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Abstract: Particle Swarm Optimization (PSO) algorithms within control structures are a realistic
approach; their task is often to predict the optimal control values working with a process model
(PM). Owing to numerous numerical integrations of the PM, there is a big computational effort
that leads to a large controller execution time. The main motivation of this work is to decrease
the computational effort and, consequently, the controller execution time. This paper proposes
to replace the PSO predictor with a machine learning model that has “learned” the quasi-optimal
behavior of the couple (PSO and PM); the training data are obtained through closed-loop simulations
over the control horizon. The new controller should preserve the process’s quasi-optimal control.
In identical conditions, the process evolutions must also be quasi-optimal. The multiple linear
regression and the regression neural networks were considered the predicting models. This paper
first proposes algorithms for collecting and aggregating data sets for the learning process. Algorithms
for constructing the machine learning models and implementing the controllers and closed-loop
simulations are also proposed. The simulations prove that the two machine learning predictors have
learned the PSO predictor’s behavior, such that the process evolves almost identically. The resulting
controllers” execution time have decreased hundreds of times while keeping their optimality; the
performance index has even slightly increased.

Keywords: particle swarm optimization; machine learning; optimal control; simulation

1. Introduction

A common task in process engineering is to control processes whose quality is eval-
uated through a performance index. When the process model has certain mathematical
properties, theoretical control laws can be adopted for implementation; on the contrary,
when the process model is uncertain, incomplete, and imprecise or has profound nonlin-
earities, metaheuristic algorithms (MAs) like Evolutionary Algorithms, Particle Swarm
Optimization, etc., within a suitable control structure could be successfully used [1-3]. Con-
trol engineering has afforded numerous examples where metaheuristics were used [4-8]
owing to their robustness and capacity to deal with complex processes.

The role of an MA within a controller is usually to predict the optimal control values
within each sampling period, but first, it searches for the optimal value. For example, the
PSO algorithm follows its optimization mechanism using particles and the internal PM.

A control structure fitting this type of controller is Receding Horizon Control (RHC) [9-11].
This structure is suitable for implementing solutions to Optimal Control Problems (OCPs);
it includes an internal process model (PM) [8,12,13].

Another facet of the prediction process also used within a control problem is described,
for example, in [14]. The study proposes a physics-assisted transfer learning metamodeling
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framework to predict laser butt welding bead geometry and carbon emissions. This time,
the learning process updates the process model.

A predilect research topic for the authors was implementing the prediction module
within an RHC structure employing MAs. The results are partially reflected in previous
works [8,15,16]. The robustness, efficiency, and usability of MAs inside a controller have a
price to pay: the controller’s execution time. The optimization mechanism and the PM’s
numerous numerical integrations take a relatively long time to find the optimal value
after a convergence process. That is why this approach is mainly suitable for slow pro-
cesses when the predictions” computation time is smaller than the sampling period [17,18].
Decreasing the predictor’s execution time is a challenge [15,16] because it could extend the
applicability of controllers using MAs. This work goes in the same direction but involves a
new technique: using machine learning (ML) to emulate predictors based on MAs. Recently,
we have proposed linear regression (LR) predictors that are “equivalent” in a certain sense
to predictors based on Evolutionary Algorithms (Eas) [19]. This paper deals with OCPs
having final costs and solutions involving PSO predictions.

For the reader, who is a newcomer equally in the fields of control systems, computa-
tional intelligence, and machine learning, we have to answer why our objective is to replace
the PSO predictor with an ML predictor (inside the RHC structure) when solving an OCP.

e  The PSO predictor predicts an optimal control value, but first, it searches for the
optimal control sequence following its optimization mechanism using a swarm of
particles and the PM. That is why it takes a relatively long time to find this value after
a convergence process.

e  The ML predictor (LR or RNN) predicts using an already-known regression function.
Being an ML model, it reproduces what it has learned, the PSO predictor’s behavior.
It does not search for anything. Moreover, it does not make numerical integrations of
the PM. That is why it takes a much shorter time to calculate the predicted value.

e The ML predictor replaces the PSO predictor only in execution when the controller
achieves the control action. Intrinsically, the solution is given by the PSO algorithm.
The solutions are “learned” by the ML predictor; that is, the ML model emulates the
PSO algorithm.

To continue the work presented in [19], we shall consider the equivalence mentioned
above and implement Regression Neural Network (RNN) predictors besides the LR ones.

Throughout this paper, we have recourse to a specific OCP to make the explanations
easy to follow for the reader. In [11], for the optimal control of a specific photobioreactor
(PBR) lighted for algal growth, we have presented a solution in the same context, RHC and
predictions based on PSO. We shall adopt the PSO predictor already constructed in [11];
by employing this one, we shall generate new ML predictors. The data generated by
simulation modules, already developed previously, are stored or recorded. These data will
be needed to train and test the ML models. Some results from [11] will be reported in this
paper for comparison (Section 7.1).

Section 2 recalls the general approach developed in previous work [8,20,21] to solve
such problems using PSO algorithms. Besides the recall of the PBR problem’s state-
ment, Section 2 also introduces the notations and formulas that keep the presentation
self-contained.

Section 3 answers the following two main questions:

e  What data are needed to capture the optimal (quasi-optimal) behavior of the couple
(PSO and PM)?
e  How are the data sets for the ML algorithms generated?

The PSO prediction module, included in the controller, is available from our previous
work, which has already solved the PBR problem. Section 3 presents an algorithm carrying
out the closed-loop simulation over the control horizon using the PSO predictor. A manda-
tory hypothesis is that the real process and the internal PM are considered identical because
the data recorded should capture only the behavior of the couple (PSO and PM).
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At the end of the simulation, the sequence of optimal control values (optimal control
profile) and the sequence of state variables (optimal trajectory) can be recorded. The optimal
CP and trajectory can be seen as the “signature” data of the optimal solution. Consider-
ing together the two sequences, we obtain a sequence of couples (state; control value),
one couple for each sampling period. The simulation program is executed M times (e.g.,
two hundred times); the two sequences are collected each time and aggregated into a data
structure. This data structure expresses the PSO predictor’s experience as a decision maker;
it will be used to obtain the ML models [22-26].

Section 4 presents the general approach to learning the optimal behavior of the couple
(PSO and MP). The learning process is split at the level of each sampling period, and conse-
quently, new data structures are derived for each of them. With each new data structure,
which is a collection of couples (state; control value), a generic regression function [22,27,28]
is associated. The latter is materialized through an ML regression model devoted to the
sampling period at hand, which must be capable of giving accurate predictions.

An ML controller’s systematic design procedure is also proposed. We have to em-
phasize that the entire design procedure of the ML controller needs only simulations and
offline program executions.

In this paper, we consider as regression models only two kinds of models: multiple
linear regression [29-31] and Regression Neural Network [22,32]. Other regression models
(trees, support vector machines, and Gaussian processes) were considered in our studies
as well. Still, only the models LR and RNN are relevant to this presentation. Implement-
ing an ML controller, in our context, involves determining a regression model for each
sampling period.

Section 5 deals with constructing a set of linear regression (LR) models [29,31] that are
trained with the data sets constructed in Section 4. A general construction algorithm using
the stepwise regression [30] strategy is proposed. A table with the regressions’ coefficients
is extracted from the models. The LR controller is implemented using the LR predictors; it
is also integrated into a proposed closed-loop simulation program, allowing us to evaluate
the entire approach. Some simulation results are given.

Section 6 proposes a general algorithm for constructing the models using Regression
Neural Networks [32]. The training and testing data sets are already determined in Section 4,
and they are saved in an external file. A specific closed-loop simulation program is also
proposed; it includes the RNN controller using the RNN predictors. The simulation results
are presented for further analysis.

The Discussion section first answers the following question: Did the two kinds of
predictors “learn” the behavior of the couple (PSO and PM), such that the new process’s
evolutions would also be quasi-optimal? To do this, we depict the new process’s evolutions
and display some numerical information using the closed-loop simulation programs pro-
posed in Sections 5 and 6. The simulation results are compared with those already available
concerning the PSO predictor. Owing to their generalization ability, both ML controllers
make accurate predictions of the control value sent to the process, and the state evolutions
are practically identical.

The second question that this section has to answer is as follows: Did the controller’s
execution time decrease significantly?

The positive answer to both questions proves that the ML controllers are an effective
way to avoid the large execution time of the controllers based on PSO while maintaining
the optimality of the control. This result is important because it extends the possibility of
using PSO (or other MA) controllers for processes with smaller time constants.

Special attention was paid to the implementation aspects such that the interested
reader could find support to understand and, eventually, reproduce parts of this work or
use it in their projects. With this aim in view, all algorithms used in this presentation are
implemented, the associated scripts are attached in the Supplementary Materials, and all of
the necessary details are given in the Appendices A-E.
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2. Controllers with Predictions Based on PSO: Connection with Machine
Learning Algorithms

Many controlled processes, such as biochemical processes, are repetitive, like those
organized in batches. For efficiency reasons, they generate Optimal Control Problems
involving three components:

e  The process model can include nonlinearities, imprecise, incomplete, and uncertain
knowledge, correspond to a distributed-parameter system, etc.
There are constraints, such as initial conditions, bound constraints, final constraints, etc.
The cost function, which should be optimized, leads to a performance index.

To solve such a control problem, we need an adequate control structure which will
define the optimal controller. The latter includes a prediction module that calculates
the optimal control sequence and the optimal trajectory over the prediction horizon or
even until the end of the control horizon. For its work, the predictor uses the PM for a
huge number of numerical integrations. In this context, the predictor has a very complex
numerical task; that is why a metaheuristic algorithm is often a realistic solution to fulfil
this task.

The Receding Horizon Control (RHC) [8,10,11] is a very simple control strategy that
can easily integrate a metaheuristic algorithm as a predictor (Figure 1). The authors have
studied and simulated the RHC in solving different OCPs in conjunction with an EA or PSO.
The solutions are realistic, they can be used in real-time control, and several techniques
can be used to decrease the numerical complexity of the predictor. Nevertheless, the
inconvenience is that the control action takes up a big part of the sampling period.

U (k)

Prediction and Optimization
(Adaptive PSO Algorithm) X(k+1)

<

Process

Process Model

_ Objective
U(k) X(k) function
value

Objective function computation

Receding Horizon Controller

Figure 1. Receding Horizon Control using adaptive PSO algorithm.

An interesting and practical approach, in this context, is to replace the predictor with
a machine learning algorithm inside the controller. The ML algorithm must emulate the
predictor of the RHC structure following its training offline. To emphasize its role, we
shall refer to this algorithm as the ML controller. In this work, we have to answer the
following questions:

e  What does it mean that the ML algorithm must emulate the predictor?
o  What data sets are used in training the ML, and how are they obtained?
e  What kind of ML model can be used to achieve an appropriate controller?
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In [11], we have presented the optimal control of a continuously stirred flat-plate
photobioreactor (PBR) lighted on a single side for algal growth in the same context: the
RHC that uses predictions based on PSO.

In this presentation, all of the essential tasks concerning the ML do not need the PM;
only the final simulations, which allow us to validate the entire approach, employ the
PM. That is why the reader can find in Appendix A the equations modeling the PBR, the
constraints, and the cost function of the OCP. The PBR is a distributed parameter system,
but the PM is converted through discretization into a lumped parameter process. We
have solved this problem in [11], adding the discretization constraint, which refers to the
input variables:

U(t) = UKT) 2 U(k), fork-T<t< (k+1)-T; k=0,--- ,H—1.

where T is the sampling period, and the final time of the batch equals H-T. In our example,
the input vector has a single component, i.e.,

uck) =qk), k=0,--- ,H—1. (1)

The variable q(k) is the intensity of incident light throughout the kth sampling period.

At every moment 0 < k < H — 1, the predictor calculates the optimal control se-
quence (1) using the usual version of the APSOA (adaptive PSO algorithm) and the PM,
which is integrated a large number of times. The optimal control sequence minimizes
the cost function J(k, X(k)) over the current prediction horizon [k, H|; in our example, the
following holds:

H-1
Hex0) = min S a-CE UG+ [V () - mol |,
predicted sequence i=k

X(k) = [x1(k) x2(k)].

The vector X (k) is the current state of the process. A predicted sequence is a control
sequence with the following structure:

U(k) = (U(k),...,U(H-1)), )
Using the PM and Equation (2), the APSOA calculates the corresponding state sequence.
X(k) = (X(k),...,X(H)).

The latter has H — k + 1 elements.
When the APSOA converges, it supplies the best sequence U (k) for the current predic-
tion horizon, denoted by V (k):

V(6) 2 arg min J(T(K), X(K)) = (VI ., V(H 1) )

The controller’s best output, denoted by U* (k), is the first value of this sequence, i.e.,
u*(k) = v(k). 4)

Applying Equations (3) and (4) is, in fact, the control strategy “Receding Horizon Control”.
A sequence of H control vectors, U(0), U(1), --- ,U(H — 1), will be referred to as a
“control profile” (CP). The latter will produce a state transition like in Figure 2.

X(0) X(1) X(k) X(k+1) X(H-1) X(H)
O O OO — O ®
oy o - o 1) UH=-1)

Figure 2. The state trajectory and its CP.

Finally, the controller following the RHC strategy using predictions implemented
by a PSO algorithm achieves the optimal CP for the given initial state and control hori-
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zon. The optimal CP denoted by (3(Xj), which represents our problem’s solution, is the
concatenation of the optimal controls U*(k), k =0,--- ,H —1:

Q(Xo) = (U*(0), U*(1),..., U*(H—-1)) (5)
Forced by this CP, the process will follow an “optimal trajectory” T'(X):
T(Xo) £ (Xo, X*(1),...,X*(H)). (6)

A closed-loop simulation is the simulation of the controller, which includes the APSOA
and PM, connected to the (real) process (see Figure 1). Our study requires only the situation
when the real process and the PM are identical.

Remark 1. The two sequences (5) and (6) can fully characterize the process’s optimal behavior
in the context of closed-loop simulation over the control horizon when the process and its model
are identical.

Supposing the convergence of the APSOA, the value Jy = J(0, X(0)) theoretically
equals the optimal cost function. Practically, at the end of a closed-loop simulation, the two
values will be very close to each other, so (}(X() would be a quasi-optimal solution for the
problem at hand.

The predictor’s behavior depends on two factors: the metaheuristic algorithm (AP-
SOA) and the PM. In this work, the main objective is to capture the predictor’s behavior
through an ML algorithm. Hence, the latter has to “learn” the optimal behavior of the
couple (APSOA and PM).

Remark 2. Our purpose is to capture the predictor’s behavior using an ML algorithm, that is, to
“learn” the optimal behavior of the couple (APSOA and PM). The final objective is to replace the
predictor with the new ML algorithm, such that the process’s state evolution and the performance
index would be maintained. In this situation, we can state that the ML algorithm emulates
the predictor.

The two sequences (Q)(Xp) and I'(Xj)) are the data results of a closed-loop simulation
and can be considered the “signature” data of the couple (APSOA and PM); there is a
correspondence between the values X*(k) and U* (k) signifying that “when the process is
in the state X* (k) at the moment k, the APSOA will predict the best control value U*(k)”.

So, the source of the data used in a potential learning process can be a closed-loop
simulation, considering the (real) process and the PM identical. Of course, the data pro-
duced by a single simulation over the entire control horizon cannot be sufficient for the
learning process.

3. Data Generation Using Closed-Loop Simulation over Control Horizon

For any OCP like the PBR problem, the designed controller must be validated by
closed-loop simulation, considering the (real) process and the PM identical. This validation
must be carried out before using the implemented controller in real time, connected to
the (real) process. Hence, we must have a simulation program that fulfils this task of
closed-loop simulating over the control horizon, with a given initial state, and considering
the process and the PM identical.

A simulation can be carried out in more realistic situations, for example, when the
process takes into consideration, besides the PM, unmodeled dynamics and noises. But we
do not need such simulations.

Remark 3. The fact that the process and the PM are identical is not a simplification to render our
study’s conclusion more favorable but is a necessity. The ML algorithm has to learn the behavior of
the couple (APSOA and PM); otherwise, it will “learn”, besides the APSOA and PM, the influence
of other perturbating factors.
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Figure 3 shows the closed-loop simulation program’s flowchart in the conditions
mentioned above. This program is generically called “ContrlLoop_PSO”. The function
“Predictor_PSO” returns the predicted sequence V (k), whose first element will give the
optimal control value U* (k). Sending the latter value to the PM and integrating the process
over a sampling time, the function “ProcessStep” will determine the process’s next state,
that is, at the next moment, k + 1.

< ControlLoop PSO )

Initializations:

* PM’s parameters, PSO’s parameters and constants

o Set X). the mitial state vector

s H+«— (control horizon) / T /*T : the sampling period*/
e Space allocation: uRHC (1 = H) and state(H+1 * 2)

l

state(0) — Xy

v

k<0; /* Sampling moment counter */

4

Yes

.
>

v Y
Final integration
[V(k), - .V(H-1)] + Predictor PSO(k, Xj) of the PM
using uRHC
‘ uRHC(K) . U'(k) < WV(k) ‘ \ 4

Save the trajectary: state
v and the CP: uRHC

A= ProcessStep(U‘(k), Xo. k)

A 4

Yy Display simulation results:
X — Xoewt J. state, uRHC

Y

state(k+1) — X,

v

k— I+l

Figure 3. Closed-loop simulation using predictions based on adaptive PSO algorithm.
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When the controller designer decides to use an ML algorithm to replace the couple
(APSOA and PM), the functions “Predictor_PSO” and “ProcessStep” are already written as
a part of the PSO controller’s construction. This is also the case with the PBR problem; we
have already accomplished the entire design procedure (for more details, see [11]).

The reader can understand and execute the “ContrlLoop_PSO” program using the
script ControlLoop_PSO_RHC.m. Details are also given in Appendix B, concerning the
generic functions “Predictor_PSO” and “ProcessStep”.

As we already mentioned, after the closed-loop simulation, the data generated are a
couple of sequences (Q}(Xy) and I'(Xj)), which can be renamed (control profile—trajectory).
To prepare the data for the ML process, we shall repeat M times (e.g., M = 200) the closed-
loop simulation and produce M different quasi-optimal couples (CP—trajectory). There are
two reasons why data couples are different:

e  The PSO has a stochastic character, and the convergence process is imperfect. So, the
optimal control values are different (and so are the state vector’s values), even if the
initial state is strictly the same.

e The initial state values are not the same. A standard initial state (of the standard
batch) could be perturbed to simulate different initial conditions (the standard ones
are imprecisely achieved).

The optimal control value and the optimal states are stored in the matrices uRHC
(H x m) and state (H + 1 x n), respectively, with their structure presented in Figure 4.

state (H +1xn) uRHC (HXxm)
(x )" (U*(O))T
« A\ w« A\
(x*m) (")
* T % T
(x"(r-1) (v @ -n)
« T
(x" ()

Figure 4. The matrices that store the quasi-op-timal trajectory and its CP.

Hence, the optimal CP and trajectory are described by the matrices uRHC and state,
respectively, which are the images of ()(X() and I'(Xp) sequences (see (5) and (6)). For each
of the M simulations, the two matrices are saved in the cell array STATE and the matrix
UstarRHC (M x H), as suggested in Figure A1l (Appendix B) for our case study.

The script LOOP_M_ControlLoop_PS0.m collects the data from M executions of the
closed-loop simulation. The data structures presented in Figure A1 are created and loaded.
A concrete example of the data collected in the first simulation is given in Appendix B.

4. The ML Controller: The Design Procedure and the General Algorithm

The M simulations can be collectively presented in Figure 5, where the state variables
and control output are regrouped by sampling periods.

At each step k, 0 < k < H — 1, of the control horizon, the controller predicts the
optimal control output relying on the couple (APSOA and PM). The state vectors considered
at the same step have some common characteristics:

The same PSO algorithm generates the M state inside a group.

The M simulations work with the same PM.

Each state X;*(k), 1 <i < M, is transferred as the initial state to the predictor.
The prediction horizon has H — k sampling periods.



Processes 2024, 12,991

9 of 28

X1(0) X,'(1) X1 (k) Xl (k + 13 X, (H-1) X, (H)

OO ol
Uy (0) 1(1)HQ 100 Ll(kﬂ) Um"(y-l@
Xm(0)  Xu (D) XM"(k) XM (k+1) X (H=1) Xy (H)
0. 0 000

) = () b M(/») ULM(JH)U( W= 1)
FfoX) SX) X Je=1(X) Jr-1X)

Figure 5. The quasi-optimal trajectories produced by M executions of “ControlLoop_PSO.”.

The APSOA calculates the prediction V (k), and the controller extracts only the optimal
control values U;*(k), 1 <i < M.

The simulation results for step k can be organized as a data set, and a table can be
constructed, as shown below.

We have considered, as usual, that the state and control vector are column vectors. In
our case study, the state vector (n = 2) is generated like a line vector to avoid transposition.

When M has a big enough value, the data set from Table 1 represents to some extent
the ability of the couple (APSOA and PM) to predict optimal control values at step k.
Our desideratum is to generalize this ability to predict the optimal control when the
process accesses states other than those from Table 1; this can be achieved using a machine
learning algorithm.

Table 1. Data set for step k.

XT uT
(X1* (k)" (Ur* (k)"
(Xn* (k)" (Un* (k)"

Remark 4. The four characteristics enumerated before are the reasons making us adopt the hypothesis
that the examples (data points) of Table 1 belong to the same data-generating process; that is, they
are independently identically distributed.

With each group of states presented in Figure 5, equivalent to a table like Table 1, a
regression function f;(X) can be associated:

f:R" 5R", k=0,1,..., H— 1.

When these functions exist, they can be used successively within the controller to
replace the predictor at each control step.

Remark 5. The regression function fi models how the APSOA determines the optimal prediction
at step k. The entire set of functions ® = {f|k =0, 1,..., H— 1} is the couple (APSOA-PM)
machine learning model. The behavior of the PSO algorithm, which, in turn, depends on the PM, is
captured by the set of functions ®.
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To be systematic, at this point of our presentation, we propose a design procedure for
the ML controller that the interested reader could use in their implementation.

Design Procedure

1. Write the “ControlLoop_PSO” program simulating the closed-loop functioning of the
controller based on the PSO algorithm over the control horizon. The output data are
the quasi-optimal trajectory and its associated control profile ((3(Xp) and I'(Xj)).

2. Repeat M times the “ControlLoop_PSO” program’s execution to produce the se-
quences (QA(Xp) and I'(Xp)) and save them in data structures similar to those in
Figure A1 (Appendix B).

3. For each sampling period k, derive data sets similar to those in Table 1 from the data
saved in step 2.

4. Determine the set of functions ® using the data sets derived in step 3 and an ML
model; a function f is associated with each sampling period k.

5. Implement the new controller based on the ML model, i.e., the set of functions ®
determined in step 4.

6.  Write the “CONTROL _loop” program to simulate the closed-loop functioning equipped
with the ML controller. The proposed method’s feasibility, performance index, solu-
tion quality, and execution time will be evaluated.

Remark 6. The entire design procedure of the ML controller needs only simulations and offline
program executions. The ML models for each sampling period are determined offline ahead of using
the ML controller in real time.

Steps 1-2 are already covered by the details given in the anterior section.
Step 3 Implementation
This step yields the data sets that the ML model would use for training and testing.

Remark 7. The controller’s optimal behavior is specific to each sampling period, whose predic-
tion horizon is specific to H — k. So, optimal behavioral learning will be performed for each
sampling period.

Foreachk, k=0, ---,H — 1, we construct a matrix SOCSK (M x (n+m)) (SOCSK
stands for “States and Optimal Control values concerning Step K”), which is Table 1’s
image. Line i, 1 <i < M, is devoted to experience i as follows:

SOCSK; - [ (X" (k)" (Uy* (k).
Using the data structures proposed before, the following holds:
SOCSK; < [STATE;(k,1:n) UstarRHC(i, k)].

STATE; is the ith element of the STATE cell array. In the PBR case (n = 2; m = 1), the
data set for the current step will be as follows:

a®)' x@)! uk)!
SOCSK = | x(k)  xa(k)  u(k)
A" w@M uE”
A fragment of the SOCSK matrix produced by a MATLAB script is presented in

Appendix C for step k = 1. Only when k = 0 does the value of x,(0) equal 0 for any
observation.
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Owing to Remark 7, step 3 should establish for each k the data sets for training and
testing; these sets are stored in the cell arrays DATAKTest and DATAKTrain. Table 2 presents
the pseudocode of the script preparing all of the sets needed by the learning algorithm.

Table 2. The pseudocode preparing the data sets for the ML models’ training and testing.

/*This pseudocode describes the construction of the data sets needed by the ML models at the
level of each sampling period*/

Inputs: cell array STATE, matrix UstarRHC;

Outputs: matrix SOCSK, table datak, cell arrays DATAKTest, DATAKTrain

1 #Load the file containing the data structure STATE and UstarRHC (Figure A1)
2 k<0

3 while k<H—-1

4 fori=1,---, M

5. SOCSK; <—[STATE; (k,1:n) UstarRHC(i,k)]

6 end

7 #Convert the matrix SOCSK into the table datak.
8 datakTest < lines #1—60 of datak

9 datakTrain < lines #61—120 of datak

10. DATAKTest{k} <— datakTest

11. DATAKTrain{k} < datakTrain

12. k«—k+1

13. end

14.  #Save the cell array DATAKTrain and DATAKTest in a file.

Step 4’s implementation will determine the set of ML models ® = {fx|k =0, 1,..., H—1}
and will be addressed in the next section.

Step 5 aims to implement the ML controller. Once the set of regression models is
determined in step 4, the controller can be written following the algorithm in Table 3.

Table 3. The structure of the ML controller’s algorithm.

The General Algorithm of the ML Controller

/*The controller program is called at each sampling period, k */

1 Get the current value of the state vector, X(k); /* Initialize k and X(k)*/

Predict the optimal control value U * (k) using the regression model f; (X (k))
/* whatever is the regression model’s type */

Send the optimal control value U * (k) towards the process.

4 Wait for the next sampling period.

Notice that the cumulative effect of calling the controller at each sampling period is to
achieve the following sequence of predictions using the regression models and the current
states that the process accesses:

Ui* = fo(Xo); " = fi(Xq); ... Ug—1" = (Xp-1)-

In the sequel, the controllers based on ML models will be called LR controller (from
linear regression) or RNN controller (from Regression Neural Network).
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5. Linear Regression Controller
5.1. General Algorithm

The first approach that the authors considered was to use multiple linear regression for
the function set ®. Such a model contains an intercept, linear terms for each state variable,
squared terms, products of features (interactions), etc. Hence, as functions of state variables,
the regression functions could be nonlinear.

For our example, the stepwise regression strategy [30], which adds or removes terms
starting from a constant model, was also applied. We consider in this presentation only
models with an intercept, linear terms, and an interaction:

fe(X(k)) = CFo+ C*1 - xq(k) + C*5 - xa (k) + CF1p - 21 (K) - 2 (K). @)

Remark 8. Our goal is not to find the best sequence of linear regression models but to validate
our approach, i.e., the ML model can successfully replace the couple (APSOA and PM) inside a
new controller.

As we shall see, the model (7) is largely sufficient for our goal.

Table 4 presents the construction of the H models representing linear regressions in a
general manner, that is, not only for our example. This pseudocode describes the linear
models’ training and testing using the sets generated in step 3.

Table 4. The pseudocode of the linear regressions’ construction.

Construction of the linear regression models
Input:  cell arrays DATAKTrain, DATAKTest
Output: matrix KOEF (H x (n+1)), /* the regression coefficients for each
sampling period */
cell array MODELSW {H x 1} /* cell array storing objects that are the
linear models fj */

1 fork=0...H-1.
datakTrain<— DATAKTrain{k};

2 /* Recover the data set for training */
3 datakTest< DATAKTest{k};
/* Recover the data set for testing */
4 mdlsw<fitting_to_data(datakTrain);
/* Training the linear regression */
5 #display mdlsw;
/* mdlsw is the linear regression model */
6 coef(:)«—get_the_coefficients(mdl)
7 KOEF(k,:) <—coef(:);

/* The kM line of KOEF receives the coefficients */
8 MODELSWP{k,1}<—mdlsw;

uPred «fpredict(mdlsw, datakTest)
/* The vector uPred stores the predicted control values */

10  # Make the comparison between uPred and the real control values;

11  end.

The script in Table 4 uses the generic functions fitting_to_data, get_the_coefficients, and
fpredict, which make actions suggested by the comments.

The implementation of this algorithm is included in the script GENERATE_ModelSW;
some details are given in Appendix D.
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5.2. Simulation Results

Although we have determined the usual linear regressions that contain the two linear
terms (for x; and xp) and an intercept, we present hereafter the stepwise version as it
is implemented in the MATLAB system. Table 5 displays a listing’s fragment obtained
during the script GENERATE _Model1SW’s execution; this one presents the model for a single
sampling period.

Table 5. The actions and results of the stepwise linear regression for the 14th sampling period.

&&&&kpl = 14
1. Adding x1, FStat = 12.7755, p Value = 0.000484491

Linear regression model:
u~1+x1

Estimated Coefficients:

Estimate SE tStat p Value
(Intercept) —985.91 437.95 —2.2512 0.025952
x1 2147.7 600.87 3.5743 0.00048449

Number of observations: 140; Error degrees of freedom: 138
Root mean square error: 117

R-squared: 0.0847; Adjusted R-squared: 0.0781

F-statistic vs. constant model: 12.8; p-value = 0.000484

The procedure begins with only an intercept, and after that, it tries and succeeds in
adding the term corresponding to x;. Statistical parameters do not allow us to add another
term. So, the prediction (control value) will be fi3([x1, x2]) = —985.91 + 2147.7 - x1.

We notice that the training time for all 120 linear regressions is 6.166654 s.

Following the algorithm presented before, the resulting coefficients of the H regression
are given in Table 6.

Table 6. The coefficients of the H linear regressions determined with a stepwise strategy.

k Co G C,

0 564.18 0

1 585.53 0 0

2 —20.368 14415 0

9 591.85 0 0

10 119.74 0 620.84
1 591.48 0 0

12 590.95 0 0

13 —985.91 2147.7 0

14 —328.16 1205.6 0
111 4055.1 —1476.6 0
112 5482.6 —2067.6 0
113 597.8 0 0
114 3300.2 0 —308.67
115 587.66 0 0
116 6446.3 —24512 0
117 7144 —2732.8 0
118 4410.7 0 —419.32
119 565.2 0 0
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There are sampling periods for which the regression model has only the intercept Cy;
this situation will be discussed in Section 7. These coefficients will be used directly by the
controller as a control law.

The comparison achieved in lines #9-10 of the construction algorithm is summarized

in Figure 6.
Comparison for the sampling period k=10
700 T =+ T T T O
+ @)
O
©
650 - + o@@ i
+ s o
(2]
© + o+ + o+ +
= 600 +. T+ + —
o + o+ + +F & +
s | - 10
&) i © +
ko] arF
0} L aF + _
3 550 ®©
8 o
o 0) +
O Test data: datakTest
500 —
P
® O  Real values
+  Predicted values
450 (9 1 1 1 1
450 500 550 600 650 700

Real Control Values

Figure 6. Comparison: predicted versus real control values for specific sampling period.

We have to mention that the predicted values were calculated directly using the formu-
las, not using the generic function fpredict. The table datakTest supplied the 60 examples,
states—control value, for testing the linear regressions.

The quality of the predictions will be evaluated at the time of using the regression
models within the controller, that is, inside the closed-loop simulation. The ultimate
evaluation of predictions would be the optimality of the process evolution.

To prepare this evaluation, we need the simulation program for the control loop
working with the LR controller. The flowchart in Figure 7 describes this program, CON-
TROL_loopLINREG, which is step #6 of the design procedure.

Although there are similarities with Figure 3, there actually are big differences
in execution:

The state variable has two elements.

The coefficients” matrix must be loaded from an existing file.

The gray instructions make the predictions, avoiding any numerical integration.

The green instruction updates the next state, which has two components. The amount
of light irradiated in the current sampling period is added to x,(k).

Only the orange column of the flowchart has big similarities because it is about the
simulation results needed to depict the process evolution and the performance index.

The script CONTROL_1oopLINREG.m included in the attached folder implements the
presented algorithm.

The closed-loop simulation program produces a listing, a fragment of which is pre-
sented in Figure A3 (Appendix D), and two drawings reproduced in Section 7.

We notice the very short time period used to control the process over the entire
control horizon, 0.6401 s (the simulation processor is Intel(R) Core(TM) i7-6700HQ CPU
@ 2.60 GHz).
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C CONTROL loopLINREG )

v

Initializations:
o load the table C (H x 3) : the coefficients of the linear regressions
* Xo—[X00, 0.]: /* X00 is the initial biomass concentration*/

e H< control horizon
e Space allocation: uML (1 < H) and state(H+1 x 2)

v

state(0) «— Xo

v

k<—0: /* Sampling moment counter */

k<H-1 No
\ 4
Final integration
UML(k) <~ Cll +X0(l)'C12 +X0(2)'C13 of the PM
l using uML
U' (k) — uML(k) v
Save the trajectory: state
and the CP: uML

Xo(1)« ProcessStep(U*(k), Xo(1). k)

\ 4
Display simulation results:
J. state, uML
Draw the trajectory

A\ 4
Xy — [Xo(1), Xo(2) +K3 - U(k)]

\ 4

state(k+1) — Xo

\ 4
k— k+1

Figure 7. The simulation program for the ML controller based on linear regression models.

6. Controller Based on Regression Neural Networks
6.1. General Approach

Because the linear regression could seem much too simple, we have studied other
types of models (trees, support vector machines, and Gaussian processes) trying to improve
capturing the optimality of the couple (APSOA and PM), the final target being that the
designed ML controller would better approach the optimal behavior. The obtained models
have performances weaker than those of the LR and RNN models.

Better predictions than those obtained with other types of ML models are produced
by Regression Neural Networks (RNNs), of course, with a possible penalty concerning the
model’s size. The decision to choose between these models and the linear regressions in
implementing the controller will be analyzed in Section 7.
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As in the case of linear regressions, the RNN models must be obtained offline, and
their construction must be organized in a loop because the number of sampling periods

could be large, like in our case. The pseudocode of the RNNs’ construction is presented in
Table 7.

Table 7. The pseudocode of the regression NNs’ construction.

Construction of the RNN models
Input: cell arrays DATAKTrain, DATAKTest
Output: cell array MODELNN {H x 1}
/* cell array storing objects that are RNN */

1 fork=0...H-1.

datakTrain<— DATAKTraini{k, 1};
/* Recover the data set for training */

2

datakTest<— DATAKTest{k, 1};
/* Recover the data set for testing */

4 mdINN < trainRegNN(datakTrain); /* Training the RNN */

MODELNN{k,1}<—mdINN
/* Store the object mdINN into the cell array MODELNN */

predictionNN«mdINN.predictFen(datakTest)
/* Make predictions and store them into the table predictionNN */

7 #Comparison between predictionNN and datakTest
8 end

In our case study, for k = 0, i.e., the first sampling period, we have a special situation
because x; = 0 (the light amount equals 0 through initialization) for all examples. Hence,
this variable cannot be a prediction variable. For this situation, the tables datakTrain and
datakTest have different structures, and the RNN model has a single predictor variable x;.
To maintain the general structure of the algorithm in Table 7, we did not treat the first
sampling period distinctly.

Most data structures were presented before, except for the cell array MODELNN that
collects the model for each sampling period, called “mdINN”". The function trainRegNN
trains the current RNN using its specific data set [32].

In line #6, the predictions made by the method “mdINN.predictFcn” are stored in the lo-
cal table predictionNN, which can be compared to datakTest or saved for further utilization.

The implementation of this algorithm is achieved by the script GENERATE_Model1NN;
some details are given in Appendix E.

6.2. Simulation Results

The execution of the script GENERATE_ModelNN gives us an indication of the RNNs’
construction complexity (training and testing). A fragment of its listing is given in Table 8.

The RMSEValid is the root mean square error (RMSE) between the predictions and
datakTest vectors. The vrmse value is the RMSE calculated in the training process (the
phase of validation). The program displays the k value, the prediction uNNn, and the control
value (valreal) for the states included in record #10 of the data set (as an example).

We notice that all 120 RNNs are trained in 233 s (offline, as we mentioned before).

The comparison mentioned in line #7 of the algorithm can be achieved by calculating
the root mean square error (RMSE) between the predicted and observed values. For graphi-
cal analysis, Figure 8 plots the predicted values yielded by the RNN model versus the real
control values from the datakTest table.
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Table 8. The execution of RNN training (a fragment of the listing).

>> GENERATE_ModelNN

&&& vrmse = 108.4187 RMSEValid = 111.9601
kplusl =1 uNN = 564.1789 valreal = 487.0276

&&& vrmse = 104.5341 RMSEValid = 130.6362
kplusl = 2 uNN = 574.4657 valreal = 672.5530

&&& vrmse = 106.0061 RMSEValid = 127.3596
kplusl = 3 uNN = 559.1601 valreal = 676.6160

&&& vrmse = 112.0696 RMSEValid = 91.4825
kplusl = 119 uNN = 588.0487 valreal = 634.9497

&&& vrmse=130.1694 RMSEValid = 125.2698
kplusl = 120 uNN = 576.2782 valreal = 714.3906

Elapsed time is 232.829571 s.

RNN-Comparison for the sampling period k=10
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Figure 8. The predicted values yielded by the RNN model versus the real control values for a specific
sampling period.

As in Section 5.2, to evaluate the controller’s performances, we need the simulation
program for the closed-loop functioning with the RNN models. Its algorithm’s flowchart
would be very similar to that of Figure 7, except for two instructions. That is why we do
not redraw the flowchart, as we are content with indicating only the changes.

The gray instruction

uML(k) — Cq1 +Xo(1)'C12 +Xo(2)'C13

|

md1NN <« MODELNN {k}
uML(k) < md1NN.predictFcn(Xp)

will be replaced by this block
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This block means that the neural network model md1NN is selected as the current RNN
from the cell array of objects MODELNN. Its method predictFcn will calculate the predicted
control value as a function of the current state.

The second change is inside the block “Initializations”. Instead of loading the coeffi-
cients’ table, C, it will load the cell array MODELNN; the latter is already saved in a file created
by the script constructing the RNN models (see GENERATE_ModelNN.m).

The script CONTROL_loopNN.m included in the attached folder implements the
above algorithm.

The simulation program CONTROL_loopNN produces a listing, a fragment of which is
presented in Figure A4 (Appendix E), and two drawings, presented in Section 7.

We notice, as in the case of the linear regression controller, the very short time period
used to control the process over the entire control horizon, 1.35 s.

7. Discussion
7.1. Comparison between PSO and ML Predictors

In this section, we have to answer the following questions:

e  Did the ML predictors succeed in “learning” the behavior of the couple (APSOA and
PM), such that the process’s evolution would be quasi-optimal?
e Did the controller’s execution time decrease significantly?

As we mentioned, we have already solved the PBR problem using RHC and a pre-
dictor based on PSO. For the sake of simplicity, we shall refer to its controller as the PSO
Controller. Using the ControlLoop_PSO script, the closed-loop simulation produces the
typical evolution depicted in Figure 9. This simulation is one among the M = 200 evolutions
that contributed to our big data set with CPs and trajectories. The final lines of the simulation’s
listing summarize its performances, as given in Table 9.

1 100 T T T T T 5 T T T T T
Closed-loop with PSO Process evolution with PSO controller
. 4.5r g
1000 1 x
1
4r % b
- 900+ control output . A2m
.*é 3.5F 0.5x, E
(9]
£ 800 ] T 1
‘ Q
5 £ &
— 700} 1 ©25-F 1
©
E 2
= o L i
S 600} 5 2
B
3 1.5¢ 1
“ 500
1r Am(120)>m, 4
4001 05- .
300 . . . . 0 ; ; ; ; :
0 20 40 60 80 100 120 0 20 40 60 80 100 120
time [h] time [h]
(a) (b)

Figure 9. Closed-loop evolution with the PSO controller. (a) The control output values over the
control horizon; (b) the process and the biomass evolution.

The simulation programs CONTROL_loopLINREG and CONTROL_loopNN produce, be-
sides the data in Figures A3 and A4, the evolutions depicted in Figures 10 and 11, respectively.
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Table 9. Execution of closed-loop simulation program (ControlLoop_PS0).

>>ControlLoop_PSO_RHC
x00 = 0.3660

Yield mass = 3.0000

Light =9.2474

Perf index = 9.2474

Elapsed time is 447.281879 s.

700 T T T T T 5 T T T T T
4.5F Process evolution with Linear Regression controller b
650 Closed-loop with Linear Regression controller a 4
>
= 3.5+ 0.5-x g
£ 600 2
£ »
£ T o o S e S s SO s N S O S T St S T S W i = —
= | m /
2 = 0 /
= 550 §2.5F 4
[}
) 2 2r / J
‘» 5001 control output a
E 2 15F 1
o
1k Am(120)>m i
450+ ] 0 X,
0.5F Xy ]
Am
400 . . . . . 0 . . . . :
0 20 40 60 80 100 120 0 20 40 60 80 100 120
time [h] time [h]
(a) (b)
Figure 10. Closed-loop evolution with the linear regression controller. (a) The control output values
over the control horizon; (b) the process and the biomass evolution. The mass mg labels the dotted
line, the final value of the green curve.
700 T T T T T 5 T T T T T
Process evolution with RNN Controller
450 X1 g
650 Closed-loop with RNN Controller 1 X2
4r Am .
>
= 3.5k 0.5-x 4
£ 600[ 1 2
£ 3
£ S
= 550( g
£ o
g 3
'g 500 control output :
=
1+ Am(120)>m, i
450 1
0.5¢ b
400 . . . . . 0 . . . . .
0 20 40 60 80 100 120 0 20 40 60 80 100 120
time [h] time [h]
(@ (b)

Figure 11. Closed-loop evolution with the Regression Neural Network controller. (a) The control
output values over the control horizon; (b) the process and the biomass evolution. The mass mg
labels the dotted line, the final value of the green curve.
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Remark 9. The state evolutions (x1 and x,) and the evolution of the biomass, which can be
considered the output of the process, are practically identical. Hence, both ML controllers emulate
the PSO controller.

The LR controller and the RNN controller are facing situations when the current state
is totally new (states unobserved in the training or testing data sets). In this situation,
the generalization ability of the ML model is exploited but also verified. That is why the
simulation programs are adequate tests for the predictions’ testing.

Remark 10. Using the controller inside a closed-loop simulation program over the control horizon
will be a test in which the predictor experiences new process states unobserved in the training and
testing phase of the MIL model’s construction.

The fact that Figures 9a, 10a and 11a, describing the control value’s evolution, are very
different has no relevance to the matter at hand; the following aspects uphold this:

e  The similarity at this level would imply the same sequences of states, but we just
stated that the ML controllers could experience new unobserved states. So, the three
processes do not pass through the same set of states (the sets of accessible states
are different).

e  The learning is made at the level of each sampling period and the model “learns”
couples (state; control value), not globally, but at the control profile level; our method
is not based on learning CPs. On the other hand, the PSO predictor is very “noisy”
due to its stochastic character and produces outliers among the 200 control values
from time to time.

To make a quantitative comparison among the three controllers, Table 10 displays
some pieces of information from Figures A3 and A4, and Table 9.

Table 10. Quantitative comparison among the three controllers.

PSO Controller LR Controller RNN Controller

x00 0.360 0.360 0.360
Yield mass 3.0000 3.0282 3.0249
Light 9.2474 9.3166 9.3115
Perf index 9.2474 9.5981 9.5604
Control time [s] 447.28 0.64 1.35

Training time [s] - 5.4 232.83
Model size - 3kB 17 kB
Root mean square error ) 113.73 116.63

(RMSE for k = 10)

The first four lines of Table 10 are evidence that the three controllers can be considered
equally performant, although the ML controllers have slightly better parameters. However,
the time devoted to controlling the process over the control horizon (all of the H sampling
period) has values much inferior to that of the PSO controller (hundreds of times smaller).
This analysis and Remark 9 allow us to state the following conclusions:

e  The two ML controllers have predictors that have learned the behavior of the cou-
ple (APSOA and PM), such that in closed-loop functioning, the process evolves
almost identically.

o The resulting controllers have execution times hundreds of times smaller than that of the
PSO Controller.
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7.2. Comparison between the LR and RNN Controllers

In Table 10, all of the parameters in the second column are superior to those in the third
column. The differences are not relevant for some of them, but the control time, training
time, and model size make the LR controller preferable to the RNN controller. However,
we have trained all its RNNs using hyperparameter optimization.

The usual comparison between the predicted and real (observed) values is illustrated
in Figures 6 and 8 for the LR and RNN predictors, respectively. This comparison is made
for k = 10 (as an example) and its testing table datakTest. For the other values of k, the
situation is the same.

At first sight, both predictors seem to be similar, but the values of RMSE from Table 10
show that the LR predictor is slightly better than the RNN predictor. This remark goes in
the same direction as the superiority of the LR controller. However, because the tatakTest
has 60 data points, we can consider the difference between RMSEs irrelevant and that they
are similar from an accuracy point of view.

Considering Remark 6, the time to train offline 120 RNNs (for the RNN controller) of
4 min is absolutely acceptable. So, even this controller can be considered a good solution
for the PBR problem or another OCP.

For the reader, who is a newcomer equally in the fields of control systems, computa-
tional intelligence, and machine learning, we must compare the role of the PSO predictor
versus the role of the ML predictor when solving an OCP.

o The ML predictor replaces the PSO predictor only in execution when the controller achieves
the control action. So, the controller’s execution time is hundreds of times smaller
compared to initially. That was our desideratum.

e  When we solve a new OCP, sometimes we need a metaheuristic (PSO, EA, etc.) that
searches for the optimal solution inside of a control structure. If the controller’s
execution time is not acceptable, we can use the approach presented in this paper
to create an ML controller. However, initially, we need the MA to search for the
optimal solution.

8. Conclusions

In this paper, we have proposed two ML controllers (LR controller and RNN controller),
including the linear regression and Regression Neural Network predictors, that can replace
the controller using a PSO algorithm; the optimal control structure works with an internal
process model.

The main conclusions are given as follows:

e  The machine learning models succeed in “learning” the quasi-optimal behavior of
the couple (PSO and PM) using data capturing the PSO predictor’s behavior. The
training data are the optimal control profiles and trajectories recorded during M offline
simulations of the closed-loop over the control horizon.

e  The current paper proposes algorithms for collecting data and aggregating data sets
for the learning process. The learning process is split according to the level of each
sampling period so that a predictor model is trained for each one. The multiple linear
regression and the Regression Neural Networks are considered the predicting models.

e  For each case, we propose algorithms for constructing the set of ML models and the
controller (LR or RNN controller). Algorithms for the closed-loop simulations using
the two controllers are also proposed; they allow us to compare the process evolutions
involved by the three controllers, the PSO, LR, and RNN controllers.

e  The final simulations show that the new controllers preserve the quasi-optimality of the
process evolution. In the same conditions, the process evolutions are almost identical.

e Anadvantage of our approach refers to data collection, data set preparation for the
training process, and the construction of ML models; all of these activities need only
simulations (using the PSO controller) and offline program executions (Remark 6).
The ML models for each sampling period are determined offline ahead of using the
ML controller in real time.
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o We emphasize that during the final closed-loop simulations, the ML controller encounters new
process states unobserved in the training and testing of its predictor (Remark 10). Owing to
its generalization ability, the controller makes accurate predictions of the control value
sent to the process.

The PSO predictor first searches for the optimal control value, following its optimiza-
tion mechanism using particles and the PM, before predicting it. This search sometimes
means a big computational effort and a large controller execution time. The ML controller
(LR or RNN) predicts using an already-known regression function, which can emulate the
PSO predictor. In other words, the ML predictor replaces the PSO predictor only in execution
when the controller achieves the control action. That is why the controller’s execution time
decreases drastically. However, the solution belongs intrinsically to the PSO predictor.

When we solve a new OCP, sometimes, for different reasons, we shall need a meta-
heuristic (PSO, EA, etc.) searching for the optimal solution inside of a control structure.
Finally, the implemented controller integrated into the control structure can be one of the
two ML controllers.

In our opinion, this work goes beyond the controller’s execution time decrease and
opens a perspective to emulate and replace in a general manner optimization structures.
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Appendix A

The controlled physical system is a flat-plate photobioreactor (PBR) lighted on a single
side for algal growth. The constructive and physical parameters are presented in Table Al.
Their definitions are irrelevant to this work.

The PBR is a distributed parameter system because the light is attenuated inside.
To convert it into a lumped-parameter system, its depth, L = 0.04 m, is discretized in
k;, = 100 points equally spaced (z; € [0, L]. After discretization, the process model (PM) is
as follows:

. 1 0 Gi(t
x1(t): ﬂmax’ﬁ‘z l’)l()

— pa| - x1(t)
ks +Gi(t) + £ - Gi(t)?

X(t) = A-C-q(t)

Gi(t) =q(t) kMW, i=1,... kL
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Processes 2024, 12,991

23 of 28

m(t) =V -xi(t)

The control input u(t) is considered the intensity of incident light:

The state variables are as follows:

u(t) = q(t).

x1(t): the biomass concentration (in g/L);
x(t): the light amount which, up to moment ¢, has illuminated the PBR (in umol/ m?/s).

Table A1l. The constants of the PBR model.

E, =172 m? kg~!

absorption coefficient

Es =870 m?-kg~!

scattering coefficient

b =0.0008 backward scattering fraction
Hmax = 0.16 h-1 specific growth rate
#g=0013h"1 specific decay rate

Kg =120 umol-m—2.s~1

saturation constant

K; = 2500 pmol-m~2.s5~1

inhibition constant

V=14510"3m?

volume of PBR

L=0.04m depth of PBR

A=3.7510"2m? lighted surface

x0=0.36g/L initial biomass concentration

C =3600-102 light-intensity conversion constant
kr =100 number of discretization points

gm =50 umol/mz/s

lower technological light intensity

gm = 2000 pmol/m?/s

upper technological light intensity

my=3g. minimal final biomass
thnal = 120 h control horizon
T=1h sampling period

The output variable, the biomass m(t) calculated by Equation (A1), is the PBR’s product.
As a productivity constraint, it must hold that

m(tf) > my. (A1)

The cost function (A2) represents the amount of light used for the current batch
while constraint (A1) is fulfilled. The two weight factors (w; and w;) are established

through simulation.

a0, ) = wr- [ g(e)-d+ wa(m(ty) = mo). (A2)

Appendix B

Our implementations are based on the MATLAB system and language. The reader can
find inside the folder Processes_PSO_ML, supplied in the Supplementary Materials, the
guide “READ ME.txt”. The following scripts can be used to carry out the closed-loop simulation:

e ControlLoop_PSO_RHC.m that implements the “ControlLoop_PSO” program;
° INV_PSO_Predictorl.m that implements the “Predictor_PSO” function;
e INV_RealProcessStep.m that implements the “ProcessStep” function.

The functions called recursively are also present inside the folder.
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STATE: cell array (M x 1)

statey (H+ 1 x n) state, (H+ 1 % n) stateny (H+1 % n)

H=120
1 1 =2
2 2 2 M=200
H+1 H+1 H+1
cell 1 cell 2 cellM
UstarRHC
k=0 k=1 k=2 UstarRHC (M > H) k=118 k=119 k=120
1 702.62 612.65 359.55 436.601 618.68 680.81
2

Figure A1. The data collected following M executions of the closed-loop simulation.

The script LOOP_M_ControlLoop_PS0.m, also included in the Supplementary Materials,
gathers data from all of the 200 simulations and saves them in the file WS_data200.mat.

A fragment of the matrices describing the closed-loop simulation’s data, that is, the
quasi-optimal evolution, is given in Figure A2. Notice that we have a single control variable
and the 121st state is the final one.

statey(H+ 1, n) URHC
k X1 X2 I/l*(k )
0 0.3502 0 702.62
1 0.3783 0.0948 612.65
2 0.4060 0.1775 359.55
3 0.4281 0.2261 535.81
117 2.3947 9.0497 436.61
118 2.3988 9.1087 618.68
119 2.4083 9.1922 680.81
120 2.4192 9.2841

Figure A2. The matrices for the optimal trajectory and its CP (first simulation).

Appendix C
A fragment of the SOCSK matrix produced by a MATLAB script is presented hereafter.
The matrices like this one, presented in Table A2, are the data sets that allow for the
construction of the ML models for each sampling period.
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Table A2. The matrix SOCSK for the second sampling period (k = 1).

x1 x2 u
i=1 0.37831 0.094853 612.65
i=2 0.40708 0.077925 557.37
i=3 0.40122 0.066811 802.69
i=4 0.40359 0.079127 387.99
i=5 0.37865 0.078882 560.77
i=6 0.37801 0.079205 510.57
i=197 0.40607 0.074351 547.26
i=198 0.39419 0.069684 485.64
i=199 0.38625 0.082921 558.9
i=200 0.39531 0.071325 539.92
Appendix D

The Linear Regression Models” Construction

This construction of the H = 120 linear regressions is achieved by using the script
GENERATE_ModelSW. The latter opens the file WS_Modelsvl.mat (see below) to load the
needed data sets.

The generic functions fitting_to_data and get_the_coefficients from Table 4 correspond to
MATLAB functions stepwiselm and mdlsw.Coefficients.Estimate. The fpredict function
is directly implemented using the regression formula and the coefficients.

The reader can also examine the script Model_ConstructionLINREG.m, which does
not use the stepwise regression strategy; the regression models contain only the two linear
terms and an intercept. The coefficients for all 120 regression functions are stored in the
file WS_3coeff.mat. The cell arrays, MODEL—which stores the 120 objects of type linear
regression—DATAKTest, and DATAKTrain, are saved in the file WS_Modelsv1.mat.

In every step, the current state, the predicted control value uML, and the process’s
next state are displayed. The final lines display the biomass produced, Am = 3.0282 g, and
the performance index | = 9.5981.

>> CONTROL loopLINREG

k= 1 x1= 0.3600 x2= 0.0000 uML= 564.1787
next state X01l= 0.3863 X02= 0.0762

k= 2 XxX1= 0.3863 x2= 0.0762 uML= 585.5286

next state X01= 0.4138 X02= 0.1552

k= 118 x1= 2.4269 x2= 9.0945 uML= 511.6694
2.4269 9.0945

next state X0l= 2.4331 X02= 9.1636

k= 119 x1= 2.4331 x2= 9.1636 uML= 568.2736

Figure A3. Cont.



Processes 2024, 12,991

26 of 28

2.4331 9.1636

k= 120 x1= 2.4408 x2= 9.2403 uML= 565.2016

2.4408 9.2403

FHE#H A HHHH AR H R R
final state:
2.4484 9.3166
&&& x00= 0.3600 yield mass= 3.0282 Light= 9.3166 Perf Index= 9.5981

Elapsed time is 0.640188 seconds.

next state X01= 2.4408 X02= 9.2403

next state X01l= 2.4484 X02= 9.3166

Figure A3. Execution of the closed-loop simulation program (CONTROL_1oopLINREG).

Appendix E

The script GENERATE_ModelNN.m implements the algorithm presented in Table 7.
We recall that it is carried out offline in step 5 of the design procedure.

The function trainRegNN is implemented in two versions by the script trainRegNNKO.m
for the first sampling period and trainRegNN.m for the others; it trains the RNN and can be
generated automatically using the regression application (eventually with hyperparameter
optimization) or written ad hoc using another training function. As an orientation, we give
here a few RNN parameters:

RNN

fitrnet (predictors, response...,
‘LayerSizes’, [14 1 7], ...
‘Activations’, ‘none’,
‘Lambda’, 0.00015,
‘IterationLimit’, 1000,
‘Standardize’, true);

(see [32]).

>> CONTROL_ loopNN

kplusl=

kplusl=

x1l= 0.3600 x2= 0.0000 uML= 564.1785
Next state: X01l= 0.3863 X02= 0.0762

x1= 0.3863 x2= 0.0762 uML= 585.6589
Next state: X01l= 0.4138 X02= 0.1552

kplusl= 118

Next state: X01l= 2.4316 X02= 9.1622

kplusl= 119

Next state: X01= 2.4387 X02= 9.2360

x1l= 2.4247 x2= 9.0902 uML= 533.8785

x1l= 2.4316 x2= 9.1622 uML= 546.2667

Figure A4. Cont.
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kplusl= 120 x1= 2.4387 x2= 9.2360 uML= 559.4318

Next state: X01l= 2.4461 X02= 9.3115

Elapsed time is 1.349449 seconds.
FHE#HAHAFHHH R R R R
final state:

2.4461 9.3115

&&& x00= 0.3600 yield mass= 3.0249 Light= 9.3115 Perf Index= 9.5604

Figure A4. Execution of the closed-loop simulation program (CONTROL_loopNN).

In every step, the current state, the predicted control value uML, and the process’s
next state are displayed. The final lines of Figure A4 display the biomass produced,
Am = 3.0249 g, and the performance index | = 9.5604.
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