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Abstract: The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has significantly impacted
global healthcare, underscoring the importance of exploring the virus’s effects on infected individuals
beyond treatments and vaccines. Notably, recent findings suggest that SARS-CoV-2 can infect the
gut, thereby altering the gut microbiota. This study aimed to analyze the gut microbiota composition
differences between COVID-19 patients experiencing mild and severe symptoms. We conducted
16S rRNA metagenomic sequencing on fecal samples from 49 mild and 43 severe COVID-19 cases
upon hospital admission. Our analysis identified a differential abundance of specific bacterial
species associated with the severity of the disease. Severely affected patients showed an association
with Enterococcus faecium, Akkermansia muciniphila, and others, while milder cases were linked to
Faecalibacterium prausnitzii, Alistipes putredinis, Blautia faecis, and additional species. Furthermore, a
network analysis using SPIEC-EASI indicated keystone taxa and highlighted structural differences in
bacterial connectivity, with a notable disruption in the severe group. Our study highlights the diverse
impacts of SARS-CoV-2 on the gut microbiome among both mild and severe COVID-19 patients,
showcasing a spectrum of microbial responses to the virus. Importantly, these findings align, to some
extent, with observations from other studies on COVID-19 gut microbiomes, despite variations in
methodologies. The findings from this study, based on retrospective data, establish a foundation for
future prospective research to confirm the role of the gut microbiome as a predictive biomarker for
the severity of COVID-19.

Keywords: COVID-19 severity; 16S; human gut microbiome; feces; SARS-CoV-2

1. Introduction

The COVID-19 pandemic, caused by the highly contagious SARS-CoV-2 virus, was
officially declared in March 2020 and lasted for three years until May 2023. In three years,
the SARS-CoV-2 virus claimed millions of lives worldwide, becoming one of the deadliest
viral diseases in decades [1].
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Apart from respiratory symptoms, the SARS-CoV-2 virus is now recognized to have
extrapulmonary effects on different organs and systems. Gastrointestinal symptoms are
frequently observed, and emerging evidence suggests that COVID-19 patients undergo
changes in their gut microbiome, encompassing bacteria, fungi, and viruses, persisting
even in cases of long-term morbidity and post-COVID-19 syndrome [2–4]. These alterations
disrupt the ecological network, diminish diversity, and disturb homeostasis within the
gut. Concurrent comorbidities compromise immune states, and individual factors further
contribute to the overall disease severity [5].

SARS-CoV-2, the virus responsible for COVID-19, enters human intestinal cells through
the ACE2 receptor, triggering an inflammatory response involving cytokines [6,7]. This
infection can disrupt the mechanical barrier of the gastrointestinal tract by affecting the
expression and function of tight junction (TJ) proteins, compromising the integrity of
the intestinal paracellular barrier [8,9]. Recent research in mice has directly proved that
SARS-CoV-2 infection leads to dysbiosis in the gut microbiome, characterized by changes in
Paneth cells, goblet cells, and markers associated with barrier permeability [10]. Addition-
ally, the analysis of blood culture results, along with microbiome data, suggests the potential
translocation of gut bacteria into the systemic circulation of COVID-19 patients [10].

Numerous investigations have assessed the disparities in gut microbiota composition
between SARS-CoV-2-infected patients and healthy individuals, as well as among patients
with varying disease severities [11–13]. In a study from Germany, the researchers examined
108 COVID-19, 22 post-COVID-19 patients, 20 pneumonia controls, and 26 asymptomatic
controls by using 16S rRNA gene sequencing [14]. They divided SARS-CoV-2-infected
patients into three groups (mild/severe/death) based on the World Health Organization
(WHO) Ordinal scale for clinical improvement. A differential analysis between study
groups showed that zOTUs (zero-radiation operational-taxonomic units) belonged to
Faecalibacterium prausnitzii, Blautia luti, Dorea longicatena, Gemmiger formicilis, and Alistipes
putredinis, and were significantly decreased in severe, death, and post-COVID-19 groups;
zOTUs belonging to Clostridium innocuum, Ruthenibacterium lactatiformans, and Alistipes
finegoldii were increased in patients with a severe disease progression.

In another study [15], the researchers conducted a comparative analysis of the 16S gut
microbiome composition among 30 COVID-19 patients, 24 influenza A (H1N1) patients,
and 30 matched healthy controls. In the COVID-19 group, the dominant genera in the gut
microbiome were Streptococcus, Rothia, Veillonella, Erysipelatoclostridium, and Actinomyces;
the gut microbiome of the healthy control group was primarily dominated by the genera
Romboutsia, Faecalibacterium, Fusicatenibacter, and the Eubacterium hallii group. Compared to
the H1N1 group, the abundance of Prevotella, Ezakiella, Murdochiella, and Porphyromonas
was higher in the H1N1 group than in the COVID-19 group.

In our study, we investigated the composition of the gut microbiome in 92 inpatients
with COVID-19 by using 16S rRNA gene sequencing of the V3–V4 region. To assess the
severity of the disease, we utilized lung computed tomography (CT) scans to evaluate the
degree of lung damage, and the WHO Performance Scale to assess the functional level of
each individual. These assessments enabled us to classify the patients into two comparison
groups based on the severity of their disease course.

Our objective was to identify microorganisms that are associated with the progression
of the disease by performing differential abundance testing while considering patients’
metadata as covariates. Furthermore, we examined the variations in the structure of the
microbial interaction network between these two groups.

We anticipate that the findings from our study will enhance the understanding of the
mechanisms underlying the impact of clinical manifestations of COVID-19 on the human
gut microbiota.
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2. Materials and Methods
2.1. Samples and Data Collection

The study included 92 patients with laboratory-confirmed novel coronavirus infection
SARS-CoV-2 and clinical manifestations of COVID-19, who were treated at the Kuskovo
Multiprofile Clinical Medical Center, A.I. Evdokimov Moscow State Medical University
from 15 April to 27 June 2021. Fecal samples were obtained from 49 patients with mild
cases of COVID-19 and 43 patients with severe cases of COVID-19 upon their admission to
the hospital. All the patients signed statements of informed consent to participate in the
study. The study did not include patients diagnosed with cancer.

Patients fulfilled all the following inclusion criteria:

• Men and women aged 18 years and older with a confirmed diagnosis of “U07.2
Coronavirus infection COVID-19 caused by SARS-CoV-2 virus” according to PCR
(oropharyngeal-/nasopharyngeal swab);

• Mild and severe dynamics of the course of coronavirus infection (1–3 degrees of
pneumonia severity according to CT scan);

• Signed voluntary informed consent for participation in the study.
• A patient was not included or excluded from the study if the subject met at least one

of the following inclusion/exclusion criteria:
• Malignant neoplasms of any site;
• Chronic liver disease of infectious and non-infectious etiology;
• Chronic kidney disease;
• Chronic hepatic and renal insufficiency;
• Systemic and autoimmune diseases;
• Concomitant serious somatic and psychiatric pathologies;
• Pregnancy;
• Participation in another clinical trial currently or in the last 30 days;
• Any other medical or non-medical reason that, in the opinion of the investigator, may

prevent the patient from participating in the trial.

The following metadata were collected based on questionnaires: whether or not the
patient has health disorders such as hypertension, diabetes, obesity, and coronary artery
disease (CAD).

All patients signed an informed consent form to participate in the study and the
study was approved by the Independent Interdisciplinary Committee for Ethical Review of
Clinical Trials, protocol 01–21 of 28 January 2021.

Stool samples were collected in sterile containers in a sample volume of 5 to 15 mL.
The samples were stored at −70 ◦C.

2.2. Study Cohort

The final group included samples from 92 patients, ranging in age from 20 to 88 years
old, with a distribution of 48 females and 44 males. After admission to the hospital, each
patient underwent a lung computed tomography (CT) scan to assess the degree of lung
damage. The CT-based severity classification system provides an assessment of the extent
of COVID-associated lung abnormalities observed on CT scans. The classification ranges
from CT1 (up to 25% involvement) to CT2 (up to 50% involvement), CT3 (up to 75%
involvement), and CT4 (up to 100% involvement) [16]. Among subjects, 43 (43/92, 46.7%)
possessed a CT1 severity score, 40 (40/92, 43.5%) possessed a CT2 severity score, and 9
(3/92, 9.7%) possessed a CT3 severity score.

In addition to the CT score, the patients’ condition at the time of hospitalization was
evaluated using the WHO Performance Scale (WHO-PS) [17] according to the hospital’s
internal regulations. This scale measures the patient’s functional level in terms of their
ability to engage in self-care, daily activities, and physical capabilities. The scale comprises
five levels of assessment:

0: The patient is fully active and can perform all tasks as before the disease.
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1: The patient cannot perform heavy work but can handle light or sedentary tasks
(e.g., light housework or clerical work).

2: The patient receives outpatient treatment, can take care of themselves, but is unable
to work, and spends over 50% of their waking time in an upright position.

3: The patient can only manage limited self-care, spends time in a chair or bed, and
more than 50% of their waking time in this state.

4: The patient is disabled, completely reliant on others for care, and confined to an
armchair or bed.

5: The patient has passed away.
Based on this classification, out of the 92 subjects, 6 (6/92, 6.52%) had a WHO-PS level

of 0, 7 (7/92, 7.6%) had a WHO-PS level of 1, 7 (7/92, 7.6%) had a WHO-PS level of 2, 57
(57/92, 61.9%) had a WHO-PS level of 3, and 15 (15/92, 16.3%) had a WHO-PS level of 4.

To facilitate further comparative analysis based on CT and WHO-PS scores, the
92 patients were categorized into two groups. The first group, labeled as “mild” (n = 49),
consisted of patients with a mild disease course (CT1 + WHO-PS 0–3; CT2 + WHO-PS 0–2;
CT3 + WHO-PS 0–2). The second group, labeled as “severe” (n = 43), comprised patients
with a severe disease course (CT2 + WHO-PS 3–4; CT1 + WHO-PS 4; CT3 + WHO-PS 3–4)
(Figure 1A).
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Information regarding antibiotic consumption before hospitalization was acquired
through patient self-reporting.

We analyzed the distribution of some comorbidities in the groups of patients with
mild and severe COVID-19. We did not observe any statistically significant differences in
the distribution of covariates between groups (Figure 1B–H). Patient characteristics are
presented in Table S1.

2.3. 16S rRNA Sequencing

The total DNA was isolated from 1 mg of each collected sample using the MagMAX
DNA Multi-Sample Ultra 2.0 Kit (Roche) and a KingFisher Flex automated isolation station.
Genomic libraries were prepared and sequenced according to the 16S metagenomic sequenc-
ing library preparation protocol for MiSeq, Illumina. Each sample was processed using the
Tersus PCR kit (Evrogen, Russia); primers 341F and 801R were used to amplify the V3–V4
region of the 16S rRNA gene, and unique combinations of indexing primers, which were
analogs of the primers from the Nextera XT Index kit v2, were used to barcode samples.

The sequencing procedure was performed on a HiSeq 2500 instrument using the
HiSeq Rapid SBS Kit v2 (500) consumable kit (Illumina) according to the manufacturer’s
recommendations

2.4. 16S rRNA Data Processing

Leftover adapters were removed using Trimmomatic v0.36 [18], and quality filtering
of reads was performed with the filterAndTrim function from the DADA2 package [19].
Denoising, merging, and chimera removal was carried out with DADA2 v1.24.0 soft-
ware with the following parameters: learnErrors: nbases = 1 × 109, randomize = TRUE,
MAX_CONSIST = 2, dada: pool = TRUE, mergePairs: minOverlap = 18, removeBimeraDe-
novo: allowOneOff = FALSE, method = “consensus”.

Taxonomy annotation was carried out against the SILVA v138 reference database [20].
Potential contaminants were removed with the “frequency” method using the package

decontam [21] version 1.10.0. In total, the 1600 samples were decontaminated (265 samples
from this project and 1335 samples from other projects with similar objects for analysis) to
better identify contaminant sequences.

The resulting dataset contained 6235 ASVs, with 2744 ASVs for the target dataset
(n = 265). The mean number of reads per sample was 48,126. Samples with <1000 reads
were removed. After the removal of missing metadata, 92 out of the original 265 samples
were included in the study. The scheme of analysis is presented in Figure 2.

2.5. Statistical Analysis

The statistical analysis of the microbiome data was conducted using R version 4.0.5.
The vegan package [22] and phyloseq package [23] were employed for the analysis. To
filter out low-represented ASVs (Amplicon Sequence Variants), the core_members function
from the microbiome package was applied with the criteria of detection threshold set
at 15 and prevalence threshold at 10%. This filtering process resulted in 313 ASVs for
further analysis.

The diversity composition of the bacterial microbiome was assessed using α-diversity,
specifically the Shannon index, utilizing the plot_richness function from the phyloseq package.

Beta diversity was calculated with the principal coordinate analysis (PCoA) Unifrac
weighted metric by using function dist from the vegan package and plot_ordination function
from the phyloseq package. The Adonis test was used to determine statistical differences
between the two groups.

The Dirichlet multinomial mixture (DMM) approach on a genus-level matrix of sam-
ples from all participants was performed to stratify the joint microbiome dataset into
community types [24].

The permutational multivariate variance analysis (PERMANOVA) was performed to
identify associations between taxa and host parameters. The Adonis function from the
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vegan package was used, running PERMANOVA with 1000 permutation tests on weighted
UniFrac distance.
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For differential abundance analysis at the ASV level, the DESeq2 package [25] in
R and Songbird utility [26] in Python were used. The same formula was used for both
instruments: ~group + age_group + sex + diabetes + obesity + hypertension + coronary
artery disease + antibiotics, where the variable of interest was “group” (COVID-19 severity),
and the other variables were used as covariates. In DESeq2, the default Wald test with
Benjamin–Hochberg p-value correction was used to assess the statistical significance of
log2FoldChange. A significance cut-off p-value < 0.05 and Log2FoldChange ≥ 1.5 were
applied. Songbird was also utilized to determine differential rankings of microbes be-
tween the mild and severe groups. The overlapping set of differentially represented ASVs
identified with both DESeq2 and Songbird was selected for further analysis.

PICRUSt2 v2.5.1 tool was used to reconstruct the phylogenetic tree [27].
The co-abundance networks of microbial ASVs were generated using the SPIEC-

EASI [28] algorithm with the Meinshausen–Bühlmann method for detecting correlations
from the NetCoMi package [29]. The following parameters were utilized: 100 subsamples,
25 lambda iterations, and a minimum lambda value of 0.001. From the resulting network,
clusters of co-abundant ASVs were identified using the Louvain method. Eigenvector
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centrality and degree centrality were used for defining hubs/keystone taxa (nodes with a
centrality value above the empirical 95% quantile).

3. Results
3.1. Taxonomy of the Gut Microbiome of Patients Infected with SARS-CoV-2

The resulting dataset consists of 313 ASVs that belong to 34 families, with an average
of 36276 read counts per sample. Among the microbial composition of samples collected
from 92 patients with varying degrees of COVID-19 severity, the top seven dominant
families were identified as Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, Streptococcaceae,
Coriobacteriaceae, Akkermansiaceae, and Oscillospiraceae (Figure 3, Table S2). The taxonomic
profile at the ASV level is shown in Figure S1.
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3.2. Alpha and Beta Diversity Shows No Significant Differences between Patients with Mild and
Severe COVID-19

Microbial alpha diversity, assessed using the Shannon metric, was utilized to examine
changes in the microbiota community structure among patients categorized into mild and
severe groups. Figure 4A displays the outcomes, indicating that no statistically significant
variations (Wilcoxon test) were observed in the alpha diversity indices between the two
patient groups. Beta-diversity was calculated through a principal coordinate analysis
(PCoA) by using the weighted Unifrac metric and showed no statistically significant
variations (Adonis test) between the two severity groups, as shown in Figure 4B.

3.3. Determining Gut Biotope Community Types in Mild and Severe COVID-19 Patients

We employed the Dirichlet multinomial mixture method to analyze a dataset com-
prising 134 genera at the genus level. This analysis revealed the presence of two distinct
microbiota community types based on taxonomic composition (Figure S2A). Community
type 1 consisted of 62 patients (mild = 31, severe = 31), while community type 2 included
30 patients (mild = 18, severe = 12). The dissimilarity of community types 1 and 2 is shown
in Figure 5.

At the ASV level, the main drivers distinguishing type 1 were ASV64_Blautia,
ASV124_Bacteroides, ASV6_Streptococcus, ASV74_[Ruminococcus] torques group, and
ASV138_Subdoligranulum. Conversely, type 2 was characterized by ASV64_Blautia,
ASV124_Bacteroides, ASV117_Faecalibacterium, ASV138_Subdoligranulum, and
ASV114_Ruminococcus (Figure 6).

Additionally, our analysis found no significant differences in the distribution of age,
sex, severity group, obesity, and diabetes between the two community types (Figure S2B–I).
This implies that these factors do not play a significant role in determining the division of a
taxonomic composition into these clusters.
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3.4. Exploring the Relationship between the Gut Microbiome of SARS-CoV-2-Infected Patients
and Covariates

For testing the association between the microbiome and such covariates as age, sex,
severity of COVID-19 (group), hypertension, diabetes, obesity, and coronary artery disease
(CAD), we applied a PERMANOVA (Figure 7).
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These covariates explained 17% of the microbiome taxonomic composition with the
most extensive and statistically significant contribution coming from the comparison group
(4%), antibiotics (3%), diabetes (2%), and obesity (2%).

3.5. Analyzing Microbial Associations with Disease Severity in Relation to Age, Gender,
and Comorbidities

In our research focused on exploring the potential impact of gut microbiome compo-
sition on the severity of COVID-19, we considered several important metadata variables,
including the patient’s age, sex, antibiotics intake, and comorbidities. Our objective was to
identify ASVs that exhibited differential abundance patterns between patients with mild
(n = 49) and more severe (n = 43) disease manifestations. To achieve this, we employed two
distinct analysis methods: DESeq2 and Songbird.

During the DESeq differential abundance analysis, we observed significant differences
in the abundance of 66 ASVs. Out of these, 42 ASVs were specifically associated with the
mild degree group, while 24 ASVs exhibited associations with the severe degree group
in the context of COVID-19 (Figure S3A). To further explore the findings, we used the
Songbird tool and selected an equal number of ASVs (mild = 42, severe = 24) from each
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group derived from DESeq2 (Figure S3B). Then, we selected ASVs associated with both
the mild and severe course of COVID-19 that overlap the results of the two instruments
(elected an equal number of ASVs (mild = 13, severe = 20) from each group derived from
DESeq2 (Figure S4, Table S3). The different ASVs selected by both tools (n = 4) that aligned
to the same species were also added to the analysis (Table S4).

Our analysis revealed a significant enrichment of 13 specific ASVs associated with the
severe course of the disease. These ASVs originate from genera such as Enterococcus, Rothia,
Akkermansia, Agathobacter, Actinomyces, Alloprevotella, Slackia, Prevotella9, [Ruminococcus]
gauvreauii group, Eubacterium, Eisenbergiella, and Christensenellaceae R-7 group. Upon per-
forming a BLASTN alignment of the ASV sequences against the nt database, we identified
the corresponding matches for each ASV as follows: ASV29 corresponds to Enterococcus
hirae/Enterococcus faecium, ASV55 to Rothia mucilaginosa, ASV60 to Akkermansia muciniphila,
ASV62 to [Eubacterium] rectale, ASV134 to Schaalia odontolytica, ASV822 from the Allopre-
votella genus to an uncultured bacterium, ASV938 to Slackia isoflavoniconvertens, ASV1016 to
Prevotella copri, ASV1444 from the [Ruminococcus] gauvreauii group genus to a Blautia fasciola
(identity = 99.5%)/Lachnospiraceae bacterium (identity = 99.7%), ASV1564 to Eubacterium
limosum, ASV1629 to Enterococcus faecium, ASV1650 to Eisenbergiella tayi, and ASV2021 from
Christensenellaceae R-7 group as an uncultured bacterium.

We found 24 ASVs from Veillonella, Haemophilus, Alistipes, Atopobium, CAG-352 Bac-
teroides, Streptococcus, Romboutsia, Prevotella_9, Anaerostipes, [Eubacterium] xylanophilum
group, Paraprevotella, Blautia, Turicibacter, [Eubacterium] hallii group, [Eubacterium] ven-
triosum group, Faecalibacterium genera that were associated with the mild group. ASV4
has been identified as Veillonella dispar/Veillonella nakazawae, ASV14 as Haemophilus
parainfluenzae, ASV35 aligns with an uncultured organism (identity = 100%)/Atopobium
parvulum (identity = 99.5%), ASV50 as Ruminococcoidesnbili/Ruminococcus sp, ASV52 as
Streptococcus gordonii, ASV177 Romboutsia ilealis, ASV202 as Alistipes putredinis, ASV284
as Bacteroides vulgatus, ASV277 and ASV347 both aligned with Prevotella copri, ASV545 as
Lachnospiraceae bacterium sunii, ASV773 as Bacteroides stercoris, ASV1277 from the Bac-
teroides genus as Phocaeicola sp. (identity = 100%)/Bacteroides massiliensis (identity = 99.7%),
ASV1326 as Blautia faecis, ASV177 as Anaerostipes hadrus, ASV1797 as Eubacterium sp.,
ASV1827 as Anaerostipes hadrus, ASV1925 from the Paraprevotella genus as an uncultured
bacterium, ASV2019 as Turicibacter sanguinis, and ASV2362 as Blautia sp.. Among different
ASVs selected by both tools, ASV1870 and ASV1360 were identified as Anaerobutyricum hallii,
ASV1494 and ASV556 as Eubacterium ventriosum, ASV707 and ASV998 as Faecalibacterium
prausnitzii, and ASV949 and ASV1067 as Prevotella copri.

Figure 8 shows all differentially abundant ASVs associated with the COVID-19 severity
course analyzed by the Deseq2 and Songbird utilities.

3.6. The Gut Microbiota’s Network Structure Shows Variations across COVID-19 Patients with
Differing Severity Levels

We utilized SPIEC-EASI to investigate bacterial interactions and evaluate potential
variations in the organization of microbial communities between the mild and severe
groups. This analysis focused on 313 highly represented ASVs in the dataset, aiming to gain
insights into the microbial dynamics and community structure associated with different dis-
ease severity levels. The network analysis revealed distinct characteristics in the microbial
communities of the mild and severe groups (Figure S5, Table S5). The network of the mild
group exhibited a higher total number of components (mild = 169, severe = 131), higher
clustering coefficient (mild = 0.155, severe = 0.038), higher edge density (mild = 0.097,
severe = 0.025), and natural connectivity (mild= 0.051, severe = 0.013) compared to the
severe group. However, the relative size of the largest connected component (LCC)
(mild = 0.080, severe = 0.27), shorter average path length (mild = 2.63, severe = 4.8), and
modularity value (mild = 0.53, severe = 0.75) were smaller in the mild group.

The network analysis identified four hubs/keystone taxa for the mild group, in-
cluding ASV432_Dorea, ASV372_Blautia, ASV387_Coprococcus, ASV655_UCG005, and
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three hubs/keystone taxa for the severe group: ASV2222_Lachnospiraceae FCS020 group,
ASV1365_Lachnospiraceae FCS020 group, and ASV2294_Marvinbryantia. After conduct-
ing a BLASTN alignment of the ASV sequences against the nt database, we matched
each ASV with its respective counterpart as follows: ASV432_Dorea as Dorea formici-
generans, ASV372_Blautia as Blautia obeum, ASV387_Coprococcus as Coprococcus comes,
ASV655_UCG005 as an uncultured bacterium, ASV2222_Lachnospiraceae FCS020 group
as Lachnospiraceae bacterium, ASV1365_Lachnospiraceae FCS020 group as Lachnospiraceae
bacterium, and ASV2294_Marvinbryantia as Jingyaoa shaoxingensis/uncultured bacterium,
respectively (Table S6).
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4. Discussion

In our study, we utilized the 16S rRNA metagenomic analysis to compare the tax-
onomic composition of the gut microbiota in COVID-19 patients upon admission to the
hospital. The clinical samples from this investigation were processed and sequenced in a
way that was similar to those from other COVID-19-related projects conducted in our lab.
The results of the upper respiratory sample analysis have been published [30].

The actual study focused on the analysis of fecal samples from COVID-19 patients
with complete metadata, including age, sex, CT lung scans, WHO-PS, antibiotic usage,
and comorbidities such as hypertension, coronary artery disease, diabetes, and obesity. By
combining WHO-PS scores and CT scans, we categorized patients according to disease
severity. To our delight, the selected severe (n = 43) and mild (n = 49) groups showed
no differences in the distribution of age, sex, antibiotic usage, hypertension, coronary
artery disease, diabetes, and obesity. Although we did not observe significant differences
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between COVID-19 severity groups to these comorbidities, understanding risk factors for
contracting SARS-CoV-2 remains crucial for managing COVID-19 outcomes. Identifying
risk factors such as hypertension, obesity, inflammatory bowel disease, and other risk
factors, enables the tailoring of preventive measures and treatments, potentially mitigating
the severity and spread of the disease [31,32]. Furthermore, risk factor analysis is essential
for identifying vulnerable populations, allowing healthcare providers to optimize resource
allocation and enhance patient care strategies during the pandemic [33].

This paper compares individuals with mild COVID-19 cases to those with more
severe cases, rather than comparing healthy individuals to COVID-19-infected subjects.
The decision to concentrate on disease severity is driven by the fact that the comparison
of healthy individuals and COVID-19-infected individuals has been extensively studied
in the literature. Moreover, the Anna Karenina principle, which highlights that the gut
microbiome of healthy individuals tends to be less variable and more stable than that of
individuals with various diseases [34], also supports our choice. Additionally, considering
that SARS-CoV-2 can be present in healthy individuals who may be asymptomatic carriers,
using asymptomatic individuals as a control group, especially during a pandemic, may
introduce bias into the analyses. Therefore, we have opted to examine the gut microbiota
of patients with different degrees of disease severity caused by clinical manifestations
of SARS-CoV-2.

The taxonomic composition of fecal samples from COVID-19 patients aligns with
previous studies on human gut microbiota [35,36]. Our samples exhibited a homogeneous
taxonomic profile, as evident in the heatmaps of Supplementary Figure S3, where we
observed no apparent clustering based on the considered covariates.

We found no statistically significant differences in alpha and beta diversity in the
gut microbiota of mild and severe COVID-19 patients. Our results differ from others that
have compared patients with different COVID-19 severity levels [14,37]. Various factors
can contribute to these inconsistencies, such as variations in study design, sample size,
patient demographics, methodologies, and geographic locations. Furthermore, there is no
standardized or consistent method to categorize patients into severity groups. The lack
of a uniform approach can contribute to variations in results across different studies and
highlight the challenges in accurately assessing and comparing COVID-19 severity.

We observed significant differences in the abundance of specific ASVs in the gut
microbiota of mild and severe COVID-19 patients.

Specifically, ASVs identified as Enterococcus hirae/Enterococcus faecium, Rothia mu-
cilaginosa, Akkermansia muciniphila, Schaalia odontolytica, Eubacterium limosum, and
Slackia isoflavoniconvertens were overrepresented among patients with severe
COVID-19 cases.

Akkermansia is a genus of Gram-negative anaerobic bacteria that belongs to the phylum
Verrucomicrobiota. These bacteria are known for colonizing the human intestinal mucosa,
have a specific ability to degrade the mucin layer, and are notably one of the most abundant
single species in the human gut microbiota, accounting for approximately 0.5–5% of the
total bacterial population [38]. A. muciniphila mainly degrades intestinal mucin into
propionic and acetic acid. In addition, the bacterium expresses Amuc_1100, one of the most
abundant pili-like proteins found on its outer membrane. Experiments on mice have shown
that supplementation with A. muciniphila stimulates the proliferation of intestinal stem
cells and enhances the differentiation of Paneth and goblet cells in the small intestine and
colon in both healthy and injured mice [39]. In addition, the presence of A. muciniphila was
associated with increased levels of acetic and propionic acids in the cecal contents of treated
mice, suggesting its role in promoting intestinal mucosal repair, with short-chain fatty
acids (SCFAs) playing an important role in this process [40]. The outer membrane protein
Amuc_1100 has also been shown to be involved in restoring intestinal barrier function,
along with acetic and propionic acids, probably by interacting with TLR2 and restoring the
expression of the corresponding tight junctions [41,42].
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In contrast to reports supporting the beneficial effects of A. muciniphila, several studies
suggest potential negative effects on gut health. In mouse models of acute intestinal
inflammation induced by Salmonella enterica Typhimurium infection and acute colitis induced
by dextran sodium sulfate (DSS), A. muciniphila exacerbated the inflammatory response by
its ability to disturb host mucus homeostasis. Simultaneously, in a study on DSS-induced
colitis, it was observed that the administration of extracellular vesicles derived from
A. muciniphila decreased the severity of DSS-induced colitis [43]. However, a later study
did not confirm these findings, highlighting the need for further research to understand the
complex interactions of A. muciniphila in gut health [44].

Our study illustrated a higher representation of A. muciniphila in the group of severe
COVID-19 patients. This finding is consistent with numerous studies that have shown a
significant association between a higher prevalence of the genus Akkermansia and SARS-
CoV-2-infected subjects compared to healthy individuals [10,11,45]. Notably, researchers
reported a higher abundance of A. muciniphila in the severe group of COVID-19 patients
than in the mild group and healthy individuals [37]. An overrepresentation of Akkerman-
siaceae was detected in SARS-CoV-2-infected patients and in K18-hACE2 mice [10]. The
study also observed a significant increase in mucus-producing goblet cells and a decrease in
Paneth cells, specifically in the ileum of infected mice, with no such changes observed in the
duodenum. The reduced Paneth cell population showed structural abnormalities, including
deformed or misplaced granules, and the downregulation of several antimicrobial factors
such as lysozyme, defensins, Reg3γ, and serum amyloid A in the ileum. In addition, the
researchers identified a striking positive correlation between the percentage of abnormal
Paneth cells and the abundance of the Akkermansiaceae family in the mice model [10]. Due
to the controversial perspectives on the role of Akkermansia in human gut homeostasis, we
cannot definitively conclude whether A. muciniphila has remodeling functions or whether it
exacerbates the inflammatory response in SARS-CoV-2-infected patients. Further research
and investigation are required to better understand its potential effects in these contexts.

Enterococcus faecium is a Gram-positive bacterium commonly found as part of the com-
mensal flora in the human gastrointestinal tract. Despite its commensal status, it exhibits
opportunistic pathogenic behavior, posing a risk to individuals with compromised immune
systems or underlying health conditions. One concerning characteristic of E. faecium is
its ability to develop resistance to many antibiotics, including those commonly used in
clinical practice. The bacterium’s virulence strategy involves colonization and the secretion
of various factors such as secreted antigen A, cytolysin, and gelatinase [46]. Notably, it
employs specific enzymes that facilitate adherence to host tissues and inhibit the growth
of competing bacteria, enhancing its ability to persist and cause infection. In addition,
clinical studies have shown a remarkable relationship between the relative abundance of
Enterococcus and certain disease parameters in SARS-CoV-2-infected patients [47]. Increased
levels of Enterococcus have been associated with prolonged hospitalization, prolonged stays
in intensive care units, increased oxygen requirements, and elevated levels of D-dimer,
ferritin, and IL-6 in the bloodstream [48]. Taking into account the severity of the patient’s
medical condition and the prior use of antibiotics before hospital admission, we attribute
the higher prevalence of E. faecium in the sampled patients with severe conditions.

Eubacterium limosum is a producer of SCFAs, including butyrate. Increased butyrate
production by this bacterium has been observed in diseases such as ulcerative colitis and
experimental colitis [49]. The increase in E. limosum levels observed in both COVID-19 and
colitis-associated gut microbiota could potentially be interpreted as an adaptive mecha-
nism to enhance butyrate synthesis in response to a simultaneous decrease in the overall
population of traditional butyrate-producing bacteria, such as Fecalibacterium and Blautia.

In patients from the mild group, we observed an enrichment of ASVs identified
as Faecalibacterium prausnitzii, Ruminococcoides bili, Turicibacter sanguinis, Alistipes
putredinis, Bacteroides vulgatus, Bacteroides stercoris, Lachnospiraceae bacterium sunii
NSJ-8, Blautia faecis, and Anaerostipes hadrus.
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Across various studies, it has been consistently observed that genera such as Faecalibac-
terium, Blautia, Alistipes, Lachnospiraceae, and Bacteroides tend to be reduced in
SARS-CoV-2-infected patients and are more strongly associated with a healthy microbiome
state [2,12,50].

In contrast to the severe group, the microbiome of mild patients exhibited an overrep-
resentation of flora that produces SCFAs, including Anaerostipes hadrus, Faecalibacterium
prausnitzii, Lachnospiraceae bacterium sunii NSJ-8, and Blautia faecis [51]. SCFAs encompass
butyrate, acetate, and propionate, which are recognized as beneficial by-products of bac-
terial activity that contribute to the well-being of the host. The significant role played by
butyrate in constraining the expansion of opportunistic pathogens, preserving the integrity
of the intestinal mucosal barrier, triggering the adaptive immune response, and reinforcing
the body’s defenses against viruses is notably evident [52].

The positive association of B. vulgatus, as well as B. stercoris with gut flora of
SARS-CoV-2-infected patients, were detected in several studies [53–55]. The research high-
lights the potential of specific B. vulgatus strains to positively impact the immune response,
gut barrier integrity, and inflammatory processes, particularly in the context of ulcerative
colitis in mice. These effects might be attributed to their ability to modulate cytokine
expression, interact with colonic tissue, and influence immune cell populations [56,57].
Also, B. vulgatus produces multiple proteases, showing higher activity than other Bacteroides
species. These proteases, either individually or in combination, have the potential to disturb
the colonic epithelium. This disruption can result in the migration of innate immune cells,
notably neutrophils, into the affected area, intensifying the inflammation associated with
colitis. However, it is crucial to note that this effect was primarily observed in co-culture
scenarios, as the supernatant from B. vulgatus alone did not display any adverse impact
on the integrity of the colonic epithelial barrier and did not cause the disruption of the
membrane integrity [58,59]. According to recent research [60] B. stercoris and B. vulgatus, in
conjunction with Prevotella copri (which is linked to both mild and severe cases in our study),
function as markers of the microbiota’s resilience to structural alterations. Interestingly,
species belonging to the Bacteroidetes genus have been linked to the inhibition of colonic
ACE2 expression, a host cell entry point for SARS-CoV-2, as demonstrated in a mouse
model [61].

Through this study, we discovered an increased presence of two bile-resistant species,
Turicibacter sanguinis, and Ruminococcoides bili, in the microbiome of individuals with a mild
COVID-19 disease course.

The R. bili strains demonstrate significant resistance to bile salts, potentially facilitated
by various efflux transporters that could be involved in bile export. They are also capable
of metabolizing resistant starches, resulting in the synthesis of formate, lactate, and acetate.
This metabolic process contributes to the well-being of other bacteria and generates ben-
eficial SCFAs for the host [62]. T. sanguinis strains in the gut microbiota impact host bile
and lipid compositions in a strain-specific manner. These strains possess bile salt hydro-
lases that influence distinct bile deconjugation patterns. Introducing Turicibacter strains
led to changes in host bile acid profiles, similar to in vitro results. Mice colonized with
another bacterium expressing genes from these strains exhibited reduced serum cholesterol,
triglycerides, and adipose tissue mass [63].

Interestingly, we detected a higher prevalence of bacteria commonly found in the
human respiratory tract. Severe patients exhibited higher levels of Schaalia odontolytica
and Rothia mucilaginosa, while Streptococcus gordonii, Haemophilus parainfluenzae, and Veil-
lonella dispar/Veillonella nakazawae were found to be more abundant in mild patients. The
SARS-CoV-2 virus induces oral dysbiosis, with an increase in oral pathobionts and in-
testinal dysbiosis, weakening the barrier to ingested microorganisms. These conditions
are critical for the successful colonization of the gut by oral pathobionts, which in turn
exacerbates intestinal inflammation [7]. Among these oral pathobionts, R. mucilaginosa
emerges as a potentially important factor in COVID-19. It should be considered in the
diagnosis of pneumonia, regardless of the immune status of the host, because of its signifi-
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cant correlations with the disease [64]. Among the various bacterial taxa associated with
SARS-CoV-2 infection, R. mucilaginosa stands out, with an increased abundance observed
in both the oral and gut microbiomes [65,66].

Similarly, an increased bacterial accumulation in the gut is observed in patients with
gastric achlorhydria and gastroesophageal reflux disease due to long-term proton pump
inhibitor (PPI) therapy [67]. However, detailed information regarding PPI therapy is not
available in our cohort.

The network analysis highlighted differences in the microbiome structure between the
mild and severe groups. In the mild group, there were more microbial interactions, a higher
clustering coefficient, and increased edge density, indicating a densely interconnected
microbial network with efficient information transfer. In contrast, the severe group had
fewer interactions, and a lower clustering coefficient and edge density, suggesting a more
densely connected microbial community. These results are similar to network characteristics
of respiratory microbiota from COVID-19 patients with different levels of severity [68].
These network characteristics provide insights into the organization and dynamics of
microbial communities in the context of disease severity. The differences observed between
the mild and severe groups suggest distinct microbial network patterns associated with
different disease severities.

Besides, network analysis has been used to identify keystone taxa (hubs) within the
microbiomes of COVID-19 patients. These keystone taxa are specific microorganisms that
have been found to have a significant impact on the overall structure and composition of
the microbial community within COVID-19 patients.

In cases of a mild course of infection, three taxa, including Dorea formicigenerans, Blautia
obeum, and Coprococcus comes, came to the forefront as keystone species. D. formicigenerans
belongs to the Lachnospiraceae family and is known for its prolific production of formic
acid. Research has demonstrated that the administration of formic acid to pigs leads to
elevated levels of beneficial microorganisms while concurrently inhibiting the growth of
pathogenic members of the Enterobacteriaceae family [69]. Notably, B. obeum and C. comes
have previously been reported to be associated with a mild/moderate COVID-19 disease
course and are positively correlated with lymphoid-related markers, suggesting a possible
interaction between these gut microbes and the regulation of lymphocytes [37].

In the severe group, two ASVs that belong to Lachnospiraceae bacterium and Jingyaoa
shaoxingensis should be considered as taxa hubs. The role of L. bacterium as a keystone
species in the microbiome of severe patients may indicate an adaptive response to the
reduction in the overall population of conventional butyrate-producing bacteria, similar to
E. limosum.

Our study contributes to the spectrum of publications analyzing the composition of the
gut microbiome in patients with COVID-19, expanding the geography of research to Russia.
In our study, we aimed to understand the contribution of gut microbiome composition to
the severity of COVID-19, in line with other inflammatory and infectious diseases which
have been described previously [70].

While under quarantine conditions due to the COVID-19 pandemic, we limited our
sample collection to a single hospital in accordance with the research objectives. We
deliberately chose not to include a control group of patients, as mentioned above. In
addition, patients who were admitted to the hospital in critical condition were not included
in the study group due to the inability to collect biomaterial during resuscitation efforts.
Despite these limitations, our analysis of samples from a fully characterized group of
92 COVID-19 patients is sufficient to draw reliable conclusions.

Taken together, we can conclude that the gut microbiota, as well as the upper respi-
ratory tract microbiota [30], of mild COVID-19 patients is very similar to that of healthy
individuals. This trend can be observed both at the level of taxonomic composition and at
the level of microbial interaction network density. The lack of major perturbations in the
microbiome of these patients may be both a cause and a consequence of the milder disease
course. We cannot answer this question in this study.
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In the group of severe patients, we observe a replacement of the main butyrate-
producing bacteria such as Fecalibacterium and Blautia by E. limosum, which could be
interpreted as an adaptive mechanism to enhance butyrate synthesis. This assumption
holds for the switch of keystone taxa from B. obeum in mild patients to L. bacterium in severe
groups that we observed using network analysis, highlighting the key role of butyrate-
producing bacteria for the gut microbiota.

In summary, our findings suggest that the clinical manifestation of SARS-CoV-2
infection has different effects on the composition of the gut microbial community in both
mild and severe groups of patients, suggesting differential microbial responses. While
the current findings are derived from retrospective data, they lay the groundwork for
prospective studies to validate the gut microbiome’s role as a predictive biomarker for
COVID-19 severity.

5. Limitations

Findings from the present study should be interpreted in light of its limitations, which
include a relatively small study cohort. While under quarantine conditions due to the
COVID-19 pandemic, we limited our sample collection to a single hospital. In addition,
patients who were admitted to the hospital in critical condition were not included in the
study group due to the inability to collect biomaterial during resuscitation efforts.

The lack of a control group (patients without COVID-19) in our study was primarily
due to the fact that the research was conducted in a hospital that had been converted
specifically for the treatment of COVID-19 patients. To address the potential impact
of pre-existing conditions on microbiome composition, we carefully excluded patients
with oncologic conditions, and other chronic conditions known to significantly alter the
microbiota. This decision was guided by the goal of minimizing confounding variables and
simulating a ‘healthy’ microbiota baseline as closely as possible. Thus, our study cohort can
be considered as having a relatively uniform health baseline prior to COVID-19 infection.
Ideally, the control group for our study would have consisted of the same 92 patients prior
to their SARS-CoV-2 infection. However, due to the nature and timing of the pandemic,
it was not possible to obtain pre-infection baseline data for these patients. This limitation
underscores the inherent challenges of conducting retrospective microbial research during
acute public health crises, when pre-infection data are rarely available.

Since antibiotics can be obtained without a doctor’s prescription in Russia, and our
knowledge of pre-hospital antibiotic usage relies on patients’ self-disclosures, obtaining
accurate information about the particular antibiotics used poses a challenge. Nevertheless,
we cannot ignore this information, as it may have a significant impact on the microbiome.

While the study provides insights into how the gut microbiota composition correlates
with disease severity, it stops short of establishing a direct causal relationship between
specific microbiota changes and COVID-19 outcomes due to vertical analysis.

Despite these limitations, our analysis of samples from a fully characterized group of
92 COVID-19 patients is sufficient to draw reliable conclusions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biomedicines12050996/s1, Figure S1: Heatmap showing the
abundance of 313 ASVs in patients with COVID-19. Read abundance is CLR normalized; Figure S2:
(A) The results of DMM (Dirichlet multinomial mixture) clustering. Clustering was performed using
DirichletMultinomial package in R. Model fit was evaluated using Laplace approximation (shown in
pink), AIC (Akaike Information Criterion, shown in orange), and BIC (Bayesian Information Criterion,
shown in blue). All three metrics clearly drop at (k = 2), indicating that samples can be split into
2 clusters. (B–I) Distribution of metadata by comparison number of clusters (com_type2 variable);
Figure S3 The differentially abundant taxa testing associations. (A) Bacteria on the ASV level differ in
abundance in patients from severe and mild groups. The analysis was carried out using the DeSeq2
method. Bacteria that are more abundant in more severe patients are shown in bars pointing to
the right, and in milder patients—to the left. Asterisks indicate the level of significance with the
following thresholds: (*) = 0.1, (**) = 0.05, (***) = 0.01. (B) Top ASVs that are associated with COVID-19
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severity as analyzed by the Songbird utility. ASVs associated with a milder course of COVID-19
have lower differential values; ASVs associated with a more severe course of COVID-19 have larger
differential values. The phylum is marked in color; Figure S4. The Venn diagram illustrates the
shared taxa identified by Deseq2 and Songbird utilities in the severe (A) and mild (B) patient groups;
Figure S5. Comparison of bacterial associations between mild and severe groups of SARS-CoV-2-
infected patients. The SPIEC-EASI is used as an association measure. Eigenvector centrality and
degree centrality were used for defining hubs/keystone taxa (nodes with a centrality value above the
empirical 95% quantile) and scaling node sizes. Node colors represent clusters, which are determined
using the Louvain method. Clusters have the same color in both networks if they share at least two
taxa. Purple edges correspond to positive estimated associations and turquoise edges to negative
ones. The layout computed for the network is used in both networks. Nodes that are unconnected
in both groups are removed. Table S1: Study cohort metadata overview; Table S2: The relative
abundances of top 7 dominant families in 92 subjects; Table S3: Results of aligning ASV sequences to
the nt database using BLASTN that overlap between the Deseq2 and Songbird tools; Table S4: The
results of aligning ASV sequences on nt database using BLASTN, ASVs that aligned to the same
species were bolded; Table S5: The results of aligning ASV sequences on nt database using BLASTN.
ASVs that aligned to the same species were bolded; Table S6: Keytaxa taxa (nodes with a centrality
value above the empirical 95% quantile) are associated with mild and severe groups.
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11. Mańkowska-Wierzbicka, D.; Zuraszek, J.; Wierzbicka, A.; Gabryel, M.; Mahadea, D.; Baturo, A.; Zakerska-Banaszak, O.; Slomski,
R.; Skrzypczak-Zielinska, M.; Dobrowolska, A. Alterations in Gut Microbiota Composition in Patients with COVID-19: A Pilot
Study of Whole Hypervariable 16S rRNA Gene Sequencing. Biomedicines 2023, 11, 367. [CrossRef]

12. Maeda, Y.; Motooka, D.; Kawasaki, T.; Oki, H.; Noda, Y.; Adachi, Y.; Niitsu, T.; Okamoto, S.; Tanaka, K.; Fukushima, K.; et al.
Longitudinal alterations of the gut mycobiota and microbiota on COVID-19 severity. BMC Infect. Dis. 2022, 22, 572. [CrossRef]

13. Moreira-Rosário, A.; Marques, C.; Pinheiro, H.; Araújo, J.R.; Ribeiro, P.; Rocha, R.; Mota, I.; Pestana, D.; Ribeiro, R.; Pereira, A.;
et al. Gut Microbiota Diversity and C-Reactive Protein Are Predictors of Disease Severity in COVID-19 Patients. Front. Microbiol.
2021, 12, 705020. [CrossRef]

14. Schult, D.; Reitmeier, S.; Koyumdzhieva, P.; Lahmer, T.; Middelhoff, M.; Erber, J.; Schneider, J.; Kager, J.; Frolova, M.; Horstmann,
J.; et al. Gut bacterial dysbiosis and instability is associated with the onset of complications and mortality in COVID-19. Gut
Microbes 2022, 14, 2031840. [CrossRef] [PubMed]

15. Gu, S.; Chen, Y.; Wu, Z.; Chen, Y.; Gao, H.; Lv, L.; Guo, F.; Zhang, X.; Luo, R.; Huang, C.; et al. Alterations of the gut microbiota in
patients with COVID-19 or H1N1 influenza. Clin. Infect. Dis. 2020, 71, 2669–2678. [CrossRef] [PubMed]

16. Morozov, S.P.; Andreychenko, A.E.; Blokhin, I.A.; Gelezhe, P.B.; Gonchar, A.P.; Nikolaev, A.E.; Pavlov, N.A.; Chernina, V.Y.;
Gombolevskiy, V.A. MosMedData: Data set of 1110 chest CT scans performed during the COVID-19 epidemic. Digit. Diagn. 2020,
1, 49–59. [CrossRef]

17. Oken, M.M.; Creech, R.H.; Tormey, D.C.; Horton, J.; Davis, T.E.; McFadden, E.T.; Carbone, P.P. Toxicity and response criteria of
the Eastern Cooperative Oncology Group. Am. J. Clin. Oncol. 1982, 5, 649–655. [CrossRef]

18. Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120.
[CrossRef]

19. Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-resolution sample inference
from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [CrossRef]

20. Pruesse, E.; Quast, C.; Knittel, K.; Fuchs, B.M.; Ludwig, W.; Peplies, J.; Glöckner, F.O. SILVA: A comprehensive online resource
for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35, 7188–7196.
[CrossRef]

21. Davis, N.M.; Proctor, D.M.; Holmes, S.P.; Relman, D.A.; Callahan, B.J. Simple statistical identification and removal of contaminant
sequences in marker-gene and metagenomics data. Microbiome 2018, 6, 226. [CrossRef]

22. Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 2003, 14, 927–930. [CrossRef]
23. McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data.

PLoS ONE 2013, 8, e61217. [CrossRef]
24. Holmes, I.; Harris, K.; Quince, C. Dirichlet multinomial mixtures: Generative models for microbial metagenomics. PLoS ONE

2012, 7, e30126. [CrossRef] [PubMed]
25. Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome

Biol. 2014, 15, 550. [CrossRef]
26. Morton, J.T.; Marotz, C.; Washburne, A.; Silverman, J.; Zaramela, L.S.; Edlund, A.; Zengler, K.; Knight, R. Establishing microbial

composition measurement standards with reference frames. Nat. Commun. 2019, 10, 2719. [CrossRef] [PubMed]
27. Douglas, G.M.; Maffei, V.J.; Zaneveld, J.R.; Yurgel, S.N.; Brown, J.R.; Taylor, C.M.; Huttenhower, C.; Langille, M.G. PICRUSt2 for

prediction of metagenome functions. Nat. Biotechnol. 2020, 38, 685–688. [CrossRef] [PubMed]
28. Kurtz, Z.D.; Müller, C.L.; Miraldi, E.R.; Littman, D.R.; Blaser, M.J.; Bonneau, R.A. Sparse and compositionally robust inference of

microbial ecological networks. PLoS Comput. Biol. 2015, 11, e1004226. [CrossRef]
29. Peschel, S.; Müller, C.L.; von Mutius, E.; Boulesteix, A.L.; Depner, M. NetCoMi: Network construction and comparison for

microbiome data in R. Brief Bioinform. 2021, 22, bbaa290. [CrossRef]
30. Galeeva, J.S.; Starikova, E.V.; Fedorov, D.E.; Manolov, A.I.; Pavlenko, A.V.; Konanov, D.N.; Krivonos, D.V.; Babenko, V.V.; Klimina,

K.M.; Veselovsky, V.A.; et al. Microbial communities of the upper respiratory tract in mild and severe COVID-19 patients: A
possible link with the disease course. Front. Microbiomes 2023, 2. [CrossRef]

31. Lee, M.H.; Li, H.J.; Wasuwanich, P.; Kim, S.E.; Kim, J.Y.; Jeong, G.H.; Park, S.; Yang, G.W.; Kim, M.S.; Yon, D.K.; et al. COVID-19
susceptibility and clinical outcomes in inflammatory bowel disease: An updated systematic review and meta-analysis. Rev. Med.
Virol. 2023, 33, e2414. [CrossRef]

https://doi.org/10.3389/fcimb.2022.736397
https://www.ncbi.nlm.nih.gov/pubmed/35433495
https://doi.org/10.1128/JVI.00127-20
https://www.ncbi.nlm.nih.gov/pubmed/31996437
https://doi.org/10.1091/mbc.E20-12-0775
https://www.ncbi.nlm.nih.gov/pubmed/33596089
https://doi.org/10.1038/s41467-022-33395-6
https://doi.org/10.3390/biomedicines11020367
https://doi.org/10.1186/s12879-022-07358-7
https://doi.org/10.3389/fmicb.2021.705020
https://doi.org/10.1080/19490976.2022.2031840
https://www.ncbi.nlm.nih.gov/pubmed/35174781
https://doi.org/10.1093/cid/ciaa709
https://www.ncbi.nlm.nih.gov/pubmed/32497191
https://doi.org/10.17816/DD46826
https://doi.org/10.1097/00000421-198212000-00014
https://doi.org/10.1093/bioinformatics/btu170
https://doi.org/10.1038/nmeth.3869
https://doi.org/10.1093/nar/gkm864
https://doi.org/10.1186/s40168-018-0605-2
https://doi.org/10.1111/j.1654-1103.2003.tb02228.x
https://doi.org/10.1371/journal.pone.0061217
https://doi.org/10.1371/journal.pone.0030126
https://www.ncbi.nlm.nih.gov/pubmed/22319561
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.1038/s41467-019-10656-5
https://www.ncbi.nlm.nih.gov/pubmed/31222023
https://doi.org/10.1038/s41587-020-0548-6
https://www.ncbi.nlm.nih.gov/pubmed/32483366
https://doi.org/10.1371/journal.pcbi.1004226
https://doi.org/10.1093/bib/bbaa290
https://doi.org/10.3389/frmbi.2023.1067019
https://doi.org/10.1002/rmv.2414


Biomedicines 2024, 12, 996 19 of 20

32. Gao, Y.D.; Ding, M.; Dong, X.; Zhang, J.J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.L.; Fu, W.; Li, W.; et al. Risk factors for
severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [CrossRef]

33. Iqbal, M.S.; Naqvi, R.A.; Alizadehsani, R.; Hussain, S.; Moqurrab, S.A.; Lee, S.W. An adaptive ensemble deep learning framework
for reliable detection of pandemic patients. Comput. Biol. Med. 2024, 168, 107836. [CrossRef] [PubMed]

34. Ma, Z.S. Testing the Anna Karenina Principle in Human Microbiome-Associated Diseases. iScience 2020, 23, 101007. [CrossRef]
35. Ochoa-Reparaz, J.; Mangalam, A.K. The Role of the Gut Microbiota in Health and Inflammatory Diseases. Front. Immunol. 2020,

11, 565305. [CrossRef] [PubMed]
36. Haller, D. The Gut Microbiome in Health and Disease; Springer: Berlin/Heidelberg, Germany, 2018; 356p. [CrossRef]
37. Xu, X.; Zhang, W.; Guo, M.; Xiao, C.; Fu, Z.; Yu, S.; Jiang, L.; Wang, S.; Ling, Y.; Liu, F.; et al. Integrated analysis of gut microbiome

and host immune responses in COVID-19. Front. Med. 2022, 16, 263–275. [CrossRef]
38. Derrien, M.; Vaughan, E.E.; Plugge, C.M.; de Vos, W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal

mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 2004, 54 Pt 5, 1469–1476. [CrossRef] [PubMed]
39. Kim, S.; Shin, Y.C.; Kim, T.Y.; Kim, Y.; Lee, Y.S.; Lee, S.H.; Kim, M.N.; Eunju, O.; Kim, K.S.; Kweon, M.N. Mucin degrader

Akkermansia muciniphila accelerates intestinal stem cell-mediated epithelial development. Gut Microbes 2021, 13, 1892441.
[CrossRef]

40. Macchione, I.G.; Lopetuso, L.R.; Ianiro, G.; Napoli, M.; Gibiino, G.; Rizzatti, G.; Petito, V.; Gasbarrini, A.; Scaldaferri, F.
Akkermansia muciniphila: Key player in metabolic and gastrointestinal disorders. Eur. Rev. Med. Pharmacol. Sci. 2019,
23, 8075–8083. [CrossRef]

41. Bian, X.; Wu, W.; Yang, L.; Lv, L.; Wang, Q.; Li, Y.; Ye, J.; Fang, D.; Wu, J.; Jiang, X.; et al. Administration of Akkermansia
muciniphila Ameliorates Dextran Sulfate Sodium-Induced Ulcerative Colitis in Mice. Front. Microbiol. 2019, 10, 2259. [CrossRef]

42. de Vos, W.M. Microbe Profile: Akkermansia muciniphila: A conserved intestinal symbiont that acts as the gatekeeper of our
mucosa. Microbiology 2017, 163, 646–648. [CrossRef]

43. Ganesh, B.P.; Klopfleisch, R.; Loh, G.; Blaut, M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella
Typhimurium-infected gnotobiotic mice. PLoS ONE 2013, 8, e74963. [CrossRef]

44. Ring, C.; Klopfleisch, R.; Dahlke, K.; Basic, M.; Bleich, A.; Blaut, M. Akkermansia muciniphila strain ATCC BAA-835 does
not promote short-term intestinal inflammation in gnotobiotic interleukin-10-deficient mice. Gut Microbes 2019, 10, 188–203.
[CrossRef] [PubMed]

45. Gaibani, P.; D’Amico, F.; Bartoletti, M.; Lombardo, D.; Rampelli, S.; Fornaro, G.; Coladonato, S.; Siniscalchi, A.; Re, M.C.; Viale,
P.; et al. The Gut Microbiota of Critically Ill Patients With COVID-19. Front. Cell Infect. Microbiol. 2021, 11, 670424. [CrossRef]
[PubMed]

46. S, chiopu, P.; Toc, D.A.; Colosi, I.A.; Costache, C.; Ruospo, G.; Berar, G.; Gălbău, S, .G.; Ghilea, A.C.; Botan, A.; Pană, A.G.; et al. An
Overview of the Factors Involved in Biofilm Production by the Enterococcus Genus. Int. J. Mol. Sci. 2023, 24, 11577. [CrossRef]

47. Sulayyim, H.J.A.; Ismail, R.; Hamid, A.A.; Ghafar, N.A. Antibiotic Resistance during COVID-19: A Systematic Review. Int. J.
Environ. Res. Public Health 2022, 19, 11931. [CrossRef]

48. Righi, E.; Lambertenghi, L.; Gorska, A.; Sciammarella, C.; Ivaldi, F.; Mirandola, M.; Sartor, A.; Tacconelli, E. Impact of COVID-19
and Antibiotic Treatments on Gut Microbiome: A Role for Enterococcus spp. Biomedicines 2022, 10, 2786. [CrossRef]

49. Ragsdale, S.W. Not a “they” but a “we”: The microbiome helps promote our well-being. J. Biol. Chem. 2022, 298, 101511.
[CrossRef]

50. Zuo, T.; Zhang, F.; Lui, G.C.; Yeoh, Y.K.; Li, A.Y.; Zhan, H.; Wan, Y.; Chung, A.C.; Cheung, C.P.; Chen, N.; et al. Alterations in
Gut Microbiota of Patients With COVID-19 During Time of Hospitalization. Gastroenterology 2020, 159, 944–955.e8. [CrossRef]
[PubMed]

51. Louis, P.; Flint, H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine.
FEMS Microbiol. Lett. 2009, 294, 1–8. [CrossRef]

52. Parada Venegas, D.; De la Fuente, M.K.; Landskron, G.; González, M.J.; Quera, R.; Dijkstra, G.; Harmsen, H.J.; Faber, K.N.;
Hermoso, M.A. Short Chain Fatty Acids (SCFAs)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for
Inflammatory Bowel Diseases. Front. Immunol. 2019, 10, 277. [CrossRef]

53. Yeoh, Y.K.; Zuo, T.; Lui, G.C.Y.; Zhang, F.; Liu, Q.; Li, A.Y.; Chung, A.C.; Cheung, C.P.; Tso, E.Y.; Fung, K.S.; et al. Gut microbiota
composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 2021, 70, 698–706.
[CrossRef]

54. Li, S.; Yang, S.; Zhou, Y.; Disoma, C.; Dong, Z.; Du, A.; Zhang, Y.; Chen, Y.; Huang, W.; Chen, J.; et al. Microbiome Profiling Using
Shotgun Metagenomic Sequencing Identified Unique Microorganisms in COVID-19 Patients with Altered Gut Microbiota. Front.
Microbiol. 2021, 12, 712081. [CrossRef] [PubMed]

55. Zuo, T.; Liu, Q.; Zhang, F.; Lui, G.C.Y.; Tso, E.Y.; Yeoh, Y.K.; Chen, Z.; Boon, S.S.; Chan, F.K.; Chan, P.K.; et al. Depicting
SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 2021, 70, 276–284.
[CrossRef] [PubMed]

56. Wang, C.; Xiao, Y.; Yu, L.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. Protective effects of different Bacteroides vulgatus
strains against lipopolysaccharide-induced acute intestinal injury, and their underlying functional genes. J. Advert. Res. 2022,
36, 27–37. [CrossRef]

https://doi.org/10.1111/all.14657
https://doi.org/10.1016/j.compbiomed.2023.107836
https://www.ncbi.nlm.nih.gov/pubmed/38086139
https://doi.org/10.1016/j.isci.2020.101007
https://doi.org/10.3389/fmicb.2023.1098386
https://www.ncbi.nlm.nih.gov/pubmed/37051522
https://doi.org/10.1097/MOG.0000000000000139
https://doi.org/10.1007/s11684-022-0921-6
https://doi.org/10.1099/ijs.0.02873-0
https://www.ncbi.nlm.nih.gov/pubmed/15388697
https://doi.org/10.1080/19490976.2021.1892441
https://doi.org/10.26355/eurrev_201909_19024
https://doi.org/10.3389/fmicb.2019.02259
https://doi.org/10.1099/mic.0.000444
https://doi.org/10.1371/journal.pone.0074963
https://doi.org/10.1080/19490976.2018.1511663
https://www.ncbi.nlm.nih.gov/pubmed/30252588
https://doi.org/10.3389/fcimb.2021.670424
https://www.ncbi.nlm.nih.gov/pubmed/34268136
https://doi.org/10.3390/ijms241411577
https://doi.org/10.3390/ijerph191911931
https://doi.org/10.3390/biomedicines10112786
https://doi.org/10.1016/j.jbc.2021.101511
https://doi.org/10.1053/j.gastro.2020.05.048
https://www.ncbi.nlm.nih.gov/pubmed/32442562
https://doi.org/10.1111/j.1574-6968.2009.01514.x
https://doi.org/10.3389/fimmu.2019.00277
https://doi.org/10.1136/gutjnl-2020-323020
https://doi.org/10.3389/fmicb.2021.712081
https://www.ncbi.nlm.nih.gov/pubmed/34707577
https://doi.org/10.1136/gutjnl-2020-322294
https://www.ncbi.nlm.nih.gov/pubmed/32690600
https://doi.org/10.1016/j.jare.2021.06.012


Biomedicines 2024, 12, 996 20 of 20

57. Li, S.; Wang, C.; Zhang, C.; Luo, Y.; Cheng, Q.; Yu, L.; Sun, Z. Evaluation of the Effects of Different Bacteroides vulgatus Strains
against DSS-Induced Colitis. J. Immunol. Res. 2021, 2021, 9117805. [CrossRef] [PubMed]

58. Mills, R.H.; Dulai, P.S.; Vázquez-Baeza, Y.; Sauceda, C.; Daniel, N.; Gerner, R.R.; Batachari, L.E.; Malfavon, M.; Zhu, Q.; Weldon,
K.; et al. Multi-omics analyses of the ulcerative colitis gut microbiome link Bacteroides vulgatus proteases with disease severity.
Nat. Microbiol. 2022, 7, 262–276. [CrossRef]

59. Riepe, S.P.; Goldstein, J.; Alpers, D.H. Effect of secreted Bacteroides proteases on human intestinal brush border hydrolases.
J. Clin. Investig. 1980, 66, 314–322. [CrossRef]

60. Chen, J.; Siliceo, S.L.; Ni, Y.; Nielsen, H.B.; Xu, A.; Panagiotou, G. Identification of robust and generalizable biomarkers for
microbiome-based stratification in lifestyle interventions. Microbiome 2023, 11, 178. [CrossRef]

61. Geva-Zatorsky, N.; Sefik, E.; Kua, L.; Pasman, L.; Tan, T.G.; Ortiz-Lopez, A.; Yanortsang, T.B.; Yang, L.; Jupp, R.; Mathis, D.; et al.
Mining the Human Gut Microbiota for Immunomodulatory Organisms. Cell 2017, 168, 928–943.e11. [CrossRef]

62. Molinero, N.; Conti, E.; Walker, A.W.; Margolles, A.; Duncan, S.H.; Delgado, S. Survival Strategies and Metabolic Interactions
between Ruminococcus gauvreauii and Ruminococcoides bili, Isolated from Human Bile. Microbiol. Spectr. 2022, 10, e0277621.
[CrossRef]

63. Lynch, J.B.; Gonzalez, E.L.; Choy, K.; Faull, K.F.; Jewell, T.; Arellano, A.; Liang, J.; Yu, K.B.; Paramo, J.; Hsiao, E.Y. Gut microbiota
Turicibacter strains differentially modify bile acids and host lipids. Nat. Commun. 2023, 14, 3669. [CrossRef] [PubMed]

64. Maraki, S.; Papadakis, I.S. Rothia mucilaginosa pneumonia: A literature review. Infect. Dis. 2015, 47, 125–129. [CrossRef]
65. Maddah, R.; Goodarzi, V.; Asadi-Yousefabad, S.L.; Abbasluo, M.; Shariati, P.; Shafiei Kafraj, A. Evaluation of the gut microbiome

associated with COVID-19. Inf. Med. Unlocked. 2023, 38, 101239. [CrossRef] [PubMed]
66. Wu, Y.; Cheng, X.; Jiang, G.; Tang, H.; Ming, S.; Tang, L.; Lu, J.; Guo, C.; Shan, H.; Huang, X. Altered oral and gut microbiota and

its association with SARS-CoV-2 viral load in COVID-19 patients during hospitalization. NPJ Biofilms Microbiomes 2021, 7, 61.
[CrossRef]

67. Kitamoto, S.; Kamada, N. Untangling the oral-gut axis in the pathogenesis of intestinal inflammation. Int. Immunol. 2022,
34, 485–490. [CrossRef] [PubMed]

68. Hernández-Terán, A.; Mejía-Nepomuceno, F.; Herrera, M.T.; Barreto, O.; García, E.; Castillejos, M.; Boukadida, C.; Matias-
Florentino, M.; Rincón-Rubio, A.; Avila-Rios, S.; et al. Dysbiosis and structural disruption of the respiratory microbiota in
COVID-19 patients with severe and fatal outcomes. Sci. Rep. 2021, 11, 21297. [CrossRef] [PubMed]

69. Ren, C.; Wang, Y.; Lin, X.; Song, H.; Zhou, Q.; Xu, W.; Shi, K.; Chen, J.; Song, J.; Chen, F.; et al. A Combination of Formic
Acid and Monolaurin Attenuates Enterotoxigenic Escherichia coli Induced Intestinal Inflammation in Piglets by Inhibiting the
NF-κB/MAPK Pathways with Modulation of Gut Microbiota. J. Agric. Food Chem. 2020, 68, 4155–4165. [CrossRef]

70. O’Dwyer, D.N.; Ashley, S.L.; Gurczynski, S.J.; Xia, M.; Wilke, C.; Falkowski, N.R.; Norman, K.C.; Arnold, K.B.; Huffnagle, G.B.;
Salisbury, M.L.; et al. Lung Microbiota Contribute to Pulmonary Inflammation and Disease Progression in Pulmonary Fibrosis.
Am. J. Respir Crit. Care Med. 2019, 199, 1127–1138. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1155/2021/9117805
https://www.ncbi.nlm.nih.gov/pubmed/34195297
https://doi.org/10.1038/s41564-021-01050-3
https://doi.org/10.1172/JCI109859
https://doi.org/10.1186/s40168-023-01604-z
https://doi.org/10.1016/j.cell.2017.01.022
https://doi.org/10.1128/spectrum.02776-21
https://doi.org/10.1038/s41467-023-39403-7
https://www.ncbi.nlm.nih.gov/pubmed/37339963
https://doi.org/10.3109/00365548.2014.980843
https://doi.org/10.1016/j.imu.2023.101239
https://www.ncbi.nlm.nih.gov/pubmed/37033411
https://doi.org/10.1038/s41522-021-00232-5
https://doi.org/10.1093/intimm/dxac027
https://www.ncbi.nlm.nih.gov/pubmed/35716367
https://doi.org/10.1038/s41598-021-00851-0
https://www.ncbi.nlm.nih.gov/pubmed/34716394
https://doi.org/10.1021/acs.jafc.0c01414
https://doi.org/10.1164/rccm.201809-1650OC

	Introduction 
	Materials and Methods 
	Samples and Data Collection 
	Study Cohort 
	16S rRNA Sequencing 
	16S rRNA Data Processing 
	Statistical Analysis 

	Results 
	Taxonomy of the Gut Microbiome of Patients Infected with SARS-CoV-2 
	Alpha and Beta Diversity Shows No Significant Differences between Patients with Mild and Severe COVID-19 
	Determining Gut Biotope Community Types in Mild and Severe COVID-19 Patients 
	Exploring the Relationship between the Gut Microbiome of SARS-CoV-2-Infected Patients and Covariates 
	Analyzing Microbial Associations with Disease Severity in Relation to Age, Gender, and Comorbidities 
	The Gut Microbiota’s Network Structure Shows Variations across COVID-19 Patients with Differing Severity Levels 

	Discussion 
	Limitations 
	References

