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Abstract: The scattering pattern from a narrow absorbing/amplifying grating is investigated. A sim-
ple model of a narrow amplifying grating is solved exactly numerically and approximately analytically
for the regime where the beam’s wavelength is much shorter than the grating’s wavelength. The
main result is that the incident angle divides the scattering pattern into two regimes: below and
above the incident angles. The former regime has a weak dependence on the incident angle but has
a strong dependence on the scattering one. In this regime, a new grating formula is derived. The
opposite occurs in the latter regime, which is very sensitive to the incident angle but has only weak
dependence on the scattering angle. Consequently, at certain incident angles, all of the scattering is
concentrated in the first regime, i.e., all scattering angles are lower than the incident angle.

Keywords: diffraction grating; absorption and amplification grating; grating formula; absorption grating

1. Introduction

The periodicity of crystals and gratings exhibits universal scattering patterns, which
are manifested by the well-known grating formula and grating’s spectral resolution [1].

In general, the grating’s scattering is much more complicated, and it depends on the
grating’s material, profile, and grooving method [1–3]. In particular, plasmon excitations in
the metal grating are responsible for anomalous scattering [4–6]. Moreover, it was found
that even dielectric gratings exhibit anomalous scattering behavior [7,8]. These results were
in clear contrast to the traditional belief that narrow dielectric gratings can have only a small
effect on the incident light beam [9]. It was shown that even when the dielectric grating has
weak modulation, the reflection coefficient can be very high [10,11]. The modulation can be
either in the refraction index [12] or in the grating’s grooves [7]. These results show that,
in principle, the reflectance at specific incident angles can be arbitrarily close to 100%. It
should be stressed that these angles (with 100% reflectance) have nothing to do with the
grating formula.

This anomalous conduct is related to a specific case of Fano resonances [8,13–15].
Recently, it was shown that in theory perfect reflection (zero transmission) can occur for
an arbitrarily narrow dielectric grating layer [16]. The layer thickness can be arbitrarily
narrow and the grating modulation amplitude can be arbitrarily low and still, the effect of
100% reflectance occurs.

This conduct resembles a similar effect in quantum mechanics, where the transmission
via an oscillating barrier can be suppressed completely at certain incoming particles’ ener-
gies. Even though the quantum phenomenon was discovered after its optical equivalent, it
was thoroughly investigated for both scattering scenarios [17–23] as well as for transition
between adjacent quantum wells [24–26].

This effect occurs when the particle’s energy approximately equals the oscillations’
quanta. However, this is a relatively simple quantum system. When the system becomes
more complex, the dynamics are much less intuitive. In particular, it has been shown that if
the oscillating potential is a well, which is located in an opaque barrier, then this system
exhibits complex behavior. The current is extremely sensitive to the system’s parameters,
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it can either increase substantially (activation and elevation) or almost vanish (complete
suppression) [27–30].

When the barrier is absent, this complex behavior vanishes. The reason is that the
system’s behavior is determined by the ratio between the oscillating potential’s amplitude
and the wavenumber in its vicinity. If this ratio is imaginary, no complex behavior appears.

The barrier’s presence makes sure that the wavenumber is approximately real, and
since the potential amplitude is real, then the ratio is approximately real as well.

However, if the barrier is absent, then the ratio can still be real, provided the potential
amplitude is imaginary. In that case, some of this complex behavior reappears.

While the physical application of an imaginary barrier is not entirely clear, the optical
counterparts, i.e., imaginary wavenumber and imaginary refractive index, are very common.

These conclusions can be applied to optical equivalent systems where the wavefunc-
tion is replaced with the electromagnetic field, and the oscillating potential is replaced with
a spatial dielectric (grating as in Ref. [16] but for the complex dielectric coefficient).

Then, similarly, the complex structure’s dynamics can reappear by either putting the
grating in a low index of refraction environment or by replacing the dielectric grating with
an amplifying/absorbing one. In what follows, we will focus on the latter: the scattering
pattern of an amplifying/absorbing grating is going to be investigated.

Modulated amplification can be carried out by gradually changing the pumping over
the grating, causing a gradual change in the population inversion.

However, it is much simpler to create a uniform amplifying layer and attach to it a mod-
ulated absorber. If both layers are considerably narrower than the wavelength, then the two-
layer system can be regarded as a single layer with modulated amplification/absorption.

Using this model, the scattering problem is reduced to a set of linear difference
equations, which can easily be solved numerically. Moreover, an approximate analytical
solution can be derived as well. The main novelty of these solutions is that, for specific
incident angles, the scattered angles cannot exceed the incident angle. That is, while for
most incident angles θ, the e-m field is scattered in all directions, for specific incident fields
(θ = θm), the scattered angles obey θout ≤ θ.

2. The System under Study

The system under study is a plane wave’s scattering from a grating. This scenario is
presented in Figure 1. A TE-polarized plane-wave beam hits an active grating at an incident
angle θ. The grating is located on the x = 0 plane. The gratings variations occur in the
z-direction, in which case the electromagnetic Maxwell’s wave equation can be written as:

∂2

∂x2 E +
∂2

∂z2 E + k2(x, z)E = 0 (1)

where the electric field is polarized in the y-direction (TE polarization) E = ŷE(x, z), and
k2(x, z) satisfies

k2(x, z) = k2
0{1 + iδ(x)d[ε′′ + δε′′ cos(Kz)]} (2)

where the grating’s frequency is the reciprocal of the groove spacing Λ (the pitch), i.e.,

K ≡ 2π/Λ. (3)

In (2), we followed Ref. [16] and chose a delta function to represent the narrow grating’s
layer. In this reference, it was shown that a very narrow dielectric grating can reflect 100%
of the incident light at specific incident angles, no matter how narrow the grating layer is
and how weak its modulation depth is.

As was explained in [16] (and references therein), a delta function is an excellent
approximation for layers, which are shorter than the electromagnetic field’s wavelength. To

be more specific, a dielectric with the following properties, ε(x, y) =
{
ε0(x, y) 0 < x < d

0 else
where d is the narrow layer’s thickness and can be approximated with great accuracy by
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δ(x)
∫ d

0 ε0(x′)dx′. Since in what follows we focus on the limit of extremely narrow layers,
this is an excellent approximation. Moreover, the validity of this approximation is improved
when the incident angle increases since the x-component of the beam’s wavenumber
decreases. We will see that it is easier to measure the effect in the large incident angle
domain. When the incident angle approaches π/2, the approximation is accurate.
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and using the dimensionless parameters 

Figure 1. System schematic: diffraction by a thin grating. The arrows indicate the beam’s scat-
tering directions. The incident beam is polarized in the y-direction, and the wavenumber is
k = k0(x̂ cos θ+ ẑ sin θ).

3. Exact Numerical Solution

Let θ be the incident angle; therefore, the wavenumber is k = k0(x̂ cos θ+ ẑ sin θ) (see
Figure 1), and the electromagnetic field can be written in all space as:

E(x, z)/E0 =

exp[ik0(x cos θ+ z sin θ)] + ∑
n

rn exp(−iqnx + ipnz) x < 0

∑
n

tn exp(iqnx + ipnz) x > 0
(4)

where pn ≡ k0 sin θ+Kn and qn ≡
√

k2
0 − p2

n = k0

√
1 − (sin θ+ λn/Λ)2, i.e., q0 = k0 cos θ

and q0 = k0 cos θ. The boundary conditions on the grating requires

E(x = +0, z) = E(x = −0, z) and
∂

∂x E(x, z)
∣∣∣
x=+0

− ∂
∂x E(x, z)

∣∣∣
x=−0

= −idk2
0[ε

′′ + δε′′ cos(Kz)]E(x = 0, z) (5)

and using the dimensionless parameters

s ≡ λ/Λ, Pn ≡ pn/k0 = sin θ+ ns Qn ≡ qn/k0 =

√
1 − (sin θ+ ns)2, α ≡ 1

2
dk0ε

′′ , and β = dk0
1
4
δε′′ (6)

the problem reduces to the following difference equation

(Qn + α)tn + β(tn+1 + tn−1) = Q0δ(n) (7)

which can be rewritten in a more compact matrix form

M0 · t = v (8)
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where

M0 ≡



. . . . . .

. . . Q−1 + α β

β Q0 + α β

β Q1 + α
. . .

. . . . . .


t ≡



...
t−1
t0
t1
...

, and v ≡



...
0

Q0
0
...

. (9)

The numerical solution of this set of equations is presented, for two specific cases,
in Figure 2.
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Figure 2. The transmission coefficient amplitude of the spectral modes for two specific different
incoming angles. The parameters used in this simulation were: β = 0.414, α = 0, and s = 0.003, and
521 modes were used.

Equation (7) illustrates the fact, which was mentioned in the introduction, that the
dynamics is governed by the ratio between oscillations amplitude β and Qn. When this
ratio is imaginary (note that β is the imaginary part of the oscillations’ amplitude), the
spectrum cannot have a complex structure.

As can be seen from this figure, there are incident angles in which the transmission
coefficient of the non-negative, i.e., n ≥ 0, modes vanish. A small change in the incoming
angle reduces the positive modes’ transmission probability from the maximum value to
zero. This behavior is demonstrated in Figure 2, where a small change of only ~1.4% in the
incident angle suppresses the positive modes completely. On the other hand, the incoming
angle has a small effect on the negative modes (see Figure 2). Unlike the positive modes
regime, where the differences between the mode’s amplitudes are small, on the negative
regime, the spectrum consists of ridges and valleys. This spectrum structure and behavior
is similar to the quantum system of Ref. [29].

In Figure 3, the grating’s scattering pattern is presented for these two incident angles.
The darker the color, the higher the light intensity |E(x, z)|2. When the incident angle is
sin θ = 0.729 (an example of a suppression scenario), then the e-m field is scattered only in
the sin θsc < 0.729 angles. Nothing is scattered at angles, which exceed the incident angle
sin θsc > 0.729. Below the incident angle, the e-m field is scattered at only specific angles.

On the other hand, when the incident angle is sin θ = 0.737 (an example of a non-
suppression scenario), the e-m is scattered at all angles even beyond the incident angle
sin θsc > 0.737. Below the incident angle, the scattering pattern is similar—in this regime,
the e-m field is scattered at only specific angles.
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Since all the n ≥ 0 modes vanish simultaneously, one can focus on the central mode
n = 0. In Figure 4, the amplitude of the central mode is presented as a function of the
incident angle. As can be seen, beyond a certain angle, the transmission coefficient vanishes
for several angles.
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Figure 3. Two-dimensional image of the scattering pattern. The dashed line corresponds to the
direction of the incident beam. The darker the color, the higher the light intensity |E(x, z)|2. The
parameters in this case were: s = 0.003, β = 0.414, and α = 0, and 521 modes were used.
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Figure 4. The transmission coefficient of the central, i.e., n = 0, mode as a function of the incident
angle. In this simulation, the parameters used were: β = 0.45, α = 0, and s = 0.01, and 501 modes
were used.

When the modulation depth β varies, so does the number of incident angles, in which
the non-negative modes vanish. As can be seen in Figure 5, the larger the modulation depth
(high β), the larger the number of incident angles, in which the non-negative modes vanish.
This fact is manifested by the multiple black curves, which represent zero transmission.
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Figure 5. The transmission coefficient amplitude of the central mode as a function of the modulation
depth and the incident angle. The darker the color, the higher the square of the coefficient amplitude.
The same parameters as in Figure 4 were used. The parameters in this simulation were s = 0.01 and
α = 0, and 521 modes were used.

4. Approximate Analytical Derivation

The numerical studies show that this effect occurs when the grating constant is con-
siderably larger than the incident beam’s wavelength. In this regime, Equation (7) can be
simplified to allow for analytical derivation. In this regime,

Qn ≡ qn/k0 ∼= cos θ− ns tan θ (10)

which follows that Equation (7) can be simplified to(
(cos θ+ α)

β
− n

s
β

tan θ

)
tn + (tn+1 + tn−1) =

Q0

β
δ(n) (11)

This difference equation can be solved with Bessel functions. Using Equation (9.1.27)
of Ref. [31], Fν−1(x) + Fν+1(x) = 2ν

x Fν(x) the solution of (11) can be written as

tn =

{
AJ−n+n0(u) n < 0
CJn−n0(u) n > 0

(12)

where n0 ≡ (cosθ+α)
s tanθ , u ≡ 2β

s tanθ , Jn(u) are the Bessel functions of the first kind [31] and
the coefficients A and C can be calculated by matching the solution and substituting the
solution in (12), i.e.,

AJn0(u) = CJ−n0(u), and s
β tan θ(n0)CJ−n0(u) +

(
CJ1−n0(u) + AJ1+n0(u)

)
= Q0

β .
The solution therefore reads

A =

Q0
β J−n0(u)

s
β tan θ(n0)J−n0(u)Jn0(u) +

(
Jn0(u)J1−n0(u) + J−n0(u)J1+n0(u)

) (13)

C =

Q0
β Jn0(u)

s
β tan θ(n0)J−n0(u)Jn0(u) +

(
Jn0(u)J1−n0(u) + J−n0(u)J1+n0(u)

) (14)

Now, we have an approximate solution of the entire spatial spectrum, from which two
main results can be derived: (A) the incident angles in which the scattered e-m is bounded
to lower angles and (B) the grating formula.
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5. Calculating the Incident Angles for Which Scattering Is Bounded

From (12) and (14), it follows that suppression of high-angle scattering occurs for
C = 0, i.e., for

Jn0(u) = 0 (15)

and in which case, all the n ≥ 0 modes vanish as well.
Since this approximation was derived for the limit of s << 1, then both relations

2β
s tanθ >> 1 and n0 >> 1 hold. Therefore, using Equation (9.3.3) of Ref. [31],

Jν(ν sec B) ∼=
√

2
πν tan B

cos[ν(tan B − B)− π/4] (16)

where in this case,

B ≡ arccos
(

cos θ+ α

2β

)
and ν ≡ n0 (17)

For a solution, in which the argument of the cosine function of (16) is small whilst still
s << 1, the parameter B must be accordingly small. Therefore, we seek a solution around

cos θ ∼= 2β− α, (18)

in which case, (15) and (16) yield

n0B3/3 =

(
m +

3
4

)
π (19)

Solving (19) for β, we finally obtain the condition for high-angle suppression

β ∼=
(cos θ+ α)

2

[
1 +

1
2

[
3

s tan θ

(cos θ+ α)

(
m +

3
4

)
π

]2/3
]

(20)

or equivalently, one can find the incident angles θm for which high-angle scattering does
not occur

cos θm ∼= 2β

[
1 +

1
2

[
3

s
2β

√
(2β− α)−2 − 1

(
m +

3
4

)
π

]2/3
]−1

− α (21)

In Figure 6, the approximation (20) is plotted on top of the exact numerical simulation
(Figure 5). As can be seen, this approximation shows high agreement with the numerical results.
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6. Scattering Angles

The scattered beam takes the following form:
E(x, z)/E0 = ∑

n
tn exp(iqnx + ipnz) =

∑
n

AJ−n+n0

(
2β

s tanθ

)
exp

(
ik0

(√
1 − (sin θ+ ns)2x + (sin θ+ ns)z

)) (22)

where A is the constant (13).
To calculate the scattering angles, one can use the fact that s << 1. In this case, the

summation can be approximated by an integral

E(x, z)/E0 ∼= s−1 A
∫

dηJ(η0−η)/s

(
2β

s tan θ

)
exp

(
ik0

(√
1 − (sin θ+ η)2x + (sin θ+ η)z

))
(23)

Using the method of stationary phase approximation, this integral can be evaluated at

sin θsc − sin θ = η (24)

Note that (24) is the classical grating formula.
Therefore, the scattering amplitude at the scattering angle θsc is approximately∣∣∣∣AJ(η0−(sinθsc−sinθ))/s

(
2β

s tan θ

)∣∣∣∣2 (25)

Again, since s << 1, one can use Equation (9.3.3) of Ref. [31], in which case

B ∼=

√
2
(

1 − (cos θ+ α)− ns tan θ

2β

)
(26)

the angles which yield the maximum value of (25) must satisfy

n0B3/3 − π/4 = (mπ) (27)

Substituting (26) into (27) and solving the angle, while keeping in mind that
sin θout − sin θ = η, one finally obtain the grating formula

(sin θm
out − sin θ) ∼=

[
β

{[
3π

n0

(
m +

1
4

)]2/3

− 2

}
+ (cos θ+ α)

]
cot θ (28)

As can be seen in Figure 7, the scattered angles θm
out for m = 0, 1 and 2 show high

agreement with the approximation (28). It should be stressed that the grating Formula (28)
appears on top of the classical one (24).
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7. Physical Realization

The realization of this grating requires simultaneous changes in both the real and imag-
inary components of the refractive index; however, they do not change in the same manner.

To simplify the model, the harmonic change occurs in the imaginary component of the
dielectric constant δε′′ cos(Kz). Therefore, the real and imaginary parts of the refraction
index are

ℑn = 2−1/2δε′′ cos(Kz)/

√
1 +

√
1 + (δε′′ cos(Kz))2 (29)

ℜn = 2−1/2

√
1 +

√
1 + (δε′′ cos(Kz))2 (30)

These components are plotted in Figure 8 for δε′′ = 5. As can be seen, for this value, the
real part of the refractive index changes between 1 and 1.7, while the imaginary part varies
between −1.5 to +1.5. Then, if the layer thickness is d/λ ∼= 0.03, then β = dk0

1
4δε

′′ ∼= 0.24,
which is sufficient to measure several angles which shows this effect (according to Figure 5).
It should be noted that if we seek the effect at high, i.e., grazing, angles, the layers width can
be increased substantially, while keeping the narrow layer approximation still. In this case,
multiple angles should be detected. Moreover, most of this work concentrated, for simplicity,
on the α = 0 scenario; however, by varying α, the effect will appear even for very weak β, in
which case, it will be easier to measure the effect. Nevertheless, a full study of this effect for
different values of α and different modulations is beyond the scope of this paper.
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8. Summary

The scattering from an active grating layer was analyzed. In this model, the imaginary
component of the dielectric coefficient varies harmonically. The grating’s layer width is
shorter than the optical beam wavelength, while the grating’s wavelength is longer than
the beam’s wavelength. A new grating formula is formulated, which is the profile on top
of the classical grating formula. An approximate analytical expression for this formula
was derived. Besides the scattering orders, a special scattering pattern appears for certain
incident angles.

It was found that in some cases, the scattering angles θout cannot exceed the incident
angle θ, i.e., for specific θ = θm, the scattered angles obey θout ≤ θ.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study (the numerical
analysis is included) are included in the article. The numerical parameters are specified under the
figures. Further inquiries can be directed to the corresponding author.
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