculus In vitro [66]

https://worm.princeton.edu
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Table 1. Cont.

Phenotypes Species In Vitro or
In Vivo References

SMG9 mutation causes a multiple congenital anomaly syndrome and
intellectual disability

H. sapiens; M. musculus In vivo [67,68]

NMD involves in specifying the developmental fate of embryonic stem cells H. sapiens In vitro [69]

Mutation in UPF3B cause intellectual disability (ID); Mutation in UPF2 is
associated with ID and neuro-developmental disorders

H. sapiens In vivo [70–73]

NMD is inhibited by amino acid starvation and transcripts that promote amino
acid homeostasis is upregulated

H. sapiens In vitro [74]

NMD has antiviral activity H. sapiens In vitro [75]

NMD affects COVID-19 susceptibility via regulating OAS1 expression H. sapiens In vitro;
In vivo

[76]

NMD is downregulated to restore homeostasis under endoplasmic
reticulum stress

Mammals Review [77]

In cancer, some types of tumors use NMD to downregulate tumor-suppressor
mRNAs by selecting for destruction-inducing mutations; other types of tumors
disable NMD by NMD factor mutations, which favors the tumor cells to adapt
to microenvironment

Mammals Review [78,79]

4.1. Growth and Development

NMD has important roles in the growth and development of organisms across species.
In S. cerevisiae, NMD mutants have defective respiratory competence partially caused by the
overexpression of ADR1, leading to slower growth on nonfermentable carbon sources [47].
The mutations of NMD factors in C. elegans cause minor developmental defects, with
animals having reduced offspring numbers and abnormal morphology of genitalia [53].
Though not fatal in yeast or C. elegans, knockout of UPF1 is lethal at the embryonic stage
in mice [61] and during larval development in Drosophila melanogaster [59]. Similar to
UPF1, factors including UPF2, SMG1, and SMG6 are essential for mammalian embryonic
viability [62–64]. Bao et al. reported that the depletion of Upf2 in murine embryonic Sertoli
cells caused testicular atrophy and male sterility [65]. Likewise, Wittkopp et al. showed
that the depletion of UPF1, UPF2, SMG5, or SMG6 severely reduce the viability of zebrafish
embryos [60]. Moreover, the composition of NMD machinery is particularly important
for tissue-specific differentiation. In human early cell development, the downregulation
of NMD is needed to allow cell differentiation [69]. Taken together, the observations in
various model organisms, from yeast to mice, highlight the evolutionary conservation and
fundamental importance of NMD in ensuring normal growth, development, and viability.

4.2. Disease

A range of human diseases are associated with NMD and most of them are associated
with developmental defects. It is estimated that PTCs are responsible for about 33% of in-
herited and acquired diseases [80]. Studies showed that Upf3b-dependent NMD regulates
the development of neural cells and that loss-of-function mutation leads to intellectual
disability, autism, childhood onset schizophrenia, and attention deficit hyperactivity dis-
order [70,71]. Similarly, heterozygous deletions of UPF2, which directly interacts with
UPF3B, cause intellectual disability [72]. Homozygous loss-of-function mutations of SMG9
result in multiple congenital anomaly syndromes in humans, as it is a key component
associated with UPF1 phosphorylation and is essential for normal development [67]. Simi-
larly, Rahikkala et al. reported that a novel pathogenic mutant of SMG9 led to intellectual
disability [68]. Additionally, NMD plays an important role in certain forms of cancer.
Some tumors recruit NMD to downregulate tumor-suppressor mRNAs by selecting for
destruction-inducing mutations, while others involve NMD factor mutations that disable
NMD activity, allowing tumor cells to upregulate pathways that are normally NMD targets
and favor their adaptation to the microenvironment [78,79]. NMD also participates in
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innate immune responses to degrade transcripts of RNA viruses in mammalian cell lines,
plants, and insects [81]. Balistreri et al. reported that the ablation of NMD factors UPF1,
SMG5, and SMG7 increased the amount of RNA, proteins, and titers of a positive-stranded
RNA virus [75]. Recently, one study revealed that AS-NMD regulates OAS1, an antiviral
protein. The expression of OAS1 is correlated with coronavirus disease 2019 (COVID-19)
susceptibility [76]. The association of NMD dysregulation with a spectrum of conditions
ranging from neurodevelopmental disorders to viral infections highlights its diverse im-
pact on human health. The transcript-based annotation of RNAseq data allows for the
identification of the differential expression of NMD-sensitive transcripts or isoforms [82],
aiding in the assessment of NMD efficiency change and its correlation with genetic disease.
As research continues to unravel the intricate mechanisms and consequences of NMD,
there is great potential for leveraging this knowledge to develop targeted therapies for
NMD-related disorders and to enhance our understanding of disease mechanisms at the
molecular level.

4.3. Stress Responses

NMD is critical in stress and environmental adaptation. For example, in S. cerevisiae,
NMD is essential in regulating magnesium homeostasis [51]. Wang et al. reported that Upf1
deletion mutants are more resistant to elevated copper levels due to the regulation of Ctr2
mRNA, which encodes a copper transporter of the vacuolar membrane [50]. An extensively
studied stress is endoplasmic reticulum (ER) stress, which activates the unfolded protein
response (UPR) intended to restore homeostasis. Sakaki et al. showed that NMD is essential
for ER homeostasis. In C. elegans, the loss or reduced expression of smg-1, smg-4, and smg-6
induce ER stress, as does defective SMG6 in HeLa cells [56]. mRNA encoding the key UPR
regulator, IRE1α, has a long 3′ UTR that is an NMD target [83]. Thus, the NMD targeting of
IRE1, while not completely abolishing expression, fine tunes its level to help keep the UPR
inactive in the absence of ER stress. During ER stress, eIF2α is phosphorylated by PERK,
which suppresses NMD by lowering translation and allowing the activation of UPR factors.
Once homeostasis is restored, NMD promotes the termination of the UPR [77]. The ER
stress response mechanism explains why adding the ER stress inducer, thapsigargin, to a
C2C12 myogenic cell line suppresses NMD activity [84]. Similarly, hypoxic stress abrogates
NMD via the phosphorylation of eIF2α [66]. Besides ER stress, amino acid starvation
also downregulates NMD, again by lowering translation, which increases the stability of
transcripts encoding factors that restore amino acid homeostasis [74] and the induction of
autophagy that helps to recycle proteins back into amino acids [85].

4.4. Longevity

To date, only a few studies investigated how NMD affects longevity. NMD activity
decreases during aging, but the changes vary among different tissues. Notably, research in
C. elegans has unveiled the crucial role of NMD factors in promoting an extended lifespan
in specific genetic contexts. For instance, NMD factors are essential for promoting the fully
extended lifespan of daf-2/insulin-like receptor C. elegans mutants [57], highlighting the
interplay between insulin signaling pathways and NMD in longevity regulation. Recently,
Kim et al. also reported algn-2, the expression of which decreases during aging, to be
essential for the normal lifespan of C. elegans in a NMD-dependent manner [55]. The
protein ALGN-2 serves as a positive regulator of NMD. When ALGN-2 is upregulated
by inhibiting the daf-2/ insulin/IGF-1 receptor, the lifespan increases [55]. In particular,
neuronal NMD was important for lifespan extension. Under DR, the prevalence of intron
retention produced via alternative splicing (AS) increases concurrently with lower NMD
resulting from reduced nutrient availability [16]. When knocking down NMD factors
smg-6 or smg-7 independently via RNAi during early adulthood, the beneficial effect of
DR on longevity was lost [16]. This phenotype was further confirmed with smg-6 and
smg-7 knockout mutants (unpublished data). Another study showed that a C. elegans
eat-2 mutant, which is a genetic model of DR with reduced pharyngeal pumping, requires
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smg-2 in AS-NMD for maximum increased lifespan [58]. Interestingly, the regulation of
NMD on longevity under DR is not dependent on the translation-regulating integrated
stress response (ISR). Using an eif-2α phospho-null mutant, NMD activity is still decreased
under DR and AS-NMD events remain similar to wild-type N2 C. elegans [86]. In addition,
translation can be downregulated in eif-2α phospho-null mutants, which explains why
NMD activity is barely affected by ISR interruption [86]. Together, these studies are
beginning to shed light on the important role of NMD in lifespan regulation.

5. Genetic Tools for Studying NMD and the Physiological Outcomes

While the thrust of NMD research focuses on understanding the molecular mecha-
nisms underpinning its function, fewer studies address its role in governing metazoan
physiology, especially with respect to tissue-specific functions. Linde et al. demonstrated
that NMD is significantly more efficient in HeLa cells than MCF7 cells for multiple mRNA
targets [43]. Likewise, compared to HeLa cells, NMD downregulates TCRβ transcripts
more strongly in T cells [87]. In addition, inter-tissue variation in NMD efficiency was
shown by Zetoune et al. [45]. Their study found that the testis, ovary, brain, and heart
exhibit high NMD efficiencies to downregulate the nonsense mutation of the MenI gene,
whereas the lung, intestine, and thymus exhibit weaker downregulation. However, it is
unclear how tissue-specific variation in NMD is regulated and if different branches of NMD
are involved. Another unanswered question has to do with the physiological outcomes of
these variations. The limitations of in vitro studies and the relatively long lifespan of mice
pose challenges to the use of these models in further exploring the link with NMD in the
context of longevity. Shorter-lived, intact animal systems with a large genetic toolbox will
be important to help fill the gaps in understanding the role of NMD in different tissues and
the consequences for organismal physiology, especially with respect to the coordination of
adaptive responses.

5.1. Genetic Techniques

Many genetic tools are available for studying the interactions of NMD and physiology.
Two of the most potent in their ability to elucidate gene function are RNA interference
(RNAi) and clustered regularly interspaced short palindromic repeats (CRISPR).

RNAi attenuates gene expression by binding to and inducing the degradation of
mRNA targets [88]. As a tool for knockdown genes, RNAi is used frequently to study
gene functions in cell cultures, C. elegans, and Drosophila. Two novel NMD factors, smgl-1
and smgl-2, escaped early discovery because null mutations result in early developmental
lethality. They were only found because of the flexibility in timing knockdown, with respect
to development stage, that is possible with RNAi screening [89]. Tabrez et al. used RNAi to
demonstrate that AS-NMD regulates longevity under DR [58]. Domeier et al. reported that
smg-2 mutation in C. elegans was able to recover from the paralyzed phenotype of unc-54
RNAi, indicating that the persistence of RNAi requires some smg genes [90]. Compared to
other methods, RNAi is convenient and economical.

CRISPR-associated genome editing has been used widely in genetics research in recent
years because of the precision and relative ease with which it is carried out. Shasheen et al.
knocked out smg9 in mice using CRISPR/Cas9 and showed that it is essential for normal
development [67]. This approach is very convenient for exploring the role of specific genes
in NMD functions and the corresponding effects on animal or cell physiology.

5.2. Genetic Models

Several eukaryotic models have been developed to study the physiology related to
NMD, including but not limited to cell lines, yeast, nematodes, fruit flies, plants, and mice
(Table 1). To understand the interaction between NMD and physiology in a multicellular
system, the invertebrate animal C. elegans is one of the premiere models. The maintenance
of C. elegans is easy and cheap. The relatively short lifespan allows for the time-efficient
evaluation of longevity-related phenotypes. With the availability of RNAi libraries and
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CRISPR techniques, impacts on physiology (e.g., lifespan, morphology, body size, progeny,
stress response, and growth) can be rapidly explored [91]. C. elegans also allows for tissue
expression and crosstalk studies, making it possible to tease apart tissue-selective NMD
functions, which can be used to inform studies in more complex systems.

Another animal model that is attracting attention in genetic research is Nothobranchius
furzeri, commonly referred to as the African turquoise killifish. This small fresh water
vertebrate has a short lifespan of only 4–6 months, with similarly rapid development, going
from late-stage embryo to egg-laying adult in only 30–40 days [92]. Vertebrate-specific
physiology, including different tissues and adaptive immunity, can be studied in turquoise
killifish. Two genetic modification methods, Tol2 DNA transposase and the CRISPR/Cas9
system, have been developed for the fish, which offer a rapid genome-to-phenotype plat-
form for vertebrates [93]. Until now, no research focusing on NMD has been conducted
in this species. However, it is a promising animal model for understanding the life-long
impact of changes in NMD function in a range of environmental and genetic contexts.

6. Perspectives and Concluding Remarks

NMD performs important roles in the mRNA quality control surveillance and differ-
ential gene expression critical to physiological adaptation. Different branches of NMD have
been discovered over the years, but further research is needed to understand their func-
tion under different conditions and within specific tissues. Exploring how NMD activity
varies among tissues in response to physiological cues or pathological conditions could
shed light on disease pathogenesis and favor therapy development. NMD is generally
important for growth and development, as well as adaptive responses to changing environ-
mental conditions. While more studies are necessary to understand fully the physiological
outcomes of NMD, with the advance of technology and availability of genetic tools and
diverse systems, a better understanding of its role in health and disease is not out of the
question. Additionally, the role of NMD in aging presents an intriguing research direction.
Investigating the interplay between NMD, cellular senescence, and age-related diseases
will lead to strategies promoting healthy aging and extended lifespans. Understanding
how NMD dysregulation contributes to age-related pathologies could help in identifying
novel intervention targets.
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