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Abstract: Accurate and real-time gesture recognition is required for the autonomous operation of
prosthetic hand devices. This study employs a convolutional neural network-enhanced channel
attention (CNN-ECA) model to provide a unique approach for surface electromyography (sEMG)
gesture recognition. The introduction of the ECA module improves the model’s capacity to extract
features and focus on critical information in the sEMG data, thus simultaneously equipping the
sEMG-controlled prosthetic hand systems with the characteristics of accurate gesture detection and
real-time control. Furthermore, we suggest a preprocessing strategy for extracting envelope signals
that incorporates Butterworth low-pass filtering and the fast Hilbert transform (FHT), which can
successfully reduce noise interference and capture essential physiological information. Finally, the
majority voting window technique is adopted to enhance the prediction results, further improving
the accuracy and stability of the model. Overall, our multi-layered convolutional neural network
model, in conjunction with envelope signal extraction and attention mechanisms, offers a promising
and innovative approach for real-time control systems in prosthetic hands, allowing for precise fine
motor actions.

Keywords: sEMG gesture recognition; deep learning; channel attention mechanism; real-time control

1. Introduction

Upper limb amputees face challenges with activities of daily living and require pros-
thetic hands to restore their grasping ability. Prosthetic hands can not only improve the
physical and psychological quality of life of amputees but also prevent upper limb muscle
atrophy and relieve neuralgia [1]. Existing commercial prosthetics often have issues such
as high failure rates, limited flexibility, and deficiencies in user–machine interaction. To
address these issues, surface electromyography (sEMG) gesture recognition has been imple-
mented into prosthetic hands, which has become one of the most promising technologies
for smart prosthetics [2]. The sEMG gesture recognition is a non-intrusive technique that
can accurately decode intended hand movements by measuring and analyzing electrical
activities generated by muscular contractions and relaxations near the skin’s surface [3],
thus enabling the wearer to autonomously control myoelectric prosthetics [4]. However, to
achieve a natural and stable autonomous control of myoelectric prosthetic hands to per-
form various fine hand movements such as grasping, pinching, and fingering, appropriate
signal processing methods and the resulting fast, accurate, and reliable gesture recognition
are crucial.

Traditional signal preprocessing techniques of bandpass filtering, root mean square
(RMS) feature extraction, and frequency domain feature extraction have been extensively
employed in processing sEMG signals, among which bandpass filters are widely used to
remove noise and interference from sEMG signals, thereby improving signal quality [5].
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Meanwhile, RMS feature extraction aims to obtain amplitude information from sEMG
signals, and then the obtained amplitude information is used as features for gesture classi-
fication [6] or as a fixed threshold for identifying the initiation and cessation of dynamic
activities. Frequency domain feature extraction methods transform the signals into the
frequency domain to extract spectral information. These traditional signal processing
techniques possess attributes such as low complexity and quick processing time, rendering
them advantageous for real-time control, but they exhibit limitations in terms of data pro-
cessing and generalization capabilities, often necessitating the manual adjustment of model
parameters to accommodate new samples. Worse still, these traditional techniques may
introduce signal distortion, unintentionally omit vital feature information during the noise
reduction process, or fail to adequately capture the precise dynamic changes and temporal
relationships inherent in the signals, so they are suitable for distinct gesture classification
with small-scale sEMG data [7].

Deep learning techniques have recently garnered significant attention for their ability
to automatically extract hierarchical and abstract features from raw data [8]. Notably, con-
volutional neural networks (CNNs), recurrent neural networks (RNNs), and their variants
have been successfully applied to gesture recognition using sEMG signals. These deep
learning models excel in capturing complex temporal and spatial dependencies, resulting
in more accurate, fine, and robust gesture classification [9]. Based on a large-scale sample
set including 30 gestures from 12 able-bodied subjects, Shi et al. proposed a CNN archi-
tecture and proved its potential in sEMG pattern recognition after multiple training and
optimization [10]. Sun et al. [11] employed a long short-term memory (LSTM) model to
identify the motor intention of neurobots based on high-density sEMG data, and the model
achieved a peak accuracy of 83.33%. Likewise, the dataset was also large-scale, consisting of
recordings from 19 participants encompassing 65 different gesture classes, and a significant
amount of time was devoted to training. Chen et al. [12] proposed an effective transfer
learning strategy using a CNN-LSTM model for sEMG-based gesture recognition. They
selected a dataset consisting of 30 hand gestures involving various states of finger joints,
elbow joints, and wrist joints. After about 800 epochs of training and with all networks con-
verged, over 90% recognition accuracy was achieved on the training dataset. Although fine
gesture recognition with high accuracy was achieved, the network structures of the above
models were complex and required large-scale datasets with many computational resources
in the training phase, thus requiring a long training and computational time. Additionally,
these models may face challenges in accuracy degradation during practical testing, possibly
due to weak generalization ability or interference from real-world environments.

In the past five years, attention mechanisms have been increasingly integrated into
deep learning architectures to enhance the discriminative power and robustness of ges-
ture recognition models by selectively attending to informative regions or channels of sEMG
signals [13]. Hu et al. [14] proposed a gesture recognition model called “MIC-Attention-LSTM”,
which used correlation numbers to reduce time-domain features, used the maximal informa-
tion coefficient (MIC) to select the best feature set, and utilized LSTM and Attention-LSTM
to create the final model. The MIC-Attention-LSTM model achieved a higher classification
accuracy of 87.27% compared to the LSTM model with the same architecture, highlighting
the effectiveness of the attention mechanism algorithm in enhancing LSTM classification
accuracy. Similarly, Lv et al. [15] proposed a remote hand gesture recognition system based
on a multi-attention deep learning framework with multi-view, which utilized a sparse
complex-valued neural network to automatically process channel selectively and obtain
the final output by summing the rescaled transformation output and original data. The
proposed framework was validated on the myo dataset, myoUp dataset, and ninapro
DB5, achieving improved accuracy rates of 0.46%, 18.88%, and 7% compared to previous
works, respectively. Because attention mechanisms focus more on the relationships of local
features, they are limited in capturing cross-channel interactions and often show limited
adaptability to different gesture recognition tasks and datasets. Therefore, additional hy-
perparameter tuning and model structure design are often required to make these attention
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mechanisms better adapted to specific application scenarios. However, this process can
be time-consuming and computationally intensive, which increases the complexity of the
models and may have the opposite effect on improving the real-time performance of the
recognition system.

To solve the aforementioned challenges, this study proposes a unique and low-
complexity model for gesture recognition termed CNN-ECA, which combines a CNN
with an enhanced channel attention (ECA) mechanism to improve its discriminative power.
To progressively expand the receptive field size, the model incorporates stacked convolu-
tional layers with varying kernel sizes. On this basis, the addition of the ECA mechanism
can extract the dependency relationships between the sEMG data of different channels
via cross-channel interactions, and adaptively obtain the feature channel weights via at-
tention weighting, effectively focusing on relevant features and improving the model’s
robustness in capturing essential information from gesture sEMG signals. In addition, to
make the signal input into the model more concentrated and stable in both the time domain
and frequency domain, a preprocessing strategy for extracting envelope signals using the
fast Hilbert transform (FHT) is developed. The combination of these techniques yields a
powerful and efficient model for gesture recognition, allowing for the real-time control of
prosthetic hands and potentially beneficial applications involving accurate and dependable
sEMG signals.

2. Materials and Methods

This section presents the methodology employed in this study for gesture recognition
based on sEMG signals. It encompasses the description of the dataset, data preprocessing,
overlapped sliding window segmentation, CNN-ECA architecture, and the design of the
prosthetic hand system.

2.1. Dataset Description
2.1.1. sEMG Acquisition Hardware

The dataset used in this study plays a vital role in training, evaluating, and validating
sEMG-based gesture recognition systems. To ensure optimal signal handling, it is essential
to select reliable equipment to collect sEMG signals. gForcePro+ armband from OYMotion
Technologies (Shanghai, China) with an 8-channel high-sensitivity myoelectric sensor was
employed in this work, and each myoelectric sensor consists of three differential dry elec-
trodes and an electronic component. The myoelectric sensor collects sEMG signals through
the electrode’s contact with the skin, and the internal electronic component performs
amplification, filtering, sampling, and digitization. Since sEMG signals in the frequency
range of 20–550 Hz contain the most relevant information for motion recognition [16],
the sampling frequency of the gForcePro+ armband was set as 1000 Hz to allow us to
preserve the information to the greatest extent and ensure that the dataset is suitable for
our study’s objectives.

2.1.2. Hand Gestures

Eight gestures (G1~G8) that are commonly used in daily life and can be performed
by prosthetic hands are involved in the experiment. As shown in Figure 1, these gestures
cover a wide range of functions and are described below:

G1: Fist—This gesture involves making a fist, which is used to grab or hold an object.
G2: Open—In this gesture, the hand opens up, allowing the release of the held object.
G3: Two-Finger Pinch—The index finger and thumb come together to pinch, which is

used to hold small or flat objects.
G4: Three-Finger Pinch—In this gesture, the thumb pinches the index finger and the

middle finger, used for holding round objects.
G5: Pointing—The index finger is extended to point towards a certain direction

or target.
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G6: Hook—The four fingers are bent, resembling a hook, and used to pick up objects
like bags.

G7: Thumbs Up—This gesture involves giving a thumbs-up, expressing approval,
encouraging, or signaling positivity.

G8: Ring Finger Grasp—In this gesture, the thumb is brought towards the ring finger,
used for grabbing small objects or rotating bottle caps, among other things.
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Figure 1. Hand gesture examples.

2.1.3. Acquisition Protocol

We recruited 10 participants, 7 males and 3 females, with ages of 30 ± 5 years old.
The experiment protocol was reviewed and approved by the ethics committee of Fujian
Provincial Hospital (approval number: K2022-09-015). None of the participants have
suffered from upper extremity muscle pain or orthopedic diseases in the past year, and they
were all informed about the content and purpose of the experiment. Before the experiment,
the participants sat on the side of an experimental table and kept their right forearm
resting on the table. Then, the myoelectric armband was worn on the middle of the forearm,
ensuring that the internal metal electrode was in close contact with the skin. All participants
were asked to practice each gesture until they were able to perform the task as required
by the experiment. During data collection, they were asked to complete each gesture
by imitating a video of gesture instructions displayed on a computer screen (Figure 2).
To capture natural variations in muscle activation patterns, the acquisition time for each
gesture was set to one minute, during which each gesture was repeated approximately
15–20 times. To avoid muscle fatigue, the participants were given a five-minute rest after
completing each gesture.
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2.2. Data Preprocessing

Previous studies on gesture recognition demonstrated that extracting the envelope
of the raw sEMG signals could provide valuable insights into muscle activity [17]. The
envelope of the sEMG signals is a smoothed curve obtained by processing the raw signals,
which simplifies data representation, reduces noise, expresses motion actions, and plays
a crucial role in the classification of sEMG signals. Several methods are commonly used
for envelope extraction, such as moving average, envelope detection, Hilbert transform,
and wavelet transforms [18]. In this study, considering the performance requirements of
real-time control and fine control for the use of prosthetic hands, the FHT is employed to
extract the envelope of the sEMG signals.

The FHT is an efficient signal processing technique used for extracting analytic en-
velopes from time-domain signals [19]. During its computational process, the input time-
domain signal is initially transformed through a Fourier transform to be mapped to the
signal into the frequency domain. The FHT then performs phase adjustments according
to the properties of the frequency domain signal, resulting in the imaginary part of the
transformed signal corresponding to the original signal’s envelope, while the real part
corresponds to the signal’s instantaneous phase. The key advantage of the FHT lies in its
computational efficiency, which enables rapid and effective envelope extraction, thereby
providing robust support for the control and recognition of sEMG signals. The extracted
envelope signal is illustrated in Figure 3.
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2.3. Overlapped Sliding Window Segmentation

We employed an overlapped sliding window technique to segment the previously
extracted envelope dataset of muscle sEMG signals. This approach allows us to control
the overlap between data windows by adjusting the window size and step size, and
decomposing the signals into muscle activity segments for feature extraction [20]. The
window size (w) determines each window’s duration. The step size (s) defines the time
interval between windows, controlling their sliding speed. A smaller step size leads to
increased overlap and provides more data for training and evaluation. In this approach,
adjacent windows partially overlap, as shown in Figure 4. This sliding window-based
segmentation effectively addresses the temporal characteristics of muscle sEMG signals,
enhancing the gesture recognition system’s accuracy and robustness [21]. Using this
technique, we extract relevant temporal information from sEMG signals, improving the
system’s ability to identify and recognize different gestures.
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We initially collected datasets from 10 participants, with each gesture lasting for one
minute. Considering the duration of the gestures, real-time system requirements, and
efficient data utilization, we set the window size to 300 ms with a step size of 100 ms. This
segmentation approach allowed us to effectively extract and analyze relevant information
from the dataset. Once the data was segmented, we divided it into training, validation,
and test sets. Specifically, we allocated 80% of the dataset for the training set, 10% for the
validation set, and the remaining 10% for the test set. This distribution allows us to evaluate
the model’s performance on different datasets, ensuring a comprehensive assessment of
its capabilities.

2.4. CNN-ECA Architecture

Deep learning algorithms offer several advantages for sEMG signal classification and
recognition, including fast training and inference speed, suitability for real-time appli-
cations, high flexibility, and the ability to automatically extract features without manual
intervention [22]. Although sEMG signals are relatively stable during rest, they exhibit
rapid changes to reflect muscle activity when gestures are performed. Once the gesture
is completed, the changes in the sEMG signals cease, and the signals remain relatively
stable, no longer representing a temporal sequence of changes [23]. In the context of classi-
fying and recognizing sEMG signals, it becomes crucial to focus on the signal variations
during the gesture rather than the continuous state. As such, the classification model
should emphasize capturing the dynamic features of gesture changes rather than modeling
long-term sequences. An RNN like LSTM is commonly used for processing long-term
temporal dependencies but might not be well suited for short-duration sEMG signals.
On the other hand, CNNs excel at automatically learning local features in the temporal
sequence, demonstrate faster training speeds than LSTM, and are particularly suitable for
handling sEMG signals collected from multiple muscle channels.

The architecture of the proposed attention-fused CNN model primarily consists of
convolutional layers and attention mechanism layers (Figure 5). Specifically, each con-
volutional layer is followed by a batch of normalization (BN) layer and rectified linear
unit (ReLU) activation function to speed up convergence and address the problem of
gradient explosion. To handle channel data from different muscle positions, the sizes of
the convolutional kernels in the first, second, and third layers are set to (3, 3), (4, 3), and
(5, 3), respectively. By sliding these kernels along the temporal and channel dimensions,
the network can capture dynamic patterns in the temporal sequence and correlations
among different channels simultaneously. Furthermore, the design of stacking kernels of
different sizes enables the convolutional layers to gradually increase their receptive field,
which is beneficial for capturing more comprehensive features. It is worth noting that
the ECA mechanism layer is integrated after the first convolutional layer. This layer can
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enhance the focus and capture ability of important features through an adaptive weight
allocation mechanism, contributing to improved model performance and generalization.
At this stage, the model has already attained a wealth of feature expression capabilities;
however, there may still be instances of redundant or less relevant features. To introduce a
more nuanced emphasis and adjustment within the model’s decision-making layer, another
ECA mechanism layer is integrated after the final fully connected layer. The incorporation
of the ECA mechanism at this juncture directs the model’s focus towards features that
significantly impact the current gesture classification task during decision making, thereby
enhancing the model’s ability to distinguish complex EMG signals. Besides, to prevent
overfitting, we incorporated dropout layers. Finally, a softmax layer with nodes equal to the
number of gesture categories was added to convert the model’s output into a probability
distribution for each class, enabling the effective classification of the gestures.
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Furthermore, the inclusion of BN layers and dropout layers obviates the necessity
to reduce the learning rate, as they can improve the model’s stability and generalization
capability, facilitating smoother convergence. To optimize the model’s training process,
the ADAM optimizer is adopted, which is a gradient-based optimization algorithm that
efficiently updates the model’s parameters to minimize the loss function. For the loss
function, we opted for categorical cross-entropy, a widely used metric for multi-class
classification problems. This metric quantifies the disparity between the model’s predictions
and the actual labels, and can guide the optimization of the model’s parameters [24].

The attention mechanism is a machine learning technique that assigns different weights
to input features in a neural network. The ECA mechanism utilized in this study is a form
of channel attention mechanism, representing an enhanced version of the Squeeze-and-
Excitation Networks (SE-Net) [25]. By adaptively weighting the channel dimension of
input features, the model can better capture important information in sEMG gesture signals.
Its structure is depicted in Figure 6, where the fully connected layer in the original SE-Net
is replaced by one-dimensional convolutional kernels, making the model more lightweight.
The size of the one-dimensional convolutional kernel is automatically determined based
on the number of channels, eliminating the need for manual adjustments. The formula is
as follows:

K = ϕ(C) =

∣∣∣∣ log2 c+1
2

∣∣∣∣
odd

(1)

where K represents the kernel size, C represents the number of channels, and |x|odd denotes
the nearest odd number to x. By adapting the kernel size according to the number of
channels, we can fully integrate interactions among specific channels. This technique
substantially reduces the model’s complexity while preserving its performance. Moreover,
it effectively mitigates the impact of dimensionality reduction on channel attention learning,
resulting in notable improvements in the model’s processing speed and accuracy.
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2.5. Real-Time Prosthetic Hand Control System

As shown in Figure 7a, the hardware of the prosthetic hand control system we pro-
posed is composed of three parts: the myoelectric sensor, the prosthetic hand, and the
microprocessor. Among these, the myoelectric sensor is responsible for the real-time
collection of the sEMG data when the participant performs the designed gesture. The
microprocessor receives the sEMG data collected by the sensor in real-time through Blue-
tooth, processes and classifies the data, infers the participant’s gesture intention, and sends
control commands to the prosthetic hand to perform the intended gestures. To improve
the real-time performance of the prosthetic hand control system, we carefully selected the
system hardware, adjusted its parameters, and designed the microprocessor. Among them,
the information on the sEMG sensor has been given above, and then we will focus on
describing the relevant information about the prosthetic hand and the microprocessor.
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The dexterous prosthetic hand utilized in this study features a 5-finger design equipped
with a linkage transmission mechanism. It incorporates two degrees of freedom (DOFs)
for the thumb and one DOF for each of the other fingers, amounting to a total of six DOFs
for all five fingers. This configuration allows for the independent control of the bending
of the thumb, index finger, middle finger, and ring finger, as well as the independent
control of the rotation of the thumb. As a result, it can closely simulate human hand
movements. The motors and control circuitry of the prosthetic hand are fully integrated
within the hand itself, streamlining its appearance and functionality. Moreover, the hand
can be conveniently connected to a computer or other embedded systems through a serial
communication protocol, enabling seamless communication and control.

To balance the accurate recognition of intention gestures and the real-time control of
the prosthetic hand, the requirements of the system for high performance, small device size,
and low power consumption were carefully considered when the system was designed, and
the NVIDIA Jetson Nano was employed as the embedded microprocessor. This micropro-
cessor offers a high-performance GPU accelerator and a dedicated deep learning inference
engine, allowing for fast and real-time inference capabilities [26], which make it particularly
suitable for applications such as real-time control. Furthermore, the compact size and low
power consumption of the microprocessor make it highly convenient to integrate into the
prosthetic hand system for compact assembly and enhanced portability. Running on the
Jetson Nano microprocessor is the data preprocessing algorithm and pre-trained CNN-ECA
model (Figure 7b), which was developed using the Python programming language by
integrating several popular data analysis tools and libraries such as pandas, scipy, loadmat,
numpy, and matplotlib. Specifically, the microprocessor received the raw data stream from
the myoelectric sensors in real-time through a multithreaded Python program and called
the SciPy library to perform signal reprocessing such as filtering and envelope extraction.
Then, the reprocessed signals were streamed into the pre-trained CNN-ECA model built
on Keras in the TensorFlow library for gesture recognition. The recognition outcomes were
converted into control commands and transmitted to the prosthetic hand through the serial
port at a baud rate of 115,200. Upon receiving the control commands, the prosthetic hand
executed the corresponding gesture through the motor drive module to realize real-time
response and control synchronized with the sEMG signals. A threshold value (T) was
established based on the envelope signal to prevent the misclassification of motions during
muscular relaxation. When the signal exceeded the threshold T, the recognized command
was sent to the prosthetic hand, controlling it to do the appropriate action. If the signal
dropped below the T threshold, the prosthetic hand stayed in a resting posture. This
method ensures accurate and precise control of the prosthetic hand while taking the user’s
muscle activity into account.

To ensure the precise and real-time control of the prosthetic hand, we employ the
majority vote window technique. This approach collects multiple gesture predictions
within a specific time window and selects the final recognized gesture based on the most
frequently predicted gesture, following the majority vote principle [27]. For instance, if we
set the majority window size to 10, this means that the model’s predictions for the current
gesture are considered in conjunction with the preceding and subsequent 10 predictions
within the specified time frame. The final prediction is then determined by the majority vote
within this window. The majority window size can be adjusted to balance between rapid
response and recognition stability, enhancing the reliability of the system. This technique
smooths out momentary misclassifications, resulting in the accurate and dependable control
of the prosthetic hand in harmony with the user’s muscle activity.

3. Results
3.1. Ablation Experiment

To validate the rationality and effectiveness of the proposed CNN-ECA network
model, it is necessary to design and conduct ablation experiments to assess and under-
stand the importance and contribution of each component in the model, as well as their
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impact on the model’s performance [28]. A one-dimensional convolutional network with-
out the attention mechanism (Conv1D) serves as the baseline model for the ablation
experiments. The following variants were tested: (a) a network with two-dimensional
convolutional layers (Conv2D), (b) the addition of the ECA module to the network in
(a) (Conv2D+Attention), and (c) the inclusion of preprocessing on top of (b) (i.e., our pro-
posed CNN-ECA). The 1D and 2D convolutional layers maintained consistent kernel sizes
in the temporal dimension and retained the same number of kernels and stride parameters.

Figure 8 presents the comparison of accuracy in the ablation experiments at different
steps for 10 participants in the collected dataset. As the experiment progresses, the accuracy
consistently exhibits an increasing trend, indicating an improvement in performance with
more modules. Specifically, with the introduction of the attention mechanism (approach b),
the model’s performance significantly improves, highlighting the positive impact of the
attention mechanism on the model’s accuracy. Furthermore, by applying our proposed
preprocessing method on top of approach b (approach c), the model’s performance is
further enhanced. This finding highlights the effectiveness of the preprocessing approach
we designed in this study, and demonstrates its autonomous ability not only to enhance
the model’s robustness and accuracy but also to further amplify these attributes when
integrated with the attention mechanism.
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The results presented in Table 1 provide a quantitative summary of the ablation
experiments. It is obvious that using Conv2D improves accuracy to 0.89 while decreasing
loss to 0.36 in the gesture classification task when compared to Conv1D. This boost in
performance can be attributed to the 2D layers’ capacity to capture dynamic patterns in
the time series of the sEMG signals as well as the correlations among multiple channels,
resulting in a more comprehensive representation of the data. Moreover, the introduction of
the ECA module improves the accuracy of the Conv2D model to 0.92 and reduces the loss
value to 0.31, because the attention mechanism can improve the model’s ability to capture
key information from the data by focusing on important features and channels, and thereby
produce more accurate and meaningful predictions. It is worth noting that the above
performances were all obtained from the raw data. When the raw data is preprocessed
and then the gesture classification task is performed based on Conv2D+Attention, the
highest accuracy of 0.96 and the smallest loss of 0.16 are achieved. The above ablation
experiments, on the one hand, prove the necessity of data preprocessing, and on the other
hand, they demonstrate the advantages of our proposed CNN-ECA model in gesture
classification accuracy.
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Table 1. Performance comparison of ablation experiments.

Experimental Conditions Accuracy Loss

Conv1D 0.85 0.42
Conv2D 0.89 0.36

Conv2D+Attention 0.92 0.31
Our CNN-ECA 0.96 0.16

3.2. Model Evaluation

In deep learning applications, even when a suitable architecture is found, it is still
necessary to search for optimal parameters to improve the performance of the algorithm [29].
In this study, we adopted a systematic approach to fine-tune the model’s hyperparameters.
We examined each parameter individually while keeping other parameters constant, so that
we could observe the specific impact of each parameter on the model’s learning process. At
the end of each test, we retained the hyperparameter values that yielded the best results for
subsequent testing.

To evaluate the model’s performance during the training phase, we used the validation
set after each training cycle epoch and gained insight into how the model performed during
training by calculating accuracy and other metrics. If the model’s accuracy improved, we
preserved the weights and biases of the current model. Once the predefined number of
epochs was reached, we selected the model with the best performance from the validation
set for further testing and halted the training process. This iterative approach guarantees
that the best-performing model is chosen after each iteration, allowing for more accurate
predictions during subsequent testing phases. Table 2 displays the final set of optimal
parameters obtained from this method, illustrating the highest performing configuration
for the model.

Table 2. The final optimal parameters.

Optimizer Adam

Activation function Relu
Learning rate 0.0001

Number of epochs 300
Batch size 128

The model evaluation is represented by the accuracy and loss curves and the confusion
matrix. Figure 9 demonstrates that our model produced good results, with an accuracy
of 99.69% after 300 iterations during the training phase and 95.56% during the testing
phase. The close proximity of the two accuracies suggests that there is no overfitting
and that the model generalizes effectively to fresh data. Furthermore, the confusion ma-
trix in Figure 10 provides deeper insights into the model’s performance across individual
gesture classes. Obviously, our proposed CNN-ECA can perfectly recognize gestures
such as “Open”, “Hook”, and “Thumbs Up” with 100% accuracy, while the recognition
accuracy for the fine gestures of “Two-Finger Pinch” and “Three-Finger Pinch” is only
88.54% and 90.62%, respectively. This is due to the fact that fine gestures require compli-
cated muscle coordination, which might result in comparable muscle activation patterns or
tiny differences that are difficult to discern, thus resulting in occasional misclassifications
by the model. Despite its lower accuracy for these fine gestures, the model remains robust
across the entire set of gestures. The average accuracy of the model is 95.45%, which
demonstrates the reliability and effectiveness of our model in gesture classification.

In addition to these metrics, we introduced the receiver operating characteristic (ROC)
curve in Figure 11, which provides a comprehensive evaluation of the model’s performance
across various thresholds. The AUC (area under the curve) of the ROC curve is an ad-
ditional metric that signifies the model’s ability to distinguish between different classes.
A higher AUC value indicates superior discriminative power, implying that our model
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excels in accurately distinguishing between gestures. A higher AUC value, observed in
our model, signifies excellent discrimination between gestures. This suggests that our
CNN-ECA model achieves a remarkable balance between sensitivity and specificity, crucial
for accurate gesture classification.
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3.3. Comparison with Other Gesture Recognition Models

We conducted a comprehensive comparison between our proposed CNN-ECA model,
classical machine learning models of K-nearest neighbor (KNN) and support vector ma-
chine (SVM), as well as deep learning models including LSTM and the current state-of-
the-art deep learning model of CNN-LSTM for sEMG gesture recognition to validate the
performance of our approach. To ensure consistent and fair comparisons, we split the same
dataset into 300 ms windows for all these models, maintaining the same class proportions
as the original dataset, and set a fixed random seed to guarantee identical training, test, and



Bioengineering 2023, 10, 1324 13 of 18

validation sets. Throughout the experiments, the learning rate was uniformly set to 0.0001,
and training was stopped when the model achieved optimal accuracy. We evaluated the
classification model’s performance using common metrics such as accuracy, recall, F1 score,
and precision.
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The specific experimental results are shown in Table 3, which indicates that classical
machine learning approaches have relatively poor performance metrics (i.e., accuracy) in
gesture recognition, which are potentially due to limits in feature extraction and model ex-
pressiveness. Moreover, the CNN-LSTM model outperformed the LSTM model, providing
it with an edge in EMG gesture recognition, because convolutional networks can better
capture the correlation between multi-channel sEMG data and gesture motions. Compared
with the above gesture recognition models, the introduction of the ECA mechanism en-
ables our proposed CNN-ECA model to effectively extract and utilize relevant features to
improve classification performance.

Table 3. Recognition model comparison.

Model Accuracy Precision Recall F1 Score

KNN 0.71 0.69 0.72 0.70
SVM 0.80 0.77 0.73 0.75

LSTM 0.86 0.83 0.78 0.80
CNN-LSTM 0.93 0.92 0.87 0.89

Our CNN-ECA 0.96 0.95 0.92 0.94

3.4. Real-Time Performance Metrics and Results

As a key indicator for evaluating the quality of EMG-controlled prosthetic hand
systems [30], the real-time performance of the gesture recognition model determines the
usability and user experience of the system. The real-time performance of the model can be
assessed using both the attributes of prediction speed and response time, which indicate
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the model’s processing speed and response capacity to the input signal, respectively.
Undoubtedly, quick response time and high prediction speed are critical in an EMG-
controlled prosthetic hand system, allowing the users to control the hand accurately and
sensitively in real time [31].

We compared the average response time (measured in seconds, s) and model predic-
tion speed (measured in frames per second, fps) of different models, and the performance
differences among the models are listed in Table 4. It is clear that the classical machine
learning methods of KNN and SVM need long average response times (0.55 ± 0.05 s and
0.43 ± 0.08 s, respectively) and have low model prediction speeds (50 ± 5 fps and 60 ± 4 fps,
respectively) due to their time-consuming feature engineering and complicated parameter
tuning processes. The deep learning model of CNN, on the other hand, has the fastest aver-
age response time of 0.25 ± 0.07 s and the highest model prediction speed of 120 ± 6 fps,
showcasing remarkable real-time performance. Adding LSTM to the CNN model some-
what increases the model’s average response time (0.34 ± 0.05 s), while reducing the model
prediction speed to 85 ± 3 fps. This is determined by the characteristics of LSTM itself,
namely, recursive computations, increased number of parameters, and training complexity.
On the other hand, the average response time and prediction speed of the CNN model with
the ECA mechanism added are 0.30 ± 0.06 s and 100 ± 5 fps, respectively. Although there
is a slight sacrifice in real-time performance compared to the CNN model, the impact on
the model’s overall performance is relatively small. This indicates that the ECA attention
mechanism introduced in this study can indeed improve the model’s ability to focus on
crucial information, so as to better balance model accuracy and real-time performance
during task execution, and obtain satisfactory comprehensive performance.

Table 4. Comparison of the real-time performance of models.

Model Average Response Time (s) Prediction Speed (fps)

KNN 0.55 ± 0.05 50 ± 5
SVM 0.43 ± 0.08 60 ± 4
CNN 0.25 ± 0.07 120 ± 6

CNN-LSTM 0.34 ± 0.05 85 ± 3
Our CNN-ECA 0.30 ± 0.06 100 ± 5

Furthermore, it can be deduced from the data in Table 4 that our real-time control
system for the prosthetic hand generates predictions at a high frequency, yielding a large
number of classification results per second. However, since our proposed classifier does not
achieve 100% accuracy, there are also instances of incorrect classifications in these results.
To address this issue, this study employs the majority vote window technique to enhance
the accuracy and stability of predictions.

Figure 12 displays the results of gesture recognition within a 5-s timeframe as users per-
form each gesture sequentially with different majority voting window sizes (10, 50, and 100).
Notably, the majority voting window is sliding, with the most recent prediction result
added and the earliest prediction result removed at each step. This strategy ensures that
the prediction results displayed within the voting window are always current and allow
for real-time updates. The size of the majority voting window is a crucial parameter that
affects real-time recognition performance. It can be seen from Figure 12 that compared with
the prediction results when the window size is 10 and 50, the results obtained when the
window size is set to 100 are very consistent with the true predictions, with no frequent
fluctuations. These findings suggest that the majority voting window technique can effec-
tively smooth out prediction outcomes, improve accuracy, suppress noise and fluctuations,
and enhance the overall robustness of the model. Moreover, this technique is adaptable
and flexible, making it highly suitable for real-time deep-learning models of sEMG signals
on embedded devices.
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4. Discussion

This research aims to improve the recognition performance and real-time capabilities
of the sEMG prosthetic hand system by developing a sEMG signal processing framework
based on the CNN-ECA model. Through comprehensive discussions in this section, we
will delve into the methodology, experimental findings, and their significance in the field
of EMG gesture recognition.

Deep learning models, with their fast training and inference speeds and powerful
feature extraction capabilities, offer benefits in sEMG signal classification tasks. In this
study, we use CNN as the base model and introduce the ECA module to improve the
model’s attention to crucial features. The experimental results show the satisfactory perfor-
mance of the CNN-ECA model in gesture recognition tasks. When compared to classical
machine learning approaches and current mainstream deep learning models, our model
outperforms them in terms of accuracy, recall, and F1 score. Importantly, our model dis-
tinguishes between multiple gesture categories better than existing deep learning models,
enhancing the classification performance. This demonstrates that the introduction of the
ECA mechanism has a positive impact on gesture recognition by increasing the model’s
accuracy and focusing on essential information.

While the computational cost was proven to be competitive, it is crucial to delve into
the complexity of the model. The low complexity of our model can be attributed to stream-
lined convolutional layers and the incorporation of the ECA module, which enhances the
model’s attention mechanism without introducing unnecessary computational burden.
Specifically engineered for efficiency, the ECA module strategically attends to relevant
channels within the data, emphasizing crucial information without imposing excessive
computational overhead. This ensures that the model becomes more adept at capturing
key patterns and features without a proportional increase in computational requirements.
This low complexity is advantageous for real-time applications, particularly in the con-
text of prosthetic hand control, where quick and responsive processing is paramount.
Notably, the achieved enhancement in accuracy comes without a substantial increase in
computational complexity.

In addition, the real-time test with the prosthetic hand exemplifies the practical ap-
plication of our research. It showcases that our model, with its efficient processing and
real-time capabilities, can be effectively employed for controlling prosthetic hands through
sEMG signals. The integration of the majority voting window technique allows the system
to adapt to users’ muscle activity variations, ensuring the precise and reliable control of
the prosthetic hand. A higher number of votes with a larger majority window enhances
response stability but introduces a slight delay in recognizing rapid gesture changes, while
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a smaller number of votes with a smaller window size offers faster response times but may
result in more prediction variability due to fewer samples. Moreover, through window
adjustments, this study has ensured the real-time accuracy of prosthetic hand control.

Our research also has certain limitations that should be addressed in future work.
The relatively small size of our experimental dataset may restrict the model’s generaliza-
tion ability. Expanding the dataset will enhance the model’s robustness, particularly for
individuals with limb amputations. Additionally, although our model has shown good
real-time performance, there is room for further improvements in terms of algorithmic and
hardware optimizations to enhance efficiency. Future work should explore more attention
mechanisms and deep learning model architectures that consider both spatial and temporal
aspects of sEMG signals. Developing processing algorithms and model structures tailored
for individuals with limb amputations is of great importance. Integrating additional sen-
sors and technologies, such as muscle tension sensors or neural sensing techniques, can
further enhance the accuracy and robustness of gesture recognition systems. Moreover,
optimizing the user experience and human–computer interaction for individuals with limb
amputations will improve their quality of life and social participation. Collaboration and
feedback from individuals with limb amputations and rehabilitation professionals will be
essential in achieving these goals.

5. Conclusions

This study aims to improve the performance and real-time capabilities of the sEMG
gesture recognition system by developing a muscle signal processing framework based on
the CNN-ECA model. The application of preprocessing approaches including envelope
extraction and sliding window segmentation can effectively extract useful information from
surface sEMG data, reduce the influence of noise, and thus improve signal correlation and
stability. The sEMG gesture recognition framework of CNN-ECA is developed based on the
CNN architecture, where the introduction of the ECA module enabled the model to enhance
the focus and capture ability of important features, thereby improving classification perfor-
mance. Compared to classical machine learning approaches and the current mainstream
deep learning models of CNN and CNN-LSTM, the CNN-ECA model we proposed shows
significant improvements in the metrics of accuracy, recall, and F1 score. Moreover, the
introduction of the ECA module does not significantly reduce the prediction speed of the
model while improving the accuracy, implying that the ECA module simultaneously equips
the EMG-controlled prosthetic hand system with the characteristics of accurate gesture
detection and real-time control. In conclusion, the muscle signal processing framework
based on the CNN-ECA model proposed in this study achieves favorable experimental
results in the field of EMG gesture recognition. We believe that with further research and
improvements, EMG gesture recognition systems will play a greater role in rehabilitation
medicine, human–computer interaction, and virtual reality, significantly improving the
quality of life and social participation of people with disabilities.
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