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Abstract: Food waste is a major issue that is increasingly affecting our environment. More than
one-third of food is wasted, resulting in over $400 billion in losses to the U.S. economy. While
composting and other small recycling practices are encouraged from person-to-person, it is not
enough to balance the net loss of 80 million tons per year. Currently, one of the most promising
routes for reducing food waste is through microbial fermentation, which can convert the waste
into valuable bioproducts. Among the compounds produced from fermentation, 2,3-butanediol
(2,3-BDO) has gained interest recently due to its molecular structure as a building block for many
other derivatives used in perfumes, synthetic rubber, fumigants, antifreeze agents, fuel additives,
and pharmaceuticals. Waste feedstocks, such as food waste, are a potential source of renewable
energy due to their lack of cost and availability. Food waste also possesses microbial requirements for
growth such as carbohydrates, proteins, fats, and more. However, food waste is highly inconsistent
and the variability in composition may hinder its ability to be a stable source for bioproducts such
as 2,3-BDO. This current study focuses specifically on post-consumer food waste and how 2,3-BDO
can be produced through a non-model organism, Bacillus licheniformis YNP5-TSU during non-sterile
fermentation. From the dining hall at Tennessee State University, 13 food waste samples were
collected over a 6-month period and the compositional analysis was performed. On average, these
samples consisted of fat (19.7%), protein (18.7%), ash (4.8%), fiber (3.4%), starch (27.1%), and soluble
sugars (20.9%) on a dry basis with an average moisture content of 34.7%. Food waste samples were
also assessed for their potential production of 2,3-BDO during non-sterile thermophilic fermentation,
resulting in a max titer of 12.12 g/L and a 33% g/g yield of 2,3-BDO/carbohydrates. These findings
are promising and can lead to the better understanding of food waste as a defined feedstock for
2,3-BDO and other fermentation end-products.

Keywords: food waste; microbial fermentation; 2,3-butanediol; 2,3-BD; 2,3-BDO; thermophiles;
biofuel; bioproducts; renewable feedstock; non-sterile; non-model organism

1. Introduction
Unsterilized Food Waste as a Feedstock for Bioproducts

Food waste is a major issue that has long-lasting impacts on our environment. One
study calculated the impact of food waste on 15 different countries and found that the U.S.
environmental impact alone produced 172 million tons of CO2, consumed 22 million tons
of oil, and used 11 billion cubic meters of water [1]. Food waste is generally categorized
as such when it is either discarded or disposed of without being consumed [2]. Statisti-
cally, more than one-third of food is wasted, weighing about 1.3 billion metric tons, and
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equating to about a $750 billion loss to the global economy [3]. Food waste can occur at
many different stages, including production, handling/storage, processing/packaging,
distribution/market, and consumption [4]. In a study conducted by the EPA in 2021, they
concluded that food waste is the single most common material landfilled and incinerated
in the U.S., accounting for 24% of landfilled municipal solid waste [5]. By using the life
cycle assessment (LCA) approach and comparing composting, anaerobic digestion, and
incineration food waste management techniques, one study concluded that landfills are
the least beneficial and most harmful choice when it comes to environmental impact [6].
Therefore, it is important to find alternative ways to reduce or repurpose food waste.

Currently, one of the most promising routes for reducing food waste is converting it
into valuable bioproducts [7]. One way this can be carried out is through the natural process
of fermentation. Some common end-products from fermentation include, propionic acid,
butyric acid acetic acid, lactic acid, ethanol, and other small organic acids and depending on
the genera, one or more of these end-products will be produced [8]. Bacteria and fungi are
both used in the bio-fermentation industry with key genera including Lactobacillus, Bacillus,
Clostridium, Enterobacter, Acetobacter, Saccharomyces, Penicillium, and Rhizopus [8]. Of these,
Bacillus spp. are one of the most widespread and well-studied, as they can grow in a wide
range of environmental conditions. Bacillus spp. are aerobic endospore-forming bacteria
that secrete a vast array of bioactive metabolites, enzymes, antibiotics, and end-products
that have potential industrial use [9]. Bacillus spp. are safe and most species have little or
no pathogenic potential as many are considered GRAS (generally regarded as safe) strains,
allowing for use in various food applications [10]. Among the bio-products produced by
Bacillus spp., 2,3-butanediol (2,3-BDO) is one of the most popular. This 4-carbon, 2-hydroxyl
molecule can be used as a drop-in fuel or a building block for many derivatives, such as
1,3-butadiene and methyl ethyl ketone, which are used in perfumes, synthetic rubber,
fumigants, antifreeze agents, fuel additives, and pharmaceuticals [11]. Until recently 2,3-
BDO was primarily chemically synthesized, but bio-based (microbially derived) 2,3-BDO
has economic and environmental advantages that could make it the preferred method in
the future [12].

One major downside to bio-based 2,3-BDO production is the production cost. To
reduce costs, waste (renewable) feedstocks are preferred, and while food waste is one
potential option, the natural microorganisms in food waste can interfere with 2,3-BDO
fermentation [13]. This current study focuses specifically on post-consumer food waste
collection and how 2,3-BDO can be produced by using a non-sterile fermentation approach.
This differs from previous studies in which agro-industrial waste, along with food wastes,
cheese, whey, dried fruit and vegetables [14], and bread waste [3] were used to produce
bioproducts before reaching the consumer. Several waste agro-industrial feedstocks that
have previously been used to produce 2,3-BDO are corn steep liquor [15], sugarcane
bagasse [16], corn stover hydrolysate [17], apple pomace [11], lignocellulosic biomass [18],
and sugarcane molasses [19,20]. Although these waste samples were converted to 2,3-BDO,
these experiments implemented mesophilic bacteria which required the use of autoclaving
to sterilize feedstocks and stock cultures. The sterilization process increases the time and
energy needed prior to inoculation and potentially the profitability and sustainability of
bio-based 2,3-BDO production [21]. To circumvent sterilization, thermophilic fermentation
has been shown to be effective and involves higher fermentation temperatures (above
45 ◦C). One such thermophilic bacteria, Bacillus licheniformis YNP5-TSU [22], was shown
in a previous experiment to produce yields of 0.31–0.48 g 2,3-BDO/g sugar from various
food wastes (pepper, pineapple and miscellaneous wastes) [21] while also eliminating the
sterilization step. However, wastes were from pre-consumer stages during refrigerated
preparation of meals. It is currently unknown if the same yields can be maintained from
post-consumer food waste, which can be highly inconsistent with unknown amounts of
contaminating microorganisms.
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2. Materials and Methods
2.1. Food Collection and Feedstock Preparation

Food waste was collected 1–2 times per week for a total of 13 samples. In the cafeteria,
participants were encouraged to hand sort non-consumable items such as plastics, paper,
and metals into standard waste bins before placing leftover food into designated receptacles
(Figure 1A,B). This process reduced the amount of sorting prior to the blending of the
raw food waste slurry. All food waste samples were taken from the Dining Hall (Floyd
Payne Student Center) at Tennessee State University, Nashville, TN, between the months of
February and July 2022. Samples were collected from both breakfast (8:00 a.m.–11:00 a.m.)
and lunch (11:00 a.m.–3:00 p.m.) periods using specialized food waste bins and weighed
on average 10–20 lbs. Food waste media was prepared by adding 50 g of food waste into
100 mL distilled H2O and blended in a Vitamix® 510 series blender to create a homogenous
mixture. After several attempts, we found this was the best consistency for the food
waste slurry (Figure 1C). Following homogenizing the mixture was brought to a pH of 8.0
(preferred pH: B. licheniformis YNP5-TSU [23]) by adding a 4% NaOH solution.
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Figure 1. Raw food waste processing from the Dining Hall (Floyd Payne Student Center) at Tennessee
State University, Nashville, TN. Food waste was collected by designated food waste receptacles
within the cafeteria (A) and any non-fermentable items (i.e., plastics, paper) were sorted out (B). Food
waste was combined with water and blended to a slurry (C) for sample preparation and downstream
flask fermentation (D).

2.2. Determination of Moisture, Ash, Protein, Fat, Fiber, and Starch

The chemical composition of the raw food waste was analyzed according to the
method described by He et al. (2019) [24]. Briefly, the moisture content was determined by
oven-drying at 105 ◦C until a constant weight was achieved. The samples were subjected to
incineration in a muffle furnace at 550 ◦C for 6 h to determine the ash content. The protein
content was quantified using the Kjeldahl nitrogen analysis method [25] with a conversion
factor of 6.25. The fat content was determined using the Soxtec Method [26] with petroleum
ether as the extraction solvent. The ANKOM Filter Bag System (ANKOM 2000 automated
fiber analyzer, ANKOM Technology, Macedon, NY, USA) was employed to measure the
fiber content in the fermented samples. The starch content was determined using the HCl
hydrolysis method as described by Vidal, Rausch, Tumbleson and Singh (2009) [27].

2.3. Culture Propagation and Fermentation

The food waste mixture (100 mL) was transferred to 250 mL flasks for batch fermen-
tation to produce 2,3-BDO. A 5% inoculum of B. licheniformis YNP5-TSU stock culture
at 0.8 OD was added to food waste media to initiate fermentation. Stock cultures were
prepared from previously described methods [23] by preparing initial growth media (P1)
of 20 g/L glucose, 10 g/L yeast extract, and 5 g/L peptone. This 100 mL of P1 media was
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inoculated with frozen stock and incubated at 50 ◦C at 150 rpm. After 24 h, 20 mL of P1 was
added to 80 mL of a P2 medium (60 g/L glucose, 10 g/L yeast extract, and 5 g/L peptone).
The inoculated P2 medium was incubated for 3 h at 50 ◦C at 150 rpm after which 5 mL of P2
was transferred to 95 mL of a P3 medium (60 g/L glucose, 10 g/L yeast extract, and 10 g/L
peptone). The inoculated P3 was then incubated for 3 h at 50 ◦C and 150 rpm until the
stock culture reached between 0.5 and 0.8 OD. Each food waste fermentation was repeated
in triplicate.

2.4. Quantification of 2,3-BDO and Free Sugars

After each fermentation period (0, 24, 48 and 72 h), 1 mL of the fermented samples
was collected and centrifuged at 10,000 rpm for 10 min (Eppendorf© 5453 Minispin Plus
Centrifuge). Then, the supernatant was filtered through a 0.20 µm syringe filter (Waters
Corporation, Milford, MA, USA). A 250 µL aliquot of the supernatant was diluted (1:4 ratio)
with 0.005 M H2SO4 to ensure the acidity of solution for downstream analysis. Quantifica-
tion of 2,3-BDO and free sugars, namely glucose, sucrose, fructose, and raffinose, in the
collected fermentation samples was performed using high-performance liquid chromatog-
raphy (HPLC), equipped with a refractive index detector (Agilent Technologies 1260, Santa
Clara, CA, USA). Bio-Rad Aminex® HPX-87H ion exclusion column (Bio-Rad Laboratories,
Hercules, CA, USA) was employed to separate the compound of interest using 0.005 M
H2SO4 as the mobile phase with a flow rate of 0.6 mL/min at 50 ◦C. The injection volume
was 5 µL and the total running time was 30 min. All samples were analyzed in triplicate.

2.5. Statistical Analysis

The compositional analyses of food waste and 2,3-BDO fermentation samples of each
food waste sample were conducted in duplicate. The mean, standard deviation and mass
balance totals were calculated using statistical analysis and graphing software OriginPro,
Version 2022, OriginLab Corporation, Northampton, MA, USA. Pearson’s correlation
coefficient, r,

r =
{n(∑ xy)− (∑ x)(∑ y)}{√{[

n ∑ x{2}–(∑ x){2}
][

n ∑ y{2}–(∑ y){2}
]}}

was used to calculate food waste composition variables and their effects on 2,3-BDO yields.
Statistical significance was set at p < 0.05 and all statistical tests were performed open-source
JavaScript components under different open-source licenses.

3. Results and Discussion
3.1. Food Waste Collection and Composition

Food waste samples were primarily composed of the cafeteria’s daily dining options
(Table 1), with pizza, chicken, rice, mac and cheese, bread, and cake being found in multiple
samples. Only 1 of the 13 samples was collected at breakfast time (Jul22) due to access to the
cafeteria. Compositional analysis of the 13 samples was also carried out (Table 2), with the
average moisture content at 34.7% ± 5.2%. This moisture content does not include the add
water used create the food waste slurry and only takes into account the original moisture
content from the collected waste. There is no standard moisture content for food waste and
comparable studies show moisture content can range anywhere from 28% [28], 49% [29],
and 95% [4] depending on the type and source of the food waste. The food waste solids
content (on average) consisted of fat (19.7%), protein (18.7%), ash (4.8%), fiber (3.4%), starch
(27.1%) and soluble sugars (20.9%) on a dry basis (Table 2). The average total mass balance
equates to 94.65%, short of the expected 100%. This variance comes from a few samples
(e.g., M31 and M24) which had very low mass balances of 75% and 86%, respectively, and
is most likely due to other unmeasured food components such as soluble dietary fibers
(e.g., pectin, inulin).
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Table 1. Food Waste Sample Descriptions.

Sample Name Sample Date Known Food Waste Content

F23 23 February 2022 Fried and rotisserie-style chicken, rice, mac and cheese, collard greens, black bean
burger, grilled cheese, French fries

M1 1 March 2022 Shrimp, crawfish, potatoes, corn, beans, rice, bread, cake

M2 2 March 2022 Fried chicken, mac and cheese, fresh salad, bread

M23 23 March 2022 Pizza, nachos, chicken, cake

M24 24 March 2022 Fried chicken, mac and cheese, rice, pizza

M31 31 March 2022 Fried Chicken, mac and cheese, toast, peas, rice, corn muffin, mixed vegetables

A1 14 April 2022 Rice, mixed vegetables, fried chicken, pizza, burgers, bread, corn, cookies

A27 27 April 2022 Pizza, burgers, corn muffin, grilled cheese, sub sandwiches, fresh salad

Ju15 15 June 2022 Chocolate cake, pizza, cantaloupe, peppers, bananas, hot dogs, rolls

Ju24 24 June 2022 Fruit, cabbage, pineapple, rice, cake

Ju28 28 June 2022 Rice, green beans, chips, chicken

Jul20 20 July 2022 Spaghetti, Brussel sprouts, rice, roast beef

Jul22 22 July 2022 Biscuit, eggs, sausage patties

Fat composition was consistent with only two samples under 16% (Ju24 and M1)
and 1 sample over 27% (Jul22) (Table 2). Protein content from the 13 samples showed
only 1 sample (Ju24) under 10% of the total solids weight, which was expected as sample
Ju24 was noted to be primarily fruit and bakery waste (Table 1). While ash and fiber content
was low throughout all the samples (under 7%), starch was the largest single component.
In sample M1, for example, starch (41.64%) was nearly half of all solids waste. This large
starch composition is most likely attributed to the items listed in Table 1 (i.e., bread, mac
and cheese, cake, pizza, and rice). These results are similar to other studies, where in
one case, nutritional content of public primary school lunches resulted in carbohydrate
(starch) values of 48.1% [30]. The remaining solids found in food waste were soluble
sugars. The sugars measured were fructose, glucose, sucrose, and raffinose. Stachyose
concentrations were also measured but were insignificant to mention. Of the four soluble
sugars that were tested, glucose and sucrose were the two predominant sugars. The soluble
sugars (especially glucose) found in food waste were highly variable, as seven samples
had glucose values under 4% (F23, M1, M2, M23, M24, M31, A1), and five samples had
glucose values above 15% (A27, Jul15, Jul24, Jul28, Jul20) of the dry weight. However,
the five samples with higher glucose concentrations had lower starch concentrations (on
average) than the seven samples with low glucose (under 4%). From this, we suspect that
the natural starch degradation in food waste had progressed more in the samples with
higher glucose (Figure 2) due to the fact that glucose is a main product of starch metabolism
in microorganisms [31].
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Table 2. Chemical composition of 13 food waste samples collected from campus dining halls.

Dry Weight Composition Soluble Sugars

Moisture Content
Raw (%) Fat (%) Protein (%) Ash (%) Fiber (%) Starch (%) Fructose (%) Glucose (%) Sucrose (%) Raffinose (%) Mass Balance

Total (%)

F23 29.12 26.60 ± 0.34 29.10 ± 0.10 4.75 ± 0.04 2.66 ± 0.08 27.98 ± 1.76 0.83 ± 0.05 0.45 ± 0.05 4.99 ± 0.27 0.85 ± 0.04 100.71 ± 2. 85

M1 29.33 11.24 ± 0.007 27. 14 ± 0.23 4.85 ± 1.01 7.03 ± 0.07 41.64 ± 0.07 1.31 ± 0.03 0.57 ± 0.18 2.18 ± 0.10 0.31 ± 0.06 100.35 ± 1.82

M2 33.62 18.57 ± 0.01 22.59 ± 0.19 4.82 ± 0.11 2.46 ± 0.43 36.61 ± 0.79 0.81 ± 0.10 0.58 ± 0.04 0.80 ± 0.01 0.95 ± 0.09 102.45 ± 1.12

M23 34.37 21.00 ± 0.09 21.47 ± 0.73 4.85 ± 1.01 3.94 ± 0.26 32.51 ± 1.62 1.32 ± 0.06 1.13 ± 0.06 7.71 ± 0.45 2.70 ± 0.15 94.13 ± 3.75

M24 33.34 22.19 ± 0.18 15.72 ± 0.39 4.82 ± 0.11 3.23 ± 0.67 30.18 ± 8.54 1.35 ± 0.03 1.14 ± 0.01 7.76 ± 0.20 2.78 ± 0.014 86.97 ± 10.14

M31 25.34 17.74 ± 0.02 12.44 ± 1.18 4.75 ± 0.04 4.09 ± 0.09 32.75 ± 0.651 0.61 ± 0.04 0.60 ± 0.05 3.55 ± 0.26 0.65± 0.11 75.00 ± 2.67

A1 35.00 20.67 ± 0.13 14.33 ± 0.86 2.43 ± 0.16 3.64 ± 0.18 35.67 ± 0.55 3.79 ± 0.06 3.38 ± 0.13 11.94 ± 0.21 1.50 ± 0.23 98.54 ± 2.56

A27 33.59 18.52 ± 0.19 14.19 ± 0.09 4.63 ± 0.02 1.75 ± 0.19 26.71 ± 0.68 5.28 ± 0.01 15.53 ± 0.30 2.45 ± 0.19 4.34 ± 0.20 99.6 ± 2.02

Ju15 38.53 16.63 ± 0.94 20.03 ± 0.40 4.74 ± 0.03 2.50 ± 0.06 19.61 ± 0.61 0.28 ± 0.08 17.76 ± 0.91 2.57 ± 1.512 0.75 ± 0.30 88.61 ± 4.96

Ju24 45.67 4.11 ± 0.36 9.13 ± 0.09 4.93 ± 0.09 6.53 ± 0.23 22.84 ± 1.40 12.56 ± 0.21 27.12 ± 0.60 3.19 ± 0.22 0.07 ± 0.02 99.08 ± 3.63

Ju28 38.76 25.58 ± 0.75 14.77 ± 0.23 6.83 ± 0.04 2.65 ± 0.11 12.50 ± 1.63 0.17 ± 0 19.99 ± 0.29 3.70 ± 0.58 0.19 ± 0.22 88.59 ± 3.99

Jul20 37.62 21.62 ± 0.87 26.11 ± 0.63 5.57 ± 0 2.73 ± 1.44 20.47 ± 0.81 0.12 ± 0.01 16.18 ± 0.18 2.75 ± 0.02 0.06 ± 0.01 98.07 ± 4.06

Jul22 37.11 31.18 ± 0.09 24.65 ± 0.35 4.93 ± 0.17 1.28 ± 0.05 13.99 ± 5.73 0.09 ± 0.02 7.12 ± 0.61 2.84 ± 0.26 0.79 ± 0.01 88.94 ± 7.34
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3.2. Fermentation and Production of 2,3-BDO

From the 13 food waste samples, 2,3-BDO concentrations ranged from 4.05 g/L (sample A1)
to 12.12 g/L (sample Ju24) (Figure 3). Fermentation samples were monitored and analyzed
every 24 h for a duration of 72 h to see when the max 2,3-BDO was produced. It was
found that 48 h was the optimum time to observe the highest 2,3-BDO concentrations.
This was most likely due to the lower-than-expected free soluble sugars (glucose, sucrose
and fructose) (Figure 2) causing the fermentation to stall in-between 48 and 72 h. Some of
the highest amounts of 2,3-BDO production were, 12.12 g/L, 11.41 g/L, 10.09 g/L (Ju24,
Ju28, Ju20, respectively) and the lowest 2,3-BDO concentrations were from food waste
samples A1, F23, and Ju15 (4.05 g/L, 4.27 g/L, and 5.33 g/L, respectively) (Figure 3).
The 2,3-BDO yields from carbohydrates (starch, glucose, sucrose, fructose, raffinose) were
calculated and ranged from 13.2% (sample A1) to 55.2% (sample Ju28). The two highest
recorded yields (55.2% and 51.6%) were slightly above the theoretical yield of 50% [14].
We attribute these over-theoretical values to the possibility that some lipids in food waste
may have been converted to 2,3-BDO, thus increasing the yield based off carbohydrates
alone. Bacillus sp. from other studies have shown to produce lipase during fermentation
of waste cooking oil and future yield calculations may need to be adjusted to compensate
for non-carbohyrdates [32]. Overall, the average yield from all 13 samples was 33% g/g of
2,3-BDO/carbohydrates. Under ideal conditions supplemented with glucose, yeast extract,
and growth factors, B. licheniformis YNP5-TSU has been shown to have a maximum average
yield of 0.46 g/g (92% of theoretical value) [23]. The average yield of 33% obtained from
this study was a 13% reduction from the expect 46% yield under standard conditions [23].
In a similar study of open non-sterilized fermentation, Enterobacter sp. strain (FMCC-208)
was able to yield 39% 2,3-BDO [33]. However, in this experiment 40 g of sucrose media
was prepared and pasteurized (sterilized), before inoculation of strain FMCC-208. Many
attempts have been made to modify strains in the Bacillaceae family to increase the 2,3-BDO
yields, with the most notable attempts attaining yields of 42% with B. licheniformis MW3 [34]
and B. amyloliquefaciens B10-127 with yields of 44% [35]. Other naturally 2,3-BDO producers



Foods 2024, 13, 452 8 of 12

have shown maximum yields of 47% (B. licheniformis 10-1-A) [36], 49% (B. licheniformis
24) [37], and 51% (Paenibacillus polymyxa ZJ-9) [38]. Since the average yields of 2,3-BDO by
wild-type and genetically engineered strains are in 45–47% range, the 33% yield achieved
in this study is comparatively low. However, the yields produced by B. licheniformis YNP5-
TSU were from complex, untreated, food waste feedstocks without any outside added
nutrients or sterilization of media. To our knowledge, this is the first study to claim yields
this high from post-consumer food waste under these conditions. It is possible with the
addition of external nutrients we could increase the yield of 2,3-BDO but whether this is
economically feasible is something that needs to be further investigated.
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3.3. Food Waste Composition and 2,3-BDO Correlation

To determine the most important factor influencing the 2,3-BDO yield, the Pearson
correlation coefficient was calculated. As shown in Table 3, yields were compared with ash,
fat, protein, starch, and glucose found in the 13 food waste samples.

Table 3. Pearson correlation coefficient for food waste composition and 2,3-BDO yield.

2,3-BDO Ash % Fat % Protein % Starch % Glucose %

p-Value at Significant Level
p < 0.05 0.61 0.50 0.75 0.24 0.04 *

Pearson Coefficient (r) −0.157 0.2024 −0.0981 0.1581 0.5654 *

* Indicates results are significant.

The percentage of glucose was the only component that had a positive correlation
(r = 0.5654) with 2,3-BDO yields, and this correlation was significant (p < 0.05). This is
an important factor for downstream fermentation into 2,3-BDO and is not surprising, as
glucose is the key molecule to enter glycolysis in aerobic fermentation [39]. Through
glycolysis glucose is reduced to pyruvate, and subsequently acetoin, which is produced by
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enzymes α-acetolactate synthase and α-acetolactate decarboxylase before final conversion
to 2,3-BDO by 2,3-butanediol dehydrogenase [40]. All other components had a weak
correlation and were not significant. Interestingly, though starch is a polymer of glucose,
the Pearson coefficient for starch was r = 0.1581, indicating weak to no correlation. We
suspect this is due to the fact that the YNP5-TSU Bacillus strain cannot effectively hydrolyze
starch [22]. Our results were similar to a previous study by Poe et al. 2020, where high
glucose concentrations in food waste led to a high butanol yield. Other studies [41–43] also
showed converted lactic acid, fumaric acid, and ABE (acetone-butanol-ethanol) from food
waste were all directly correlated to carbohydrate (glucose) concentrations. While growth
factors, proteins, and phosphorous based molecules are important for bacterial growth,
our first step is to increase future 2,3-BDO yields by pre-treating our food waste (e.g.,
starch and fiber) to increase initial glucose concentrations. Several studies have shown that
pretreatment of food waste can indeed increase soluble sugar concentrations. Donzella et al.
used pumpkin peel hydrolysate for lipid production and indicated concentrations of 52 g/L
soluble sugars (glucose, sucrose, fructose) after pretreatment using Cellic CTec2 enzyme
cocktail (hydrolytic activity > 1150 U/mL) [44]. In another valorization study, mixed food
and beverage waste showed glucose (228.1 g/L) and fructose (55.7 g/L) were capable after
saccharification with glucoamylase and sucrase for 12 h [45]. Even in the study where food
waste was collected from food courts, a novel sequential acid-enzymatic hydrolysis process
was able to increase the conversion efficiency of fermentable sugars by 85.38% based on the
theoretical yields [46].

4. Conclusions

This study investigated the production of 2,3-BDO from non-sterilized post-consumer
food waste. From this study we conclude that it is possible to produce 2,3-BDO, on average,
at 33% yields (g/g of 2,3-BDO/carbohydrates), while simultaneously omitting traditional
sterilization methods. This is significant since this reduces cost and makes the conversion
of food waste more appealing by lowering energy consumption and processing time. Food
waste collected in this study had sufficient nutrients to sustain growth for B. licheniformis
YN5-TSU and on dry basis average, consisted of fat (19.7%), protein (18.7%), ash (4.8%),
fiber (3.4%), starch (27.1%), and soluble sugars (20.9%). From our results we conclude
that food waste is a potential feedstock that should be considered for bio-based 2,3-BDO.
However, future research is needed to investigate food waste storage and expiration, pre-
treatment options to increase initial soluble sugar concentrations, and addition of external
growth factors for maximizing 2,3-BDO yields.
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