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Abstract: Rye is used in some applications in the food and beverage industry and for the preparation
of functional foods. It is an interesting raw material in malting and brewing due to its characteristic
contribution to the beer’s color, turbidity, foam and aroma. The aim of this work was to optimize the
micro-malting process of a rye landrace. The response surface methodology (RSM) was applied to
study the influence of three malting parameters (germination time, germination temperature and
degree of steeping) on the quality traits of malted rye. Long germination times at high temperatures
resulted in an increase in the extract and Kolbach index. The model for the apparent attenuation limit
showed a particular pattern, whereby time and temperature inversely influenced the response. The
lowest viscosities were determined in the worts produced from highly modified malts. Optimization
of the variables under study was achieved by means of a desirability function and a genetic algorithm.
The two methodologies provided similar results. The best combination of parameters to optimize the
malting process on the rye landrace under study was achieved at 6 days, 12 ◦C and 44 g/100 g.

Keywords: rye; landrace; response surface methodology; malting optimization; desirability function;
genetic algorithm

1. Introduction

In recent years, the evolution and competition between beer multinational corpo-
rations and craft breweries have become increasingly intense [1]. Local companies rely
on marketing strategies that emphasize the origin of raw materials and the link with the
territory. Indeed, according to a study on the Italian craft beer sector, more than 70% of the
surveyed breweries included information on the origin of the raw materials [2]. Such an ap-
proach is based on the concept of neolocalism, defined as “a conscious effort by businesses
to foster a sense of place based on attributes of their community” [3]. Research is interested
in the reintroduction of traditional rye varieties that enable high yields in marginal and poor
soils [4]. Landraces are autochthonous and genetically related varieties that indeed exhibit
stable yields in low-input environments over time [5]. The trend towards the rediscovery
of local genetic resources can also be traced to the Calabria region (southern Italy). Rye
landraces are typically cultivated in the mountainous areas of the region, above an altitude
of 750 m. Interestingly, this rustic cereal is known by different names in the local dialects,
e.g., ‘iermunu’ or ‘granuiermanu’, words that have a peculiar assonance with Germany, the
country from which rye was allegedly originally imported [6]. Local craft breweries are
strongly interested in locally grown raw materials and beers containing rye are part of their
special releases. However, malts derived from local grains are essentially unavailable.
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Rye (Secale cereale L.) is a species belonging to the Poaceae family. It is genetically close
to wheat to the extent that the commercial hybrid Triticale (x Triticosecale Wittmack) is
derived from them [7]. The domestication and spread of rye as a crop in human civilization
are shrouded in mystery. Native to the Anatolian peninsula, it initially spread to central
Europe as a weedy plant [8]. A variety of controversial theories have tried to shed light
on the species. Anyhow, it is generally agreed that it was not among the first cereals
cultivated at the dawn of agriculture [9]. Considered a minor cereal, it is second only
to wheat for the production of bread and other bakery products [10]. Its cultivation is
generally restricted to cold climates and harsh environments where other cereals would
struggle to thrive [11]. Total world production in 2020 was 15,022,273 tons, with Germany,
Poland and the Russian Federation among the top producers. From 2010 to 2020, Italy’s
rye production was fluctuating with an average yield of 13,030.5 tons [12]. Rye has a
carbohydrate content varying between 66% and 80%, while total protein ranges from 6.5 to
14.5% [13]. It represents an outstanding source of dietary fiber, bioactive compounds [14],
polyphenols, flavonoids and thiols, whose contents are strongly affected by genotype [15].
Health benefits related to its consumption as a whole grain have been reported to improve
gut function [16]. Secondary metabolites known as benzoxazinoids, which may exert
antimicrobial and anticarcinogenic roles [17], have been detected in wheat- and rye-based
beers [18]. Remains of unmalted rye were found at an archaeological site in Berlin, along
with oats and germinated barley. Albeit a matter of conjecture, this could still suggest
that rye was used in brewing in the Middle Ages [19]. Nowadays, rye is mainly used
in the beverage industry for beer [20] and whisky production [21]. In brewing, it mainly
serves as an adjunct, that is to say, a source of fermentable extract at a reduced cost [22].
It is the key ingredient of traditional drinks such as kvass, a Russian fermented beverage
made of rye bread [23], and historical beers including the Bavarian Roggenbier and the
Finnish sahti, a farmhouse ale flavored with juniper branches and fermented with baker’s
yeast [24]. Moreover, rye enters the grist of beer styles such as Belgian Pale Ale [25], Saison
and Specialty India Pale Ale (Rye IPA), sought after for its spicy and pungent aroma as
a complementary ingredient to barley malt [26]. The malting of rye is similar to that of
wheat, although its germination tends to be faster compared to other seeds [27]. Rye grain
shares some features with wheat such as rapid water absorption and the potential to give
more extract than barley. However, the grain is more prone to damage due to the lack of
husks [28].

Information on the malting of rye is limited compared to that of wheat and barley. In
this study, the response surface methodology was applied to the micro-malting of rye to
investigate how three malting parameters (germination time, germination temperature, and
degree of steeping) can influence the quality of derived malts. RSM consists of a set of math-
ematical and statistical tools to develop and optimize processes in a wide variety of research
fields [29]. Appropriate mathematical models are defined to investigate the relationship be-
tween process parameters and responses of interest to determine optimum conditions [30].
The final stage of this methodology may consist of the simultaneous optimization of several
conflicting objects. Widely used methods include the desirability function and the genetic
algorithm. The former was originally proposed by Harrington (1980), and his approach
was later modified by Derringer and Suich (1984) using a discontinuous function [31].
Theoretical and practical research on genetic algorithms based on biological evolution
has been conducted for over 40 years by John H. Holland and his research team since the
mid-1960s [32]. Genetic algorithms can be successfully combined with the desirability
function using models derived from response surface analysis [33,34]. A genetic algorithm
consists of at least the following three operators: reproduction, crossover and mutation.
A population composed of individuals or chromosomes exchanges information through
reproduction. Crossover and mutation operators are involved in the creation of the new
generations. Thus, the offspring will result from the combination of information from both
parents [35]. Selection of the fittest is based on an objective function (fitness function),
i.e., a measure of goodness to be increased. Thus, strings with greater values will have a
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higher likelihood of transferring their information to subsequent generations, similar to
the adaptive process of natural selection and survival of the fittest [36]. To the best of our
knowledge, this is the first work in which the malting process of rye has been optimized
using two different multi-objective optimization techniques.

2. Materials and Methods
2.1. Raw Material

A landrace of rye (Pollino) with a moisture of 11.0% and a protein content of 14.8% d.m.
was used in the micro-malting experiments. The raw material was supplied by a local farm
located in the Pollino UNESCO Global Geopark in Calabria region (southern Italy). The
initial germinative energy of the grain was 90%, therefore, samples of rye were subjected
to 40 ◦C for a week, in a temperature-controlled chamber, in an attempt to increase it.
Afterward, the germination energy remained almost identical. For this reason, the rye
samples were malted without any preliminary treatment. Grain samples showed great
variability in size, being mostly small and tapered. The results of the sieving test, according
to EBC method 3.11.1 for barley, were as follows: grade I, 8.7; grade II, 30.1; rejects, 61.2.
Before malting, samples were cleaned and sieved using a sieve machine with sorting sieves
(SLN Sample Cleaner Pfeuffer). Both fractions I and II (large and small seeds, respectively)
were malted. Although it is recommended to use similar-sized grains to achieve the most
uniform malting, in this case, smaller and larger grains were malted together as they were
representative of the starting material.

2.2. Experimental Design

Response surface methodology was used to generate the experimental domain and
for data analysis. A face-centered central composite design (FCCD), broadly used in
research on micro-malting optimization [37–39], was chosen to set up the experiments.
This experimental design is shaped in the form of a cube with the axial points located at
the center of the cube faces, with α = 1. The malting process parameters were selected as
germination time (d), germination temperature (◦C) and degree of steeping (g/100 g). The
germination time (A) varied from 4 to 6 days, the germination temperature (B) from 12 to
18 ◦C, the degree of steeping (C) from 40 to 46 g/100 g. The central points were defined
at 5 days, 15 ◦C and 43 g/100 g. Factor levels were converted in coded units ranging
from −1 to +1. Malting parameters into coded form were defined as follows: xA for the
germination time; xB for the germination temperature; xC for the degree of steeping. The
experimental design consisted of 8 corner points, 4 center points and 6 axial or star points
(α), for a total of 18 randomized runs (Table 1). The analyzed responses were as follows:
extract, Kolbach index, apparent attenuation limit, viscosity measured in Congress wort
and isothermal mash.

2.3. Micro-Malting Plan

For each combination of process parameters, 1 kg of rye was malted in the micro-
malting plant of the Research Centre Weihenstephan for Brewing and Food Quality
(Freising, Germany), Technical University of Munich (TUM). Due to technical issues, the
experiment was completed by adopting the same procedure at the malting facility of the
Chair of Brewing and Beverage Technology, Technical University of Munich (TUM). The
steeping process was conducted as defined as follows: two stages of imbibition in water
of 5 and 4 h were followed by air rests of 19 and 20 h, respectively, for a total of 48 h.
The steeping temperature was set according to the experimental design. The moisture
level for each sample was brought to the three different target levels on the first day of
germination according to the experimental design. It was then maintained at the desired
level by spraying water on the following days. Germination time was varied according to
the experimental scheme. The samples were subjected to gentle rotation throughout the
process to avoid packing. Once the germination step was completed, the samples were
subject to the following kilning schedule: 50 ◦C for 16 h, 60 ◦C for 1 h, 70 ◦C for 1 h and
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80 ◦C for 5 h. Afterward, dry rootlets were removed and the different malts were stored for
one week prior to analysis. All malt samples presented a moisture content of less than 5%.

Table 1. Face-centered design with coded and natural variables.

Run Order xA xB xC A B C

1 −1 1 1 4 18 46
2 0 0 0 5 15 43
3 −1 1 −1 4 18 40
4 0 0 −1 5 15 40
5 1 1 −1 6 18 40
6 0 0 0 5 15 43
7 0 0 0 5 15 43
8 −1 0 0 4 15 43
9 1 −1 −1 6 12 40

10 1 0 0 6 15 43
11 0 1 0 5 18 43
12 1 1 1 6 18 46
13 0 −1 0 5 12 43
14 0 0 1 5 15 46
15 −1 −1 −1 4 12 40
16 −1 −1 1 4 12 46
17 0 0 0 5 15 43
18 1 −1 1 6 12 46

2.4. Chemical Analyses

Malts and worts were analyzed in duplicate (n = 2) according to the methods of
the Mitteleuropäische Brautechnische Analysenkommision (Central European Brewing
Technology Commission or MEBAK) [40], using Congress and isothermal 65 ◦C mash
programs. The mean of each measurement has been reported. Before malting, some quality
attributes of grain were evaluated. The moisture content of the raw material was measured
by means of R-110.40.020 method (Drying Oven Method) as difference in mass before
and after drying, while the R-110.29.612 method (AUBRY Method) was used to assess the
germinative energy. The nitrogen content was determined by R-110.41.030 according to
Kjeldahl method. The protein content was derived by multiplying the nitrogen content
by the conversion factor of 5.83 [41]. The moisture content of malts was determined by
R-200.18.020, as mass loss over a standardized drying procedure. Soluble nitrogen and
protein content were measured according to R-205.11.030 and R-200.20.030, respectively,
according to Kjeldahl method. Kolbach index was calculated as the ratio of soluble to total
nitrogen, according to R-205.12.999 method. The extract was assessed on the Congress mash
by R-205.01.080 method. Apparent attenuation limit (AAL) was measured according to R-
205.16.080 method (Fermentation Tube Method). Viscosity was measured in Congress wort
and isothermal (65 ◦C) wort according to R-205.10.282 method using a microviscometer
from Anton Paar.

2.5. Statistical Analysis

Data analysis was performed in RStudio, a free software environment for statistical
computing and graphics, R version 4.1.0 (2021-05-18). Response surface analysis was carried
out using ‘rsm’ package [42]. The ‘graphics’ package [43] was used to visualize the response
surfaces. Model checking adequacy was conducted by means of ’performance’ [44], and
‘mass’ packages [45]. Data visualization was realized using basic functions of R, ‘ggplot’ [46],
‘viridis’ [47] and ‘patchwork’ [48] packages. Multi-criteria optimization was conducted
using ‘desirability’ [31] and ‘GA’ [35] packages. Malting at 6 days, 15 ◦C and 43 g/100 g (run
No. 10) was not possible due to technical issue related to the malting plant. The handling
of missing data generally consists of the following two strategies: analyzing an incomplete
dataset or resorting to strategies such as multiple imputation. In the latter case, missing
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data are replaced with new values on the basis of experimental observations [49]. In order
to check whether missing values could alter the predicted results and thus influence the
goodness of the method, missing values were replaced by means of multivariate imputation
by chained equations (data not shown) using the ‘mice’ package [50]. It was possible to
conclude that the results with and without imputation were comparable. In light of this, it
was preferred to keep the missing values during the data analysis.

3. Results and Discussion
3.1. Model Fitting and Adequacy Evaluation

The first important step in the response-surface analysis is to set up the relationship
between natural and coded variables, as given in the following equations below:

xA = (A − 5)/1 (1)

xB = (B − 15)/3 (2)

xC = (C − 43)/3 (3)

where the value of a coded variable is equal to the difference between the uncoded form
and its center points, divided by half the variable’s range. Coding ensures that all input
variables are dimensionless and vary over the same interval, so as to guarantee a feasible
interpretation of the surface analysis [42]. Quadratic or second-order models were defined
to approximate true response functions. The models’ performance was compared on the
basis of statistical fit indices and the significance of the models’ coefficients. The Akaike
information criterion (AIC) and Bayesian information criterion (BIC) are widely used as
indicators to select the most suitable models. In brief, the fitted models with the lowest
AIC and BIC and the highest adjusted R squared were selected for data analysis (Table S1).
The only exception was the model for the AAL, where only one interaction term was found
to be statistically significant. Nevertheless, it was decided to choose the quadratic model,
taking into account the relevant values for the adjusted R squared, AIC and BIC, as well as
the performance of the model (Table S1).

The linear, interaction and quadratic terms were found to be variously significant for
the preliminary fitted models (Figure 1).

At first glance, the process parameters exerted different influences on the responses
under study. In particular, the KI variable was the most affected overall, with the germina-
tion temperature exerting a large positive impact. All linear terms had a negative impact
on viscosities. All models resulted in significance based on the F-values. In developing
models within the adopted methodology, attention must be paid to the lack offit test, a
statistical indicator used to check the model’s adequacy in predicting response surfaces [51].
Fitted models presented a non-significant lack of fit, so they were considered suitable for
making predictions and drawing conclusions from the response surfaces. Table 2 shows
the outcomes of the analysis of variance for all selected models.

All ANOVA assumptions were confirmed throughout the analysis of externally stu-
dentized residuals and diagnostic plots. Residuals were found to be normally distributed,
so the assumption of normality was fulfilled. No particular trend was found for residuals
against predicted values (Figure S1) and runs (Figure S2). The points resulting from the
combination of predicted and observed values were randomly distributed and close to the
fitted lines (Figure S3). This is an indication of good prediction for all analyzed models, as
also suggested by the values of the coefficients of determination that resulted close to the
unit. The comparison between actual and predicted outcomes is reported in Table 3.
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Table 2. Analysis of Variance (ANOVA) of the fitted models.

Response Source of
Variation Df 1 Sum Sq 2 Mean Sq 3 F Value p-Value

Extract

Model 5 18.05 10.9843 48.31 ***
Residuals 11 0.8220 0.0747
Lack of fit 2 0.0170 0.0085 0.0949 ns
Pure error 9 0.8050 0.0894

KI 4

Model 9 513.82 171.275 32.31 ***
Residuals 7 12.37 1.767
Lack of fit 4 10.55 2.637 4.3465 ns
Pure error 3 1.82 0.607

AAL 5

Model 9 10.20 3.39975 18.65 ***
Residuals 7 0.4254 0.06078
Lack of fit 4 0.3654 0.09136 4.5680 ns
Pure error 3 0.0600 0.02000

Viscosity

Model 8 16.2291 5.7671 106.7 ***
Residuals 8 0.1521 0.0190
Lack of fit 5 0.1386 0.0277 6.172 ns
Pure error 3 0.0135 0.0045

Viscosity 65 ◦C

Model 7 13.0247 5.4064 34.32 ***
Residuals 9 0.4879 0.0542
Lack of fit 6 0.3979 0.0663 2.2107 ns
Pure error 3 0.0900 0.0300

1 Df, degree of freedom; 2 Sum Sq, sum of squares; 3 Mean sq, Mean Square; 4 KI, Kolbach index; 5 AAL, apparent
attenuation limit. The symbols ***, ns, indicate the following levels of significance for each ANOVA model: 0.001,
not significant.
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Table 3. Comparison between actual and predicted responses using RSM.

Run
Order

Extract
(%, d.m.1)

KI 2

(%)
AAL 3

(%)
Viscosity
(mPa × s)

Viscosity 65 ◦C
(mPa × s)

Actual Predicted Actual Predicted Actual Predicted Actual Predicted Actual Predicted

1 83.2 83.4 60.6 59.7 73.5 73.7 4.99 4.97 6.93 6.84
2 83.4 83.4 60.3 59.4 73.0 73.0 4.67 4.77 6.36 6.46
3 83.5 83.4 59.6 59.5 74.7 74.6 4.92 5.05 7.13 7.12
4 83.3 83.4 57.3 58.6 72.7 73.0 5.04 4.90 6.88 6.82
5 83.5 83.1 60.6 59.4 71.8 71.8 4.29 4.30 5.99 5.82
6 83.3 83.4 60.4 59.4 72.9 73.0 4.69 4.77 6.12 6.46
7 83.1 83.4 59.3 59.4 72.9 73.0 4.71 4.77 6.54 6.46
8 82.3 82.2 53.2 53.9 73.1 73.0 5.82 5.79 7.42 7.12
9 82.5 82.7 51.8 52.5 73.3 73.2 5.56 5.59 7.77 7.84

10 na 4 na 4 na 4 na 4 na 4 na 4 na 4 na 4 na 4 na 4

11 83.9 83.8 60.4 62.0 73.3 73.3 4.55 4.35 5.94 6.28
12 82.7 83.1 61.7 62.2 71.5 71.5 4.19 4.28 5.42 5.34
13 82.1 82.1 52.4 51.5 73.0 72.9 6.00 6.16 8.14 7.89
14 83.8 83.4 62.0 61.4 73.2 72.8 4.63 4.63 6.17 6.10
15 80.3 80.2 43.3 42.6 71.8 71.8 7.89 7.81 8.93 8.99
16 80.1 80.2 44.6 45.6 71.6 71.7 7.29 7.29 7.89 8.03
17 83.2 83.4 58.8 59.4 73.2 73.0 4.82 4.77 6.38 6.46
18 83.0 82.7 58.0 57.9 73.5 73.7 5.25 5.13 6.70 6.68

1 d.m., dry matter; 2 KI, Kolbach index; 3 AAL, apparent attenuation limit; 4 na, not available.

3.2. Extract

The extract is a measure of malt yield [28] used to estimate the number of soluble
substances in the wort [52]. The extract values of rye and wheat malt are generally higher
than those of barley malt [28]. Wang et al. (2018) reported average extract values comprised
between 85.0 and 85.9% d.m. for germination times between 3 and 6 days, with no signif-
icant differences after three days of germination [53]. The observed values ranged from
80.1 to 83.9% d.m. The minimum extract was obtained after 4 days at 12 ◦C and 46 g/100 g,
while the maximum was obtained after 5 days at 18 ◦C and 43 g/100 g, respectively. A
similar extract (83.8% d.m.) was also reached after 5 days, at a lower temperature and a
higher degree of steeping (15 ◦C and 46 g/100 g, respectively). Values beyond 83.0% d.m.
could be obtained at every level of germination time and degree of steeping at tempera-
tures ranging between 15 ◦C and 18 ◦C. The quantity of extract measured after 6 days of
germination showed a different trend depending on the temperature degree of the steeping
combination, according to an inversely proportional relationship. Therefore, by raising the
temperature from 12 to 18 ◦C with a simultaneous reduction of the degree of steeping from
46 to 40 g/100 g, an increase in the extract from 83 to 83.5% was observed. Indeed, it is well
known that a gradual increase in the moisture content of the germinating seed enhances
the embryo’s growth rate and respiration, resulting in reduced extract content [28]. The
best-fitted model describing the response was the following:

Extract = 83.3652 + 0.5636 × xA + 0.8800 × xB − 0.7000 × xAxB − 0.5929 × xA2 − 0.4109 × xB2 (4)

The adjusted R squared was high and close to the unit (0.937), and the lack of fit was
not significant (p-value: 0.9103533). Germination time and temperature exerted a major role
in the response. They both presented positive coefficients, which means increasing A or B
determined a consequent increase in the predicted response. Nonetheless, their interaction
was also significant. Its coefficient presented a negative sign, which means the effect of A
on the response will decrease by raising B and vice versa. The quadratic coefficients for the
same parameters were also significant. The degree of steeping did not exert any significant
influence on the extract, and for this reason, it was not considered in the model. Figure 2
shows the 3D surface of the predicted response based on the fitted model. It was possible
to identify a point near-maximum at about 5 days at 18 ◦C. Predicted extracts equal to
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83.7% could be obtained for temperatures comprised between about 17 and 18 ◦C and for
germination times ranging from 4.5 to 5.5 days.
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3.3. Kolbach Index

KI is defined as the ratio of soluble to total nitrogen and indicates the degree to which
the malt is modified [40]. It is a measure of the proteolytic activity that occurs in malting.
The recommended range for barley malt for short-infusion mashing is 38–42% [54]. The
highest soluble nitrogen contents were found at higher temperatures for long germination
times (data not shown), as also reported in Hübner & Arendt (2010) [55]. The minimum
observed value (43.3%) was attained at 4 days, 12 ◦C and 40 g/100 g, while the maximum
(62.0%) was attained at 5 days, 15 ◦C and 46 g/100 g. Overall, lower values of KI have
been detected if compared with the results reported in Wang et al. (2018) [53]. These
differences can presumably be attributed to the different experimental designs used as well
as genotypic differences. Increasing the germination time from the lowest to the highest
level while keeping the temperature and degree of steeping at a constant level of 12 ◦C
and 40 g/100 g, respectively, determined an increase in KI from 43.3 to 51.8%. A quadratic
model described the response as follows:

KI = 59.3654 + 3.0837 × xA + 5.2800 × xB + 1.4300 × xC − 2.4750 × xAxB + 0.6250 × xAxC − 0.6750
×xBxC − 2.4125 × xA2 − 2.6308 × xB2 + 0.6192 × xC2 (5)

The adjusted R squared was equal to 0.946, which means most of the variability
observed was explained by the selected model. The lack of fit was not significant (p-value:
0.128669). All the linear terms were significant, with the germination temperature exerting
the strongest influence on the response (Figure 1). The interaction term between germina-
tion time and the temperature was also significant, and the coefficient presented a negative
sign. They both contributed to influencing the KI response; for this reason, the effect of
A on KI resulted less strong with a concurrent increase in B and vice versa. There was
a discrepancy regarding the combination of experimental settings allowing to reach the
maximum response if observed and predicted values were compared. In fact, the maximum
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KI (62.2%) was predicted at 6 days, 18 ◦C and 46 g/100 g. Nonetheless, an area of maximum
predicted response (>62.0%) has been predicted by the fitted model in the range 5–5.5 days
and 17–18 ◦C when the degree of steeping was held at a constant level of 43 g/100 g, as
depicted in Figure 3.
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3.4. Apparent Attenuation Limit

The apparent attenuation limit measured in the Congress wort represents the difference
in extract before and after fermentation [40]. In particular, the term attenuation refers to the
decrease in the specific gravity of the wort and thus its sugar content after fermentation [28].
The recommended value for barley malt is over 80% [56]. The observed responses were in
the range of 71.5–74.7%. The minimum value was reached at 6 days, 18 ◦C and 46 g/100 g,
while the maximum value was reached at 4 days, 18 ◦C and 40 g/100 g. An average AAL
of 73.0% was obtained at the central points of the experimental region. The second-order
model describing the AAL response is shown as follows:

AAL = 73.0460 − 0.1990 × xA + 0.1600 × xB − 0.1000 × xC − 1.0375 × xAxB + 0.1625 × xAxC − 0.1875
×xBxC − 0.2375 × xA2 + 0.0577 × xB2 − 0.1423 × xC2 (6)

The adjusted R squared was the lowest (0.909) among the analyzed responses. The
lack of fit was not significant (p-value: 0.1212). No parameters exerted a statistically
significant influence when considered individually. The only regression coefficient resulting
in significance was the interaction effect of germination time and temperature. There was
correspondence between the observed and predicted minimum and maximum values for
the same combination of parameters. The resulting response surfaces can be defined as a
saddle point or min-max, thus an optimum area could not be identified. Figure 4 illustrates
the pattern of the response as time and temperature change when the degree of steeping
is kept constant at 40 g/100 g and 46 g/100 g. Three different situations were identified
by setting the degree of steeping at the three different levels defined by the experimental
design. AAL values above 74.0% could be detected for short germination times and high
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temperatures when the degree of steeping was held at 40 g/100 g (Figure 4, subplot a).
In particular, as the degree of steeping increased from the lowest to the highest level, the
response surface tended to shift within lower boundaries defined by the predicted AAL.
Areas of increasing response can be observed both at 4 days and 18 degrees and at 6 days
and 12 degrees when humidity is maintained at the highest level (Figure 4, subplot b).
Generally, the minimum response tended to be located at the corner of the experimental
region, at the lowest and highest combination levels for germination time and temperature.
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3.5. Viscosity

Viscosity can be measured in both Congress and isothermal (65 ◦C) wort. Both
methods provide information on the cytolysis modification of the malt. In particular, the
latter gives an insight into the differences between different malts [40]. Recommended
values for barley malt are below 1.56 and 1.60 mPa ×s for viscosity measured in Congress
and isothermal wort, respectively [54]. Highly modified malts exhibit lower viscosity
levels [57]. Unconventional malts other than barley may lead to lautering problems due to
the increased wort viscosity [58]. In order to ensure its reduction to levels that allow for
good filtration, enzyme activity must be promoted by appropriate timing and temperatures
during brewing. Indeed, as amylolytic enzyme efficiency decreases as a result of an
excessive shift from their temperature optimum, viscosity tends to rise [59]. The lowest
viscosity levels were obtained in malts with extracts close to or above 83%. The ranges of
observed values were slightly higher for the viscosity measured in the isothermal mash
(5.42–8.93 mPa × s) than in the Congress mash (from 4.19 to 7.89 mPa × s). Both responses
were described by a quadratic model, and their equations are reported as follows:
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Viscosity = 4.7654 − 0.7291 × xA − 0.9050 × xB − 0.1350 × xC + 0.3675 × xAxB + 0.0150 × xAxC
+0.1100 × xBxC + 0.2929 × xA2 + 0.4933 × xB2 (7)

Viscosity 65 ◦C = 6.4582 − 0.6624 × xA − 0.8020 × xB − 0.3590 × xC − 0.0375 × xAxB − 0.0500 × xAxC
+0.1675 × xBxC + 0.6258 × xB2 (8)

The adjusted R squared for both models was higher than 0.93, and the lack of fit was
non-significant (p-values: 0.0825167 and 0.2749261 for viscosity measured in Congress and
isothermal wort). All linear terms, the interaction and the quadratic terms for germination
time and temperature resulted in significance for the viscosity measured in the Congress
wort. In particular, both factors exerted a greater negative influence. A negative effect was
also exerted by the degree of steeping, but to a lesser extent. In both scenarios, it can be
concluded that as time, temperature and degree of steeping increase, a consequent drop in
viscosity is expected. Under these conditions, a gradual cytolytic modification of the cell
wall components affecting the wort viscosity occurs. Figure 5 shows the interactive effect of
time and temperature when the degree of steeping is held at a constant level of 46 g/100 g
for both predicted responses. As depicted in the two subplots, the response surfaces turned
into a concave shape. Prolonging the germination time at increasing temperatures resulted
in a decrease in the predicted responses. Particularly, a plateau can be observed below
15 ◦C and after 5 days of germination, at which the lowest viscosity values were predicted
by the two models.
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3.6. Multicriteria Optimization

The optimization process was performed by means of the following two different
methods: the desirability function approach and the genetic algorithm. The target was to
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maximize extract and ALL, while keeping the KIand the viscosity measured in Congress
and the isothermal wort as low as possible. Therefore, the function was set up in view
of the validity of the fitted models and in such a way that all the following three events
occurring during malting are accounted for: amylolysis, proteolysis and cytolysis. KI was
considered an indicator of proteolysis. A balance between soluble nitrogen and protein
content is generally sought, so a KI within a certain range is preferable. High values may
adversely affect certain beer characteristics. For instance, foam stability in beer was found
to be negatively correlated to KI, although with different magnitudes [60,61]. Overall, the
measured KI values were remarkably high (43.3–62.0%) compared to the reference values
of barley and wheat malt. Taking this into account, when setting the individual desirability
function for KI, the aim was to minimize it.

3.6.1. Desirability Function

The acceptability boundaries for the responses were set on the basis of the minimum
and maximum values of the experimental results. Each response was transformed into an
individual desirability value ranging from 0 to 1. A larger-is-better function was applied
to maximize extract and AAL. A smaller-is-better function was used to minimize KI
and viscosity measured in Congress and isothermal wort. The scaling factor for both
maximization and minimization was set at 1. A data frame containing combinations of
parameters in coded and uncoded units was created. Based on the fitted models, the
selected responses to be optimized were predicted for each combination of independent
variables. Hence, individual desirability values were calculated and finally combined to
obtain the overall desirability D. Two areas of feasible solutions were identified, as depicted
in Figure 6.
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Indeed, maximum desirability values were obtained for the same degree of steeping
but at opposite levels for the temperature and time parameters. Thus, at a fixed degree
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of steeping of 44%, satisfactory responses meeting the above criteria can be obtained
by combining long germination times at low temperatures, or alternatively for shorter
germination periods at higher temperatures. The highest value computed by the function
was 0.568 at 6 days, 12 ◦C and 44 g/100 g. The following optimized responses were
predicted for this combination of parameters: extract 82.7% d.m.; KI 55.6%; AAL 73.6%;
viscosity 5.27 mPa × s; viscosity (65 ◦C) 7.07 mPa × s.

3.6.2. Genetic Algorithm

A genetic algorithm was applied to find a global optimum implementing the desirabil-
ity function specified above as the fitness function. Specific information on the definition
and typologies of genetic operators can be found in the ‘GA’ package [35]. In the case
of optimization problems, the type of genetic algorithm is defined as ‘real-valued’; the
minimum and maximum limits of the search space were defined within the boundaries of
the experimental design; the population function was defined as ‘gareal_population’, which
generates a random and uniform population of real values within the constraints of the
search space; selection was defined as ‘gareal_lsSelection’; the genetic operator crossover
was chosen as ‘gareal_laCrossover’ which stands for local arithmetic crossover; mutation
was defined as “gareal_raMutation” which stands for random and uniform mutation; the
elitism operator, equal to the number of individuals with the best fitness surviving each
generation or iteration, was set to 5%; the number of individuals within the population was
set to 100; the maximum number of iterations was equal to 100; the probability of crossover
was set at 0.8; the probability of a mutation occurring within a parent chromosome was set
at 0.1; a specific seed was set to generate reproducible results. Each chromosome consisted
of combinations of the three independent variables. For each specific combination of pa-
rameters within a chromosome, a predicted response was obtained, the fit of which was
assessed by means of the fitness function. The worst solution had an overall desirability
of 0.4081. After the 7th iteration, the best solution of 0.5709 was identified. Thereafter, no
improvement was detected during subsequent iterations (Figure 7).
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The best solution found by the genetic algorithm was given in coded units (xA = 1,
xB = −0.8352368, xC = 0.06473789). For this reason, the equations defining the relationship
between coded and uncoded parameters (Equations (1)–(3)) were used to calculate the real
values. The combination of parameters optimizing the overall D was the following: 6 d,
12.5 ◦C and 43.2 g/100 g. The regression equations in uncoded units for all models were
used to compute the predicted values, taking into account the best combination of predicted
parameters as follows: extract 82.9%; KI 56.0%; AAL 73.4%; viscosity 5.11 mPa × s; viscosity
(65 ◦C) 6.89 mPa × s. These results coincided with those predicted by the desirability
function for the same parameter combination, however, for a lower total desirability value.

4. Conclusions

The adopted experimental design made it possible to discern how malting parameters
and their levels can influence the quality characteristics of rye malt. The entire response
surface analysis and subsequent optimization process were carried out on Rstudio, the
R-integrated development environment, showing how the use of open-source software can
prove effective as an alternative to expensive software. Analysis of the response surfaces
revealed that germination time and temperature strongly influenced the modification of rye
malt in terms of amylolytic, proteolytic and cytolytic activity. The influence of the degree
of steeping, on the whole, was less pronounced. The desirability function and the genetic
algorithm gave similar results. The first method allowed us to navigate a broader space of
possible combinations. Nevertheless, the overall desirability D calculated by the genetic
algorithm was slightly higher. Both optimization techniques provided comparable results.
Hence, the combination of the two optimization techniques proved to be appropriate as part
of the surface response methodology. It is interesting to note that two optimal situations can
potentially be used to achieve the desired goals at the same degree of steeping of 44 g/100 g.
Malting for only 4 days of germination at high temperatures would significantly reduce the
costs associated with the process. Nevertheless, the combination predicted at 6 days and
12 ◦C would reduce the KI to a greater extent. The cereal under study was characterized by
a high protein content, so aiming for the best situation with regard to proteolytic activity
was one of the objectives. For this reason, the suggested malting parameter combination
for this rye landrace is as follows: 6 days at 12 ◦C and 44 g/100 g. Further studies would
be needed to fully confirm these results and set up new tests by exploring a different
experimental region on the basis of the developed models. Nonetheless, the study helped
to give a greater understanding of the amylolytic, cytolytic and proteolytic modifications of
rye during malting, the information of which is significantly narrower when compared to
that of barley and wheat for malting purposes.
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indices; Figure S1. Plot of externally studentized residuals vs. predicted responses. Each subplot
refers to a specific quality attribute: (a) extract; (b) KI, Kolbach index; (c) AAL, apparent attenuation
limit; (d) viscosity in the Congress wort; (e) viscosity in the isothermal mash; Figure S2. Plot of
externally studentized residuals vs. run number. Each subplot refers to a specific quality attribute:
(a) extract; (b) KI, Kolbach index; (c) AAL, apparent attenuation limit; (d) viscosity in the Congress
wort; (e) viscosity in the isothermal mash; Figure S3. Plot of predicted vs. actual responses. Each
subplot refers to a specific quality attribute: (a) extract; (b) KI, Kolbach index; (c) AAL, apparent
attenuation limit; (d) viscosity in the Congress wort; (e) viscosity in the isothermal mash.
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