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Abstract: Soy molasses is rich in oligosaccharides like sucrose, stachyose, and raffinose, with stachyose
and raffinose being functional oligosaccharides. Harnessing soy molasses for the production of
functional soy oligosaccharides (FSO) can significantly elevate its value. Biological purification, a
method leveraging the selective utilization of different carbon sources by microorganisms, allows for
the specific removal of sucrose from soy molasses while preserving stachyose and raffinose, thereby
increasing the FSO content. This research identified a yeast named YT312 with strong purification
capabilities for soy molasses and optimized the purification conditions. The study revealed that
yeast YT312 was Wickerhamomyces anomalus, exhibiting a broad range of growth temperatures and
pH levels alongside a high tolerance to glucose, sucrose, and NaCl. Through single-factor and
orthogonal experiments, it was established that under specific conditions—0.375% inoculum size,
30 ◦C fermentation temperature, 150 rpm shaking speed, 10-fold dilution ratio, pH of 7, and 12 h
of fermentation—sucrose was completely removed from soy molasses, while functional raffinose
and stachyose were retained at rates of 96.1% and 90.2%, respectively. Consequently, W. anomalus
YT312 displayed exceptional characteristics for the biological purification of soy molasses and the
production of FSO.

Keywords: soy molasses; stachyose; raffinose; biological purification; Wickerhamomyces anomalus

1. Introduction

Soy molasses is a byproduct and yellow-brown viscous substance produced during the
production of soy protein concentrate (SPC) using the alcohol method [1,2]. Statistics show
that for every three to four tons of SPC produced, around one ton of soy molasses is gener-
ated. This means that 100,000 tons of soy molasses are produced every year globally [3,4].
Studies revealed that soy molasses comprises a variety of nutrients and useful compounds,
giving it a complex composition. The main components were carbohydrates, including
oligosaccharides and monosaccharides, which account for 58–65% of the dry weight. Addi-
tionally, soy molasses contained approximately 6–8% protein, 5–8% lipids, 7–9% minerals,
6–15% soyasaponins, 1.5–2.5% soy isoflavones, and other organic compounds such as
4–6% phenolic acids [2,4–7]. However, soy molasses was previously considered trash and
discarded or utilized as cheap animal feed, which led to a large loss of resources or the
contamination of the environment despite the abundance of these vital components [8]. In
recent years, with the increasing awareness of environmental protection and the demand
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for sustainable development strategies, countries have intensified efforts to reuse soy mo-
lasses. It was utilized as a biomass resource for the extraction and isolation of functional
components or as a nutrient source for microbial growth and biotransformation. For ex-
ample, a combination of solvents and ultrasound treatment has been used to extract soy
isoflavones with high antioxidant activity from soy molasses [9–11]. Resin adsorption and
elution methods, as well as ultrasound-assisted techniques, were utilized for the extraction
and purification of soyasaponins [12,13]. Phospholipids have been produced by using an
organic solvent extraction process after acid precipitation [14]. Additionally, kynurenic
acid, enzymes, bacterial cellulose, bio-methane, ethanol, and cells have been produced by
microbial fermentation using soy molasses as a source of carbon and nitrogen [15–19]. The
extensive and valuable use of soy molasses was greatly impacted by these investigations.

Functional soy oligosaccharides (FSO) are a group of soluble oligosaccharides found in
soybeans that are not easily utilized by the human body. The main components of FSO are
raffinose and stachyose, which make up approximately 1% and 4% of soy, respectively [20].
In the past, these oligosaccharides were considered the primary cause of gastrointestinal
bloating, leading to efforts in soybean processing to eliminate or cultivate soybean varieties
without these oligosaccharides [20–23]. However, as research into the functions of different
oligosaccharides progressed, scientists discovered that although the human body could
not directly utilize FSO, such as raffinose and stachyose, they were utilized by beneficial
bacteria in the intestine, such as Bifidobacterium and Lactobacillus, promoting their growth
and producing short-chain fatty acids that provide various health benefits. These benefits
included lowering the pH in the intestines, regulating blood lipid and blood sugar levels,
enhancing immune function, and preventing diseases and aging [24–27]. Currently, FSO
are widely used as a novel kind of prebiotic in the production of beverages, ice cream, and
bread, as well as in pharmaceuticals, cosmetics, and animal feed [28].

The direct isolation and purification of soy oligosaccharides from soybeans was rela-
tively costly. However, they were extracted and purified from byproducts of soy processing,
preserving the original value of soybeans while transforming waste into valuable resources,
thereby increasing the value of the soy industry chain. Among the various byproducts of
soy processing, soy molasses was particularly suitable as a raw material to produce FSO.
Soy molasses, which was produced during the processing of SPC, has a higher concen-
tration of FSO compared to soybean raw materials, with raffinose and stachyose contents
ranging from 4 to 25.5% and 15.5 to 34.2%, respectively. This made soy molasses more suit-
able for the extraction and purification of FSO than soybean raw materials themselves [2].
However, there were certain difficulties in directly extracting raffinose, stachyose, and
other FSO from soy molasses. This was because soy molasses often contained high levels
of sucrose (usually 18.5–32%), requiring multiple steps of chromatographic purification
and other fine purification methods to obtain high-purity FSO. This increased production
costs and limited their application [2,5].

A crucial concept for differentiating and classifying microbial species according to
their capacity to metabolize various carbon sources is that different microorganisms often
have distinct carbon source metabolism profiles [29–32]. With this knowledge, different mi-
croorganisms can be used for the pre-treatment of soy molasses to break down sucrose and
utilize it through the microorganisms’ specific carbon source metabolism while preserving
FSO such as raffinose and stachyose to the greatest extent possible. This pre-treatment
method greatly reduces the difficulty of extracting and separating FSO and improves
their production efficiency. In fact, researchers explored this method and achieved good
results [33–36]. For example, Zhao et al. [33] used Saccharomyces cerevisiae C to biologically
ferment soy molasses, removing all sucrose from soy molasses under optimal conditions,
with a retention rate of FSO of 60.9%. Cui et al. [34] used a yeast strain to ferment soy
molasses, with a residual sucrose content of only 8.76%, while the content of raffinose and
stachyose was almost unchanged, with retention rates of 99.61% and 95.72%, respectively.
Liu et al. [35] purified soy molasses using S. cerevisiae 1607, and the results showed a sucrose
removal rate of up to 90%, while the retention rates of raffinose and stachyose were 85.7%
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and 94.3%, respectively. Liu et al. [36] also achieved similar results using S. cerevisiae 103,
with a residual sucrose content of 10.3%, and the retention rates of raffinose and stachyose
were 81.0% and 92.5%, respectively. In general, these studies yielded positive outcomes in
the purification of soy molasses and the biological production of FSO. However, the strains
used in these studies were limited, especially S. cerevisiae. It was worth exploring whether
other microbial strains also have good potential for purifying soy molasses and producing
FSO. In our prior research, we isolated and maintained over 200 strains of microorganisms
from traditional fermented foods for the biological purification of soy molasses to produce
FSO [37]. Among them, strain YT312, obtained from a high-temperature Daqu, showed
outstanding biological purification effects, and some of its physiological characteristics
were different from S. cerevisiae. As a result, the strain was determined, and the fermen-
tation conditions were adjusted in this article to enable the biological purification of soy
molasses to yield FSO.

2. Materials and Methods
2.1. Chemicals and Materials

Soy molasses was provided by Shandong Rongzheng Chemical Co., Ltd. (Linyi, China).
Sucrose, raffinose, stachyose, and manninotriose standards were purchased from Sigma-
Aldrich Co., Ltd. (Shanghai, China). Fungal genomic DNA extraction kit was purchased
from Beijing Solarbio Technology Co., Ltd. (Beijing, China). Other reagents used were
domestically produced biological or analytical reagents. Strain YT312 was obtained by our
research team from the environment of Baijiu brewing. Yeast extract peptone dextrose (YPD)
medium, Wallerstein laboratory nutrient (WL) medium, and other identification media for
strains were prepared according to the methods described by Fan et al., Kurtzman et al.,
Buchana et al., and Dong et al. [38–41]. The fermentation medium was processed according
to our previous method, as follows: soy molasses was diluted with distilled water 8-fold,
and the pH was adjusted to 6.0; then, it was divided into 30 mL per bottle (250 mL) and
sterilized at 110 ◦C for 10 min [37].

2.2. Identification and Biochemical Characteristics of Strain YT312
2.2.1. Morphological Observation

Strain YT312, stored in glycerol tubes, was streaked onto YPD and WL agar plates. The
plates were then incubated at 30 ◦C for 72 h. After incubation, the colony morphology was
observed. Then, a small number of cells from a single colony of strain YT312 was gently
and evenly spread in a sterile water droplet on a glass slide. After fixation, crystal violet
and methylene blue staining solution was used for staining, and the cells were observed
under a high-power microscope (objective lens × eyepiece: 100 × 50).

2.2.2. Physiological and Biochemical Characteristics

A total of 50 µL of the strain YT312 was stored in a glycerol tube, inoculated into
YPD liquid medium, and activated at 30 ◦C and 180 rpm for 18 h. After activation (the cell
amount was 2.6 × 107 cells/mL by using a hemocytometer), physiological and biochemical
characteristics were determined using methods such as sugar fermentation test, carbon
source assimilation test, nitrogen source assimilation test, hydrogen sulfide production
test, indole test, methyl red test, Voges–Proskauer test, citrate test, starch hydrolysis test,
urea test, gelatin hydrolysis test and litmus milk test, as described by Buchana et al. and
Dong et al. [40,41].

2.2.3. Molecular Identification

Once the strain YT312 was activated, as previously mentioned, 50 µL of the suspension
was added to the YPD medium and cultured for 24 h at 30 ◦C and 180 rpm. The genomic
DNA of strain YT312 was extracted according to the instructions of the fungal DNA kit.
The extracted total DNA was used as a template, and 26S rDNA universal primers (NL1:
5′-GCATATCAATAAGCGGAGGAAAAG-3′ and NL4: 5′-GGTCCGTGTTTCAAGACGG-
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3′) (synthesized by Sangon Biotech Co., Ltd., Shanghai, China) were used to amplify the
26S rDNA D1/D2 region sequence [42]. The PCR reaction system included 2.5 µL of LA
PCR Buffer (Takara, Tokyo, Japan), 1 µL of each primer, 2 µL of dNTP (Takara, Tokyo,
Japan), 0.2 µL of LAtaq enzyme (Takara, Tokyo, Japan), and 2 µL of DNA, and ddH2O
was added to make up a total of 25 µL. The PCR amplification program was as follows:
initial denaturation at 94 ◦C for 5 min, denaturation at 94 ◦C for 30 s, annealing at 58 ◦C
for 30 s, extension at 72 ◦C for 1 min for a total of 30 cycles, followed by a final extension
at 72 ◦C for 10 min. The PCR amplification products of strain DNA were subjected to
electrophoresis using a 1% agarose gel for analysis. The amplified PCR product with
the correct molecular weight was sent to Sangon Biotech Co., Ltd. (Shanghai, China) for
sequencing. The sequence profile software BioEdit 7.0.9 (Borland Software Corporation,
Scotts Valley, CA, USA) was used to proofread the sequence, referring to the forward
sequence profile. The corrected 26S rDNA D1/D2 sequence was compared with known
yeast sequences in the GenBank nucleic acid sequence database by homologous sequence
alignment to determine the similarity between the test strain and known yeast sequences.

2.2.4. Strain Performance Determination

After being activated as described in Section 2.2.2, the performance of YT312, including
growth temperature range (20 ◦C, 25 ◦C, 30 ◦C, 35 ◦C, 40 ◦C, 45 ◦C, and 50 ◦C), growth
pH range (1–12), sucrose tolerance (23%, 28.6%, 33.3%, 37.5%, 41.2%, 44.4%, and 47.3%
w/w), glucose tolerance (23%, 28.6%, 33.3%, 37.5%, 41.2%, 44.4%, and 47.3% w/w), and
NaCl tolerance (0%, 5%, 10%, 15%, 20%, 25%, and 30% w/v), was measured as reported
previously [39].

2.2.5. Determination of Strain Growth Curve

The growth curve of strain YT312 was determined using two methods: static and
shaking (180 rpm). The activated strain YT312 was inoculated into YPD liquid medium at
0.1% inoculum size. The suspension was incubated in a static incubator at 30 ◦C and on a
shaking incubator at 180 rpm. Samples were taken at 0 h, 3 h, 6 h, 9 h, 12 h, 15 h, 18 h, 21 h,
24 h, 27 h, 30 h, 33 h, and 36 h to measure the strain density.

2.3. Optimization of Fermentation Conditions by Single-Factor Experiments

The yeast cell suspension was precultured, and then 1% of the suspension was added
to the fermentation medium as an inoculant. The blend was then incubated for 12 h at
200 rpm at 30 ◦C. The fermentation liquid was centrifuged at 10,000× g for 10 min, and the
recovered supernatant was then filtered through a 0.22 µm filter membrane and put into a
liquid chromatography vial for high-performance liquid chromatography (HPLC) analysis,
as mentioned in Section 2.6. Based on the conditions mentioned above, a single-factor
experiment (Table 1) was conducted step by step to investigate the effects of fermentation
conditions (inoculum size, temperature, shaking speed, dilution ratio, pH, and time) on the
purification of soy molasses by strain YT312.

Table 1. Factors and levels of single-factor design and their optimization conditions.

Factor Level

Inoculum size (%, v/v) 0.05, 0.125, 0.25, 0.375, 0.5, 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0
Temperature (◦C) 15, 18, 21, 24, 27, 30, 33, 36, and 39

Shaking speed (rpm) 0, 50, 100, 150, 200, 250, and 300
Dilution ratio (folds) 2, 4, 6, 8, 10, 12, 14, and 16

pH 3, 4, 5, 6, 7, 8, 9, and 10
Time (h) 2, 4, 6, 8, 10, 12, 14, and 16

2.4. Optimization of Fermentation Conditions by Orthogonal Experiment

Based on the single-factor experiments, the relative optimal levels of inoculum size
(A), temperature (B), shaking speed (C), dilution ratio (D), pH (E), and time (F) were used
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to design an orthogonal experiment. Each factor was set at 3 levels (1, 2, and 3), and an
L18 (3)7 orthogonal experimental design was selected. The combinations of orthogonal
experimental groups are shown in Table 2.

Table 2. Design of orthogonal experiment.

Experiment
Group

Inoculum Size
(A) (%, v/v)

Temperature
(B) (◦C)

Shaking Speed
(C) (rpm)

Dilution Ratio
(D) (Folds) pH (E) Time (F) (h) Blank

1 0.125 (1) 27 (1) 50 (1) 6 (1) 5 (1) 10 (1) 1
2 0.125 30 (2) 100 (2) 8 (2) 6 (2) 12 (2) 2
3 0.125 33 (3) 150 (3) 10 (3) 7 (3) 14 (3) 3
4 0.25 (2) 27 50 8 6 14 3
5 0.25 30 100 10 7 10 1
6 0.25 33 150 6 5 12 2
7 0.375 (3) 27 100 6 7 12 3
8 0.375 30 150 8 5 14 1
9 0.375 33 50 10 6 10 2
10 0.125 27 150 10 6 12 1
11 0.125 30 50 6 7 14 2
12 0.125 33 100 8 5 10 3
13 0.25 27 100 10 5 14 2
14 0.25 30 150 6 6 10 3
15 0.25 33 50 8 7 12 1
16 0.375 27 150 8 7 10 2
17 0.375 30 50 10 5 12 3
18 0.375 33 100 6 6 14 1

2.5. Verification of Fermentation Conditions for Soy Molasses Purification

Based on the optimal combination levels obtained from the orthogonal experimental
results, verification experiments were conducted under the optimal fermentation condi-
tions to determine the retention rate of sucrose, stachyose, raffinose, and the content of
manninotriose for the biological purification of soy molasses.

2.6. Determination of Sucrose, Stachyose, Raffinose, and Manninotriose

The content of sucrose, stachyose, raffinose, and manninotriose in the fermented
soy molasses was determined using HPLC [43]. The determination conditions were as
follows: the chromatographic column used was a Cosmosil-packed column (Sugar-D
4.6ID × 250 mm, Nacalai Tesque, Inc., Kyoto, Japan), the column temperature was set to
30 ◦C, the mobile phase was a 70% acetonitrile solution, the detector used was a Shimadzu
refractive index detector (RID-10A) (Shimadzu Corporation, Kyoto, Japan), and the flow
rate was set to 0.5 mL/min. Sucrose standard solutions with concentrations of 1 mg/mL,
2 mg/mL, 3 mg/mL, 4 mg/mL, and 5 mg/mL were prepared, and the peak areas of each
concentration of sucrose standard solution were determined using HPLC to construct
a sucrose standard curve. The same method was used to construct standard curves for
stachyose, raffinose, and manninotriose. The content of the four sugar components in the
samples was calculated based on the respective standard curves.

2.7. Determination of Cell Density

Strain biomass was calculated using the turbidity method (measuring absorbance at
560 nm wavelength). The amount of yeast cells was counted using a hemocytometer.

2.8. Determination of Comprehensive Index

As this study involved multiple response values, for the convenience of statistical
calculation and selection of the optimal fermentation conditions, a weighted comprehen-
sive scoring method was used to analyze the experimental results. Firstly, the sucrose
retention rate, stachyose retention rate, raffinose retention rate, and manninotriose content
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in the experimental results were determined and calculated. Subsequently, the range was
calculated using the maximum and minimum values of the experimental results and then
transformed into dimensionless numbers through “range normalization” to assess the
quality of the experimental results. Finally, a weighted comprehensive score was assigned
to the “range normalization” to transform the multi-index problem into a single-index
problem for analysis, thereby simplifying the index to determine the optimal conditions.

2.8.1. Determination of Range Normalization Values

In this study, the sucrose retention rate was a negative indicator, where a smaller
value was better. The raffinose retention rate and the stachyose retention rate were positive
indicators in this study, where a larger value was better. Although manninotriose was also
a functional soy oligosaccharide, it was derived from the conversion of stachyose in soy
molasses by microbial fermentation. As mentioned earlier, since the stachyose retention rate
was considered a positive indicator, the content of manninotriose was treated as a negative
indicator. A smaller value indicated a higher stachyose retention rate in the comprehensive
index. For the sucrose retention rate, raffinose retention rate, stachyose retention rate,
or content of manninotriose, the indicator value obtained in the t-th experiment group
(where t was the experiment group number) was denoted as Zt (t = 1, 2, 3, . . ., n). Here, the
minimum value was denoted as Z(min), and the maximum value was denoted as Z(max).
The range R1 was calculated as shown in Equation (1).

R1 = Z(max) − Z(min) (1)

The “range normalization” value ω or σ for each measurement value Zt of the negative
indicator sucrose retention rate or manninotriose content, respectively, was defined as
shown in Equation (2).

ω or σ = (Z(max) − Zt)/R1 = (Z(max) − Zt)/(Z(max) − Z(min)) (2)

The “range normalization” value τ or φ for each measurement value Zt of the positive
indicator raffinose retention rate or stachyose retention rate, respectively, was defined as
shown in Equation (3).

τ or φ = (Zt − Z(min))/R1 = (Zt − Z(min))/(Z(max) − Z(min)) (3)

2.8.2. Determination of Weights

The determination of weights corresponding to each indicator generally relies on
experience or the importance of experimental indicators. Based on practical experience and
theoretical analysis, the proportions of various sugars in soy molasses were considered
to ensure a total weight of 1. Combining the experimental purpose, actual situation, and
experimental experience, the weights for each sugar corresponding to the experimental
indicators were assigned.

We define the weight of sucrose as 0.5 and the total weight of raffinose and stachyose
as 0.5, taking into consideration that our objective to produce FOS from the biological
purification of soy molasses is to remove as much sucrose as possible while optimizing
the retention of raffinose and stachyose. Next, we determine the weights of raffinose
and stachyose, respectively, by using Equation (4) based on the proportionate connection
between their concentrations in soy molasses. Specifying the weight of manninotriose as
0.01, which is derived from stachyose and has a content of 0 in soy molasses, allows for
determining the actual weight of stachyose by subtracting 0.01 from the value obtained
from Equation (4).

αi = Ci/(C1 + C2) (4)

where C1 was the concentration of raffinose in soy molasses; C2 was the concentration of
stachyose in soy molasses; i = 1 or 2; α1 was the weight of raffinose.
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Then, the weight of stachyose can be determined based on Equation (5).

β = α2 − 0.01 (5)

2.8.3. Determination of Comprehensive Index

The weighted “range normalization” values K for each indicator were computed
in accordance with Equation (6), which represents the comprehensive index of this ex-
periment, based on the “range normalization” values and weights established using the
aforementioned approach.

K = 0.5ω + α1τ + βφ + 0.01σ (6)

Through the above analysis, the determination of the optimal combination of multiple
indicators and the ranking of experimental factors was transformed into the measure-
ment of the weighted comprehensive value K (single indicator) to determine the optimal
combination of experimental factors and the ranking of experimental factors.

2.9. Data Processing

Each experiment was conducted in triplicate, and the experimental data were pro-
cessed using Excel 2016 (Microsoft, Redmond, WA, USA), SPSS 18.0 (IBM Corp., New York,
NY, USA), and OriginPro 9.1 (OriginLab, Northampton, MA, USA).

3. Results and Discussion
3.1. Identification and Biological Characteristics of Strain YT312
3.1.1. Identification of Strain YT312

1. Observation of colony morphology and cell structure

Figure 1a depicts the growth of strain YT312 on the WL agar medium. The colonies
were flat, white with a slight gray-green color, small, and the color of the medium changed
from dark green to light yellow where the strain grew. On the YPD agar medium, the
colonies appeared milky white, large, and flat (Figure 1b). Examining the strain under
a microscope, we found that its cells were ovoid or ellipsoidal, budding at one end, and
without hyphae. (Figure 1c,d), which was similar to the reported colony morphology
of yeast YF1503 by Fu et al. [44]. Therefore, it could be concluded that the strain YT312
exhibited typical yeast colony and cell morphologies.

2. Physiological and biochemical characteristics

Based on the sugar fermentation test (Table 3), yeast YT312 produced organic acids
and gas when fermenting sucrose as a carbon source. However, when fermenting maltose,
galactose, and glucose as carbon sources, it produced only organic acids without gas
production. When fermenting xylose, lactose, arabinose, and sorbose as carbon sources,
yeast YT312 produced neither organic acids nor gas. Assimilation tests for different carbon
sources indicated that yeast YT312 could utilize sucrose, maltose, xylose, lactose, galactose,
arabinose, sorbose, glucose, soluble starch, mannitol, citric acid, trehalose, ethanol, ribose,
glycerol, or fructose as the sole carbon source for growth but could not utilize formic acid
as the sole carbon source. Nitrogen assimilation tests showed that yeast YT312 could utilize
various nitrogen sources, including urea, potassium nitrite, ammonium sulfate, potassium
nitrate, and L-phenylalanine, as the sole nitrogen source for growth. In the hydrogen sulfide
test, no blackening of the medium was observed, indicating that yeast YT312 did not have
the ability to produce hydrogen sulfide by decomposing sulfur-containing amino acids in
the medium. In the indole test, the medium turned red, indicating that yeast YT312 had the
ability to decompose tryptophan in the medium and produce indole. In the methyl red test,
the medium turned red, indicating that yeast YT312 metabolized glucose to produce a large
number of acidic products, consistent with the results of the sugar fermentation test. In the
Voges–Proskauer test, the medium did not turn red, indicating that although yeast YT312
converted glucose into pyruvic acid during metabolism, it did not have the ability to further



Foods 2024, 13, 296 8 of 20

metabolize pyruvic acid to produce acetyl methyl alcohol. In the citrate test, the medium
turned blue, indicating that strain YT312 decomposed citrate into carbonate, making the
medium alkaline, consistent with the results of the assimilation test for carbon sources. In
the starch hydrolysis test, no transparent zone was observed in the medium. Included in
the results of the assimilation test for carbon sources, it was indicated that the amylase
activity produced by this yeast was low, and its ability to hydrolyze starch was weak. In the
urea test, it showed a negative reaction, but in the nitrogen assimilation test, it could grow
when urea was the sole nitrogen source. This indicated that although yeast YT312 could
utilize urea, it could not produce urease to decompose urea to ammonia gas. The gelatin
hydrolysis test also showed a negative reaction, indicating that this yeast did not have the
ability to hydrolyze gelatin. In the litmus milk test, the medium turned red, indicating
that yeast YT312 fermented lactose and produced acid, which was inconsistent with the
results of the sugar fermentation test. This discrepancy might be due to differences in the
composition of the two media or the variability in lactose fermentation. The physiological
and biochemical characteristics of yeast YT312 were similar to those of Wickerhamomyces
anomalus [45].
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Figure 1. Colony morphology of strain YT312 on WL agar medium (a) and YPD agar medium (b), and
its cell morphology (stained with crystal violet (c) and methylene blue (d); objective lens × eyepiece
100 × 50).
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Table 3. Results of physiological and biochemical characteristics of W. anomalus YT312.

Sugar Fermentation Test Carbon Source Assimilation Test Nitrogen Source Assimilation Test Others Test

Sugar Characteristics Carbon Source Characteristics Nitrogen Source Characteristics Test Result

Saccharose Acid and gas production; growth Soluble starch + Urea + Hydrogen sulfide test −
Maltose Not all produce acid; gas production; growth Ethyl alcohol + Potassium nitrate + Indole test +
Xylose No acid and gas; growth Mannitol + Potassium nitrite + Urea test −
Lactose No acid and gas; growth Citric acid + L-Phenylalanine + Methyl red test +

Galactose Not all produce acid; gas production; growth Rhamnose + Ammonium sulfate + Voges–Proskauer test −
Arabinose No acid and gas; growth Trehalose + Gelatin liquefication test −
Sorbinose No acid and gas; growth Formic acid − Citrate test +
Glucose Not all produce acid; gas production; growth Glycerol + Starch hydrolysis test −

Fructose + Litmus milk test +

Note: “+”, positive response; “−”, negative response.
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3. Molecular identification

After yeast YT312’s genomic DNA was extracted, the D1/D2 sequence of the 26S rDNA
was amplified by using certain primers. The DNA sequence obtained from sequencing
(Accession: OR673958) was then compared to the NCBI database using Blast (comparison
conducted on 16 October 2023). The results revealed the highest identification with W.
anomalus AUN-F44 (Accession: MK744056.1), W. anomalus KELXL-3 (Accession: JX049429.1),
and W. anomalus S1B2-9 (Accession: MG773340.1), with a similarity of over 99%. Based on
comprehensive morphological observations, physiological and biochemical characteristics,
and molecular biology identification, yeast YT312 was identified as W. anomalus.

3.1.2. Biological Characteristics of W. anomalus YT312

As shown in Figure 2a, the optimal growth temperature for W. anomalus YT312 was
25 ◦C, with a maximum tolerance temperature between 35 and 40 ◦C, which was similar
to the growth characteristics of most yeast [39]. W. anomalus YT312 exhibited a wide pH
growth range, capable of growing within a pH range of 2–12 (Figure 2b). Furthermore, it
demonstrated strong acid tolerance, similar to Pichia kudriavzevii YF1702 and Clavispora
lusitaniae YX3307 [29,46]. This might be attributed to its adaptation to the long-term
survival environment. The optimal pH for the growth of W. anomalus YT312 was 4.0,
slightly lower than that of most yeast [29,39]. As depicted in Figure 2c,d, the growth of
W. anomalus YT312 was increasingly inhibited with the increase in glucose and sucrose
concentrations. It exhibited a maximum tolerance to a glucose concentration of 41.2% and
sucrose concentration of 47.3%. The glucose tolerance was slightly lower compared to
P. kudriavzevii YF1702 and C. lusitaniae YX3307 [29,46]. With increasing NaCl concentration,
the growth of W. anomalus YT312 was also increasingly inhibited, with a maximum tolerance
to NaCl concentrations reaching 10%. This was similar to P. kudriavzevii YF1702 but slightly
lower than W. anomalus Y3604 and C. lusitaniae YX3307 [29,39,46].

3.1.3. Growth Curve of W. anomalus YT312

Figure 3 shows the growth curves of W. anomalus YT312 under two different incuba-
tion conditions: shaking and static. It was observed that under both shaking and static
incubation conditions, with an inoculum size of 0.1%, W. anomalus YT312 had a lag phase of
12 h, followed by entering the logarithmic growth phase. However, the logarithmic phase
was longer when incubated under shaking conditions, lasting 33 h, while it was shorter
under static incubation, ending at 24 h. This difference was mainly due to the difference
in the oxygen supply capacity between the two incubation methods [47]. Continuing the
incubation under shaking conditions, W. anomalus YT312 did not exhibit a distinct sta-
tionary phase or have a shorter stationary phase. It entered the death phase within the
sampling time intervals. On the other hand, under static cultivation, it showed a clear
stability period, lasting up to 33 h before entering the death phase. This was primarily
due to the difference in oxygen supply between the two incubation methods, leading to
differences in the utilization rate of nutrients in the medium by W. anomalus YT312. In the
shaking incubation, nutrients were rapidly and completely utilized, resulting in a rapid
depletion of nutrients and quick entrance into the death phase. In contrast, under static
incubation, the limited oxygen supply restricted growth, but nutrients were abundant,
resulting in a more pronounced stability period until nutrients were gradually depleted,
leading to the onset of the death phase. Additionally, it was also observed that the cell
density was significantly higher under shaking incubation than under static incubation.
This was attributed to the differences in metabolic pathways and the accumulation of
different metabolic byproducts under the two incubation conditions, which had varying
impacts on yeast cell proliferation.
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3.2. Optimization of Fermentation Conditions for Soy Molasses Purification by
Single-Factor Experiments
3.2.1. Effect of Inoculum Size of W. anomalus YT312 on Soy Molasses Purification

Inoculum size affects the growth cycle of microorganisms [46]. Under the fixed fer-
mentation time, different inoculum sizes led to different growth stages of microorganisms,
resulting in different metabolic activities. In this study, different inoculum sizes caused
variations in the sugar composition of the W. anomalus YT312 metabolic fermentation sys-
tem. Under an appropriate inoculum size, W. anomalus YT312 primarily utilized sucrose
in the fermentation system while minimizing or rarely utilizing raffinose and stachyose.
Figure 4a illustrates how the sucrose content of the soy molasses decreased steadily as
the inoculum size increased. When the inoculum size was 0.25%, there was almost no
sucrose present in soy molasses. Raffinose and stachyose also showed a decreasing trend,
especially when the inoculum size exceeded 0.25%; both exhibited a significant decrease,
while there was a corresponding increase in manninotriose. This was because sucrose was
the preferred sugar source for W. anomalus YT312. When sucrose was abundant, it was
preferentially utilized by W. anomalus YT312 to provide energy and a carbon source for
its growth and reproduction. This was confirmed by the retention rates of raffinose and
stachyose, as well as the manninotriose content at inoculum sizes of 0.05% and 0.125%.
When the inoculum size was smaller, the sucrose content was sufficient to provide the
necessary energy and act as a carbon source for W. anomalus YT312 growth, resulting in
less utilization of raffinose and stachyose. However, as the inoculum size increased, yeast
growth and reproduction accelerated, and the sucrose concentration became insufficient
to provide adequate energy and act as a carbon source for W. anomalus YT312. In order to
sustain its development and reproduction at this stage, the yeast is required to use raffinose
and stachyose in soy molasses. As a result, the retention rates of raffinose and stachyose
decreased significantly, and a large amount of manninotriose was produced as stachyose
was degraded and utilized. By analyzing the influence of inoculum size on the four sugar
contents in soy molasses, it was concluded that an inoculum size of 0.25% (v/v) effectively
removed sucrose from soy molasses and ensured a high retention rate of the functional
oligosaccharides raffinose and stachyose at 67.9% and 79.4%, respectively. Therefore, an
inoculum size of 0.25% was suitable for the W. anomalus YT312 bio-purification of soy
molasses. This was lower than the optimal inoculum sizes for other yeast strains, such as
S. cerevisiae 1607, S. cerevisiae 103, and maltose yeast, mainly due to the different adaptability
of yeast strains to their environment [35,36,48].

3.2.2. Effect of Fermentation Temperature on Soy Molasses Purification by
W. anomalus YT312

Microbial growth and reproduction have their suitable temperature range. Under
appropriate temperatures, microbial growth and reproduction are rapid, which is conducive
to exerting their corresponding functions [49]. As shown in Figure 4b, at lower temperatures
(15–18 ◦C), W. anomalus YT312 grew slowly, and the retention rates of sucrose, raffinose,
and stachyose in soy molasses were higher. As the temperature increased, the metabolic
activity of W. anomalus YT312 enhanced, and the consumption rate of sugar in soy molasses
increased, resulting in a decrease in the content of sucrose, raffinose, and stachyose in soy
molasses. When the fermentation temperature was 30 ◦C, W. anomalus YT312 consumed
almost all the sucrose in soy molasses. And there were still high retention rates of stachyose
and raffinose at 79.4% and 67.9%, respectively. As the fermentation temperature continued
to increase, the inhibition of enzyme activity related to yeast metabolism caused by higher
temperatures affected yeast growth, which reduced the ability of yeast to metabolize and
utilize sugar in soy molasses and led to an increase in the retention rates of the three sugars.
It was worth noting that the optimal temperature for W. anomalus YT312 to bio-purify
FOS in soy molasses was slightly higher than its optimal growth temperature in the YPD
medium. It was speculated that the metabolic utilization of sucrose-, stachyose-, and
raffinose-related enzymes in soy molasses was more favorable for expression or had higher
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enzyme activity at higher temperatures. Analogous to the findings of this investigation,
prior research showed that the ideal temperature range for yeast growth and adaption
for use in the bio-purification of soy molasses and the generation of FSO was normally
30 ◦C [35,50].
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3.2.3. Effect of Shaking Speed on Soy Molasses Purification by W. anomalus YT312

Yeasts are facultative anaerobic microorganisms that thrive under aerobic conditions.
In the flask incubation method, shaking speed affected the oxygen content in the fermenta-
tion medium, thereby influencing yeast growth. Additionally, shaking speed generated
shear force, which caused damage to yeast cells [49]. Higher shaking speeds were ben-
eficial for increasing the oxygen content in the medium, but they also increased shear
force, necessitating the optimization of the shaking speed. As shown in Figure 4c, after
12 h of static fermentation, there were no changes in the content of sucrose, raffinose, and
stachyose in soy molasses, and only a small amount of manninotriose was detected. This
was mainly because W. anomalus YT312 grew slowly and had a low cell density under
static fermentation conditions, as confirmed by the growth curve results. With increasing
shaking speed, the content of the three sugars decreased. The rate of sucrose reduction
was higher than that of stachyose and raffinose. When the shaking speed was higher than
100 rpm, the sucrose in soy molasses was completely consumed by W. anomalus YT312,
and the content of stachyose and raffinose was slightly decreased but still relatively high.
Additionally, there was a significant increase in manninotriose content. Considering the
retention rates of sucrose, stachyose, and raffinose, as well as the manninotriose content,
the optimal shaking speed was 100 rpm, which is similar to the shaking speed used in the
study by Liu et al. [35]. At this speed, the retention rate of sucrose was 0.0%, while the
retention rates of stachyose and raffinose were as high as 79.3% and 90.2%, respectively.
And the manninotriose content was 44.1 mg/mL.

3.2.4. Effect of Dilution Ratio on the Soy Molasses Purification by W. anomalus YT312

Soy molasses is a byproduct of SPC production and contains a high concentration of
sugar. While it provides sufficient nutrients for the growth of yeast, the high concentration
of sugars creates a high osmotic pressure, which inhibits yeast growth to some extent. The
results of sugar tolerance tests showed that although W. anomalus YT312 tolerated higher
sugar concentrations, there was still a noticeable inhibitory effect at higher sugar concentra-
tions. Therefore, the appropriate dilution of soy molasses was helpful for the biological
purification and production of FSO by W. anomalus YT312. From Figure 4d, it was observed
that at lower dilution ratios (four-fold and six-fold dilution), the high osmotic pressure
affected yeast growth. At this point, the retention rates of sucrose and stachyose were
higher, while the content of manninotriose was lower. Even though the pH of the diluted
soy molasses was adjusted prior to sterilization, it was noteworthy that at these dilution
ratios, the retention rate of raffinose was lower. This was caused by the acid hydrolysis of
raffinose by some acidic components in soy molasses during high-temperature sterilization.
The effect of this acid hydrolysis on stachyose was less evident. This phenomenon was not
observed in the study by Zhang et al., which might be due to differences in soy molasses
raw materials and sterilization processes [48]. As the dilution ratio increased, the osmotic
pressure decreased, and the yeast growth improved gradually. Sucrose was completely con-
sumed, while the content of raffinose initially increased and then decreased, transitioning
from the effect of acid hydrolysis to yeast utilization. The content of stachyose showed a
decreasing trend, and correspondingly, the content of manninotriose continued to increase.
Through comprehensive analysis, it was concluded that the optimal dilution ratio for W.
anomalus YT312 to biologically purify soy molasses was eight-fold. At this dilution ratio,
the sucrose retention rate was 0.0%, the manninotriose content was 44.1 mg/mL, and the
retention rates of stachyose and raffinose were 79.3% and 90.2%, respectively. This was
consistent with the results of a yeast strain No. 7 and higher than the dilution ratio for a
maltose yeast strain, which might be due to differences in yeast tolerance and the utilization
of sugars [34,48].

3.2.5. Effect of pH Value on the Soy Molasses Purification by W. anomalus YT312

The pH value of soy molasses not only affected the growth and reproduction of
W. anomalus YT312 for FSO purification but also caused the acid hydrolysis of sugar in
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soy molasses. Therefore, it was crucial to adjust the pH of soy molasses appropriately.
As shown in Figure 4e, with an increase in pH, the sucrose retention rate first rises, then
falls, and then rises again. This was because, at lower pH values (such as pH 3), sucrose in
soy molasses undergoes complete acid hydrolysis under high-temperature conditions. As
the pH increased, the degree of acid hydrolysis decreased, leading to a higher retention
rate. However, at higher pH values, the growth of W. anomalus YT312 was accelerated,
resulting in a decrease in the sucrose retention rate. At pH 6.0, all sucrose in soy molasses
was consumed. When the pH exceeded 6.0, yeast growth was inhibited, resulting in a
decrease in the biological purification capacity and an increase in the sucrose retention
rate. The retention rates of stachyose and raffinose showed a similar trend, increasing
with an increase in pH. This was the result of pH having a dual effect on acid hydrolysis
and yeast growth. The content of manninotriose showed a corresponding decrease. Yeast
strain No. 7, S. cerevisiae 103, and S. cerevisiae 1607 all have an optimal pH of 5.0 for
the biological purification of soy molasses to produce FSO, which was different from
W. anomalus YT312. This difference might be due to variations in soy molasses raw materials
and yeast strains [34–36].

3.2.6. Effect of Fermentation Time on the Soy Molasses Purification by W. anomalus YT312

An appropriate fermentation time was essential for the purification of soy molasses by
W. anomalus YT312 to prepare FSO. It was necessary to ensure the significant consumption
of sucrose in soy molasses while maintaining high retention rates of stachyose and raffinose.
As shown in Figure 4f, with the extension of fermentation time, W. anomalus YT312 transi-
tioned from the lag phase to the logarithmic growth phase, with cells undergoing significant
growth and reproduction. This led to the consumption of sucrose, stachyose, and raffinose
in soy molasses, resulting in a decrease in their respective contents, while the content of
manninotriose showed an increasing trend. After fermenting for 12 h, the sucrose retention
rate reached 0, while the retention rates of stachyose and raffinose were 79.32% and 90.19%,
respectively. The manninotriose content at this point was lower at 44.07 mg/mL. The best
purification effect through fermentation was achieved at this time, which was similar to
the time required for yeast strain No. 7 and S. cerevisiae 103 to purify soy molasses but
shorter than that of maltose yeast and S. cerevisiae 1607. This was undoubtedly related to
the composition of soy molasses and the characteristics of the yeast [34–36,48].

3.3. Optimization of Fermentation Conditions for Soy Molasses Purification by
Orthogonal Experiment

The range values ω, τ, φ, and σ of the sucrose retention rate, raffinose retention rate,
stachyose retention rate, and manninotriose content were calculated according to the above-
mentioned formulas, and the results are shown in Table 4. The weights of sucrose, raffinose,
stachyose, and manninotriose were calculated based on their respective concentration
and weight formulas, with weights of 0.5, 0.1, 0.39, and 0.01, respectively. Based on
the range value and weights, the comprehensive indicators K under each experimental
condition were calculated and are shown in Table 4. According to the table, the best
biological purification effect of W. anomalus YT312 on soy molasses was achieved under
the experimental condition of a combination of A1B2C1D1E3F3 with an inoculum size of
0.125%, a fermentation temperature of 30 ◦C, six-fold dilution, a pH of 7, a shaking speed
of 50 rpm, and a 14 h fermentation time. At these conditions, the sucrose, raffinose, and
stachyose retention rates were 23.3%, 86.2%, and 92.0%, respectively, and the manninotriose
content was 1.6 mg/mL. Variance analysis was performed using SPSS (Table 5), and the
results showed that time had a significant impact on the biological purification of soy
molasses by W. anomalus YT312, while other factors were not significant, with the influence
order of F > E > D > A > C > B.
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Table 4. Optimization of soy molasses fermentation conditions for FSO production by orthogonal
experiment.

Experiment
Group

Sucrose Raffinose Stachyose Manninotriose
KRetention

Rate (%)
Range
ω

Retention
Rate (%)

Range
τ

Retention
Rate (%)

Range
φ

Content
(mg/mL)

Range
σ

1 85.3 0.07 85.0 0.86 91.0 0.91 2.7 0.99 0.49
2 63.7 0.30 83.4 0.83 95.0 0.97 2.2 0.99 0.62
3 0.2 1.00 38.8 0.34 80.1 0.75 54.6 0.32 0.83
4 45.8 0.50 80.9 0.80 71.0 0.61 37.1 0.55 0.57
5 45.6 0.50 66.8 0.65 96.2 0.99 2.7 0.99 0.71
6 18.7 0.80 33.8 0.26 84.9 0.82 3.2 0.98 0.76
7 23.5 0.74 32.6 0.26 89.2 0.89 1.6 1.00 0.75
8 0.0 1.00 11.9 0.02 52.2 0.33 29.9 0.64 0.64
9 46.5 0.49 33.4 0.26 95.1 0.97 2.7 0.99 0.66
10 30.8 0.66 75.8 0.73 96.8 1.00 2.7 0.99 0.80
11 23.3 0.75 86.2 0.87 92.0 0.93 1.6 1.00 0.84
12 91.5 0.00 40.1 0.34 90.6 0.91 2.2 0.99 0.40
13 0.0 1.00 35.0 0.28 29.8 0.00 79.8 0.00 0.53
14 71.4 0.22 60.8 0.57 81.8 0.78 8.3 0.91 0.48
15 41.2 0.55 96.6 0.99 81.4 0.77 11.6 0.87 0.68
16 29.7 0.68 54.3 0.51 75.9 0.69 12.1 0.87 0.67
17 4.4 0.95 49.5 0.45 73.8 0.66 28.4 0.66 0.78
18 10.3 0.89 73.0 0.72 65.9 0.54 11.5 0.87 0.74

Table 5. Analysis of variance of orthogonal experiment.

Dependent Variable
VAR00001

Tests of Between-Subject Effects

III Sum of
Squares

Degree of
Freedom Mean Square F Significance

Corrected model 0.248 12 0.021 3.255 0.101
Intercept 7.924 1 7.924 1249.081 0.000

Inoculum size (A) 0.021 2 0.011 1.691 0.275
Temperature (B) 0.007 2 0.004 0.563 0.602

Shaking speed (C) 0.016 2 0.008 1.222 0.370
Dilution ratio (D) 0.046 2 0.023 3.607 0.107

pH (E) 0.069 2 0.035 5.443 0.056
Time (F) 0.089 2 0.044 7.008 0.035 *

Error 0.032 5 0.006
Total 8.204 18

Corrected total 0.280 17
R2 = 0.887 (Adjusted R2 = 0.614)

Note: “*”, significant difference (p < 0.05).

From the contour plots of the comprehensive index for each factor (Figure 5), it was
evident that under the conditions of A3B2C3D3E3F2, W. anomalus YT312 exhibited a better
bio-purification of soy molasses. The validation of this condition showed that under the
A3B2C3D3E3F2 combination condition with an inoculum size of 0.375%, a fermentation
temperature of 30 ◦C, a ten-fold dilution, a pH of 7, a shaking speed of 150 rpm, and
a 12 h fermentation time, the retention rates of sucrose, raffinose, and stachyose in soy
molasses were 0.0%, 96.1%, and 90.2%, respectively, with a manninotriose content of
2.9 mg/mL. Therefore, it was evident that under the A3B2C3D3E3F2 combination condition,
the purification of soy molasses by W. anomalus YT312 for the preparation of FOS was
ideal. The results were slightly inferior to those of yeast strain No. 7 in terms of raffinose
and stachyose retention rates but more comprehensive in terms of sucrose removal [34].
Furthermore, the overall effect was better than that of S. cerevisiae 103, S. cerevisiae 1607, and
maltose yeast [35,36,48].
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4. Conclusions

In this study, strain YT312 was identified through morphological observation, phys-
iological and biochemical tests, and molecular biology techniques. It was identified as
W. anomalus, which exhibited a wide range of temperature and pH tolerances. It showed
tolerances of 47.3% for sucrose, 41.2% for glucose, and 10% for NaCl. Through single-
factor and orthogonal experiment optimization, the following conditions were determined
to be optimal for soy molasses fermentation: an inoculum size of 0.375%, fermentation
temperature of 30 ◦C, shaking speed of 150 rpm, dilution ratio of 10 times, pH of 7, and
fermentation time of 12 h. Under these conditions, the retention rates of sucrose, raffinose,
and stachyose in soy molasses were 0.0%, 96.1%, and 90.2%, respectively, and the content
of manninotriose was 2.9 mg/mL. This is a yeast strain that is different from previously
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reported ones and can be used for the preparation of functional soy oligosaccharides from
soy molasses. Yeast YT312 completely removes sucrose from soy molasses and has a high
retention rate of FSO. This indicated a significant biological purification effect and the
production of FSO through the fermentation of soy molasses by W. anomalus YT312. Future
research may examine if it has an additional influence on the purification of other useful
components, such as soy isoflavones in soy molasses, and whether it can convert sucrose
into organic acids or important flavoring chemicals during the purification process.
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