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Abstract: Biometry is a critical aspect of ophthalmology, since it facilitates the measurement of
several ocular parameters and aids in the diagnosis of conditions like glaucoma. The advent of the
IOLMaster in 1999 marked a pivotal moment in biometry by introducing non-contact and highly
precise measurements that revolutionized the field. Low-coherence optical reflectometry devices
such as Lenstar LS900 and Aladdin have further advanced biometry, due to the exceptional accuracy
they offer. Axial length, a fundamental measurement in biometry, directly correlates with conditions
like myopia and glaucoma. The accurate measurement of axial length is crucial for diagnosis and
treatment planning. Biometry also guides intraocular lens power calculation during cataract surgery,
relying on factors like axial length, anterior chamber depth, lens thickness, and effective lens position
(ELP). Ensuring precision in these measurements is essential for optimal surgical outcomes. While
several studies have explored biometric parameters, dynamic changes in crystalline lens thickness
during rest or accommodation have received little attention. These changes may have a significant
effect on the measurement of the anterior chamber length, and consequently impact the overall
biometric assessment. This study delves into dynamic biometry, particularly in the context of age-
related presbyopia, and aims to assess the feasibility of incorporating into the biometric process a
specialized device capable of accurately considering crystalline lens changes during different states
like rest and accommodation. This exploration seeks to enhance the understanding of ocular dynamics
and contribute to improving the precision of diagnostic and surgical techniques. It underscores the
importance of staying at the forefront of biometric research, especially in the context of emerging
technologies and their potential to transform ophthalmology.

Keywords: biometer; accommodation; crystalline; ocular dynamics; lens thickness changes

1. Introduction

Biometry is a fundamental part of a patient’s ophthalmologic examination and is
essential for calculating intraocular lens power, monitoring myopia, and detecting certain
conditions such as glaucoma [1–4].

Several techniques have been used to measure ocular biometry, such as ophthal-
mophakometry and A-scan ultrasonography. The latter method has emerged as a potential
tool for the early detection of ocular pathologies such as glaucoma [5,6].

However, the introduction of the IOLMaster (Carl Zeiss Meditec AG) in 1999, based
on partial coherence interferometry, marked a significant improvement in ocular biom-
etry. It made the technique non-contact and provided higher measurement resolution
(about ±0.02 mm compared to ± 0.15 mm with ultrasound) [7]. The IOL-Master700 has
established itself as a highly effective tool for evaluating ocular biometry parameters,
demonstrating its capability even in challenging situations like the presence of a dense
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nucleus [8]. Since then, partial coherence laser interferometry (PCLI) has become a widely
used method for ocular biometry [7,9–11].

Optical interferometry, used in ocular biometry, is a sophisticated and precise method
for measuring the internal dimensions of the eye. This advanced technique uses the
principles of light wave interference to provide highly accurate measurements of the eye’s
structure, which is essential for tailoring treatments in ophthalmology (Figure 1).
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This method is critical to several aspects of ophthalmology, most notably the calcula-
tion of intraocular lens (IOL) power for cataract surgery and the assessment of refractive
errors [4,8,12,13]. It is based on the principle of superimposing two or more sources of co-
herent light (typically lasers) to create an interference pattern. This pattern can be analyzed
to determine the wavelength of the light and the phase differences between the beams, thus
allowing extremely high-precision distance measurements. In ocular biometry, devices like
the IOLMaster use partial coherence interferometry (PCI) or optical low-coherence interfer-
ometry (OLCI) to measure the axial length of the eye, with the remarkable advantage of
being non-contact.

Currently, devices based on optical low-coherence reflectometry (OLCR) are available,
including the Lenstar LS900 (Haag-Streit Köniz), Aladdin (Topcon), AL-Scan (Nidek), and
OA-2000 (Tomey) [13–16]. The accuracy and repeatability of measurements with these
instruments are excellent and have been verified in various studies, where the values were
similar to the values obtained from these instruments [9,11,17,18]. The ability to accurately
measure various components of the eyeball, as shown in Figure 2, plays a critical role in
providing reliable and robust data in ophthalmic biometry. This improved accuracy is
critical to advancing our understanding and treatment of a range of eye diseases, with
significant implications for eye care and research.

It is well established that there is a direct relationship between axial length and
spherical ametropia [19]. Increasing myopia leads to the elongation of the eyeball and a
reduced expansion in the vertical height of the eye [20–22]; therefore, detecting changes in
the axial length of the eye is essential for carrying out any interventions to control it.

There are pathologic conditions in which the axial length of the eye is involved, most
notably in glaucoma. There is evidence that this length is involved in primary open-angle
glaucoma [23], and it is associated with a short axial length and shallow anterior chamber
in closed-angle glaucoma [24].

Another specific function of biometry is the calculation of the power of intraocular
lenses to be implanted in cataract surgery, as it determines the expected postoperative
outcome and the visual quality of the patient [25,26]. Three parameters are essential for the
calculation of IOL power: axial length, anterior chamber depth, and lens thickness. With the
development of fourth- and fifth-generation IOL calculation formulas, lens thickness has
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gained significant interest due to the introduction of the concept of effective lens position
(ELP) [27].
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There have been studies worldwide that have analyzed the axial length of the eye,
anterior chamber depth, and lens thickness [28–30]. However, there is no device that can
analyze the changes that occur in lens thickness at rest or in the accommodative state and,
therefore, the consequences that this may have on the anterior chamber length.

Research into biometric variations of the crystalline lens and ciliary body during
dynamic accommodation is crucial for understanding its process, as age-related alterations
lead to presbyopia.

Some studies have shown that the anterior surface of the lens moves and increases
its thickness during accommodation. Measurements of anterior chamber depth, lens
thickness, and anterior segment length have even been correlated using techniques such
as A-scan ultrasonography or partial coherence interferometry, with refraction measured
simultaneously in the same eye or in the contralateral eye [31,32].

The main objective of this study is to assess the feasibility of incorporating the objective
accommodation measurement device into the biometric process, capable of accurately
considering crystalline lens changes during different states like rest and accommodation.

2. Results

The objective accommodation measurement device represents a theoretical advance-
ment in optical instrumentation. It is meticulously designed with an advanced set of
internal lenses whose main function is to generate a detailed and specific ray tracing pat-
tern. The unique nature of this pattern lies in its ability to capture highly versatile images,
which can be precisely modified to adapt to a wide range of focal planes. Figure 3 illustrates
this instrument that can be integrated as an additional tool, like those currently used to
perform topography with the Lenstar LS900 biometer (Haag-Streit, Wedel, Germany). This
visual representation helps to understand how the instrument complements and enhances



Photonics 2023, 10, 1351 4 of 7

the existing capabilities of the Lenstar LS900, and provides a clearer insight into its practical
application in ocular measurement.
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Figure 3. Objective accommodation measurement device: a graphical overview of the design and
functionality of the instrument.

One of the most notable features of the device is the incorporation of a semi-silvered
sheet, strategically placed with meticulous precision and tilted at 45 degrees. Theoretically,
this sheet can project images perpendicular to the line of sight of the eye, which maximizes
the accuracy of the analysis. The device’s innovative design contemplates the use of
toothed discs, which house lenses of both positive and negative powers. These discs,
when manipulated and combined, have the theoretical potential to offer an optical power
spectrum ranging from −20 to +20 diopters.

Within the design scheme, an illuminated sheet is positioned, which synchronizes
perfectly with the semi-silvered sheet. This versatile natured sheet can display images
ranging from optotype letters to other graphical representations. As the image moves
through this intricate lens system, another set of lenses specifically designed to adjust and
compensate for any ametropic condition the eye may present is activated. This auxiliary
lens system is of notable complexity, as it can integrate various combinations that include
spherical and cylindrical components, all structured in a dual plate design.

Additionally, a high compatibility of the device with a wide variety of biometers
currently on the market has also been considered. In order to ensure seamless integration,
the incorporation of an anchor ring supplement has been theorized, which would fit
perfectly in the specific dimensions of the biometer’s objective lens in question.

Finally, one of the primary objectives of the theoretical design is the ability to ma-
nipulate the relative distance of the image using lenses. This manipulation seeks to alter
the perceived size of the image, which theoretically could induce variations in aspects
such as pupil size and lens characteristics, like its curvature and thickness. Through this
operation, valuable information about the structure and behavior of the lens could be
obtained, thereby allowing for a precise evaluation of the accommodation amplitude and
its adequacy in different visual contexts.
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3. Discussion

Ocular biometry has undergone a major transformation with the introduction of de-
vices based on partial coherence interferometry and optical low-coherence interferometry.
These technological advances provide accurate and non-invasive measurements of cru-
cial ocular parameters, such as lens thickness, anterior chamber depth, and axial length.
However, a gap exists in the ability of these devices to measure dynamic changes in lens
thickness during resting and accommodation states. These dynamic lens thickness changes
may have substantial implications for the anterior chamber length, a parameter that can
influence diagnostics and treatments.

To understand this, it is essential to comprehend the accommodation mechanism that
depends on the lens’s mechanical capabilities and shape changes during the process. The
increase in lens thickness during accommodation is greater than the decrease in anterior
chamber depth, which suggests that the posterior surface of the lens moves backward
during accommodation. During accommodation, the lens’s anterior surface becomes more
hyperbolic [33].

An initial attempt has already been made to relate these properties to a mechanism for
the young human lens using certain simplifying assumptions such as spherical curvature
on the lens’s anterior surface and elastic isotropy [34]; however, it has been shown that the
lens behaves as an anisotropic body [35].

Dynamic accommodation measurements have been conducted in previous studies that
used monkeys as research subjects [36]. These studies revealed accommodative changes
in the anterior and posterior lens curvature radii using a Purkinje imaging method. Re-
garding curvature changes per diopter of accommodation, slopes of 0.006 mm −1/D and
0.00485 mm −1/D were observed for the anterior and posterior lenses, respectively.

Furthermore, research in humans has produced similar results. In a study involving a
19-year-old subject, an average change of −0.33 mm/D and 0.15 mm/D was observed in
the anterior and posterior lens curvature radii, respectively [37]. Other studies have also
documented changes in anterior lens curvature, reporting variations up to −0.62 mm and
0.17 mm/D, with a change in radius per diopter of the anterior surface 4.7 times greater
than the posterior surface [33,38].

The results highlight the importance of understanding and quantifying changes in
lens curvature during human accommodation, and contribute to achieving a more compre-
hensive grasp of ocular dynamics and its potential clinical implications. These findings
further underscore our research’s relevance, which demonstrates that ocular accommo-
dation is a highly dynamic process. Understanding variations in lens thickness during
accommodation may have a significant impact on diagnosing and treating ocular dis-
orders, thus emphasizing the importance of continuing to explore this area of study to
advance ophthalmology.

Additionally, the device’s integration with existing biometers offers a practical so-
lution for clinics and hospitals already invested in biometric technology. The device’s
modular design would allow for easy adaptation to various biometer models, enhancing
its applicability and versatility.

However, it is essential to acknowledge potential challenges and limitations associated
with implementing the proposed device.

4. Conclusions

The present study underscores the need to address current limitations in ocular biom-
etry, particularly in measuring dynamic lens thickness changes. The introduction of the
objective accommodation measurement device may be a significant step toward enhancing
biometric measurements’ accuracy and comprehensiveness.

The proposed device not only promises to enhance the precision of accommodation
measurements but also holds the potential to influence how various ocular conditions are
diagnosed and treated. The ability to measure dynamic changes in lens thickness may offer
new insights into age-related presbyopia and other accommodation disorders.
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In summary, the objective accommodation measurement device introduced in this
study has the potential to revolutionize ocular biometry, since it provides more detailed
and accurate measurements that can influence the diagnosis and treatment of various eye
conditions. Future studies are anticipated to validate the device’s efficacy and precision in
clinical settings.
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