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Abstract: This paper provides an in-depth overview of Deep Neural Networks and their application
in the segmentation and analysis of lung Magnetic Resonance Imaging (MRI) scans, specifically
focusing on hyperpolarized gas MRI and the quantification of lung ventilation defects. An in-depth
understanding of Deep Neural Networks is presented, laying the groundwork for the exploration of
their use in hyperpolarized gas MRI and the quantification of lung ventilation defects. Five distinct
studies are examined, each leveraging unique deep learning architectures and data augmentation
techniques to optimize model performance. These studies encompass a range of approaches, includ-
ing the use of 3D Convolutional Neural Networks, cascaded U-Net models, Generative Adversarial
Networks, and nnU-net for hyperpolarized gas MRI segmentation. The findings highlight the poten-
tial of deep learning methods in the segmentation and analysis of lung MRI scans, emphasizing the
need for consensus on lung ventilation segmentation methods.

Keywords: deep learning; Magnetic Resonance Imaging (MRI); hyperpolarized gas MRI; segmentation;
ventilation defect; chronic obstructive pulmonary disease (COPD); lung imaging

1. Introduction

In 2016, lung diseases such as chronic obstructive pulmonary disease (COPD), lower
respiratory tract infections, cancer, and tuberculosis were included in the top ten leading
causes of death worldwide [1]. As a result, imaging of the lungs plays a pivotal role in
initial diagnosis. At present, Computed Tomography (CT) is considered the gold standard
for lung imaging [2–4]; however, Magnetic Resonance Imaging (MRI) presents a promising
alternative for obtaining radiation-free images of the lungs [5].

MRI is a non-invasive and non-ionizing imaging technique, meaning that it does not
require surgical intervention or the use of harmful ionizing radiation to create detailed
images of the internal structures of the body. To be more specific, MRI eliminates the need
for any exploratory surgery or the insertion of probes into the body [6]. Additionally, MRI
relies on strong magnetic fields and radio waves to generate images, rather than harmful
ionizing radiation [7]. These two features of MRI make it an ideal imaging modality for
studying lung function and assessing pulmonary diseases.

When it comes to imaging the lung, there are certain limitations of conventional
MRI. Conventional MRI focuses on detecting hydrogen nuclei, specifically protons (1H), to
generate images of internal structures. Due to the low proton density of the lung and sus-
ceptibility effects on relaxation at the air/tissue interfaces within the alveoli, conventional
MRI struggles to provide high-quality images [8–10].

Conversely, hyperpolarized agents have been introduced for use in MR imaging, offer-
ing a means to address and overcome certain limitations associated with conventional MRI
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techniques. Hyperpolarized agents such as helium-3 (3He) or xenon-129 (129Xe), are noble
gases that can have their nuclear magnetic resonance (NMR) signal significantly increased
after undergoing a hyperpolarization process. This leads to dramatic improvement in the
signal-to-noise ratio (SNR) compared with conventional MRI [11].

Ventilation defects are characterized by areas in the lungs where airflow is impaired
or blocked, leading to reduced or even absent gas exchange [12,13]. These defects can
manifest in several forms such as obstructions in the small airways, mucus accumulation,
broncho-constriction, or tissue damage [14]. Consequently, the distribution of ventilation
within the lungs becomes heterogeneous [15]. Given the benefits conferred by hyper-
polarized agents, 3He and 129Xe MRI have proven to be excellent tools for identifying
ventilation irregularities [16]. They are particularly effective in populations such as elderly
individuals who have never smoked [17], as well as patients diagnosed with COPD [18–25],
asthma [26–28], Cystic Fibrosis (CF) [29–31], radiation-induced lung injury [32,33], and
those who have received lung transplants [34,35].

The current golden standard [36] for calculating the VDP involves a semi-automated
method. While the semi-automated method for estimating the ventilation defect percent
(VDP) is effective, it is not without its shortcomings. A significant limitation lies in the
time-intensive nature of the process. As an illustration, the segmentation and calculation
procedure for an 80-slice lung MRI can consume approximately 45 min. This time require-
ment can be a significant bottleneck in a clinical setting where time efficiency is critical.

In recent years, the advancement of deep learning has ushered in a new era for med-
ical imaging, including image segmentation [37–39]. DL-based models, harnessing the
power of artificial intelligence, have demonstrated exceptional prowess in the automatic
segmentation of medical images, revolutionizing this complex task. These models have
proven to be highly efficient and accurate, outperforming traditional methods and offering
a transformative approach to medical image analysis. DL methods have shown great
success in many areas of medical image analysis [40]. These methods are both efficient and
accurate. They have been used for tasks such as identifying brain tumors [41], separating
the lungs in CT images [42], aiding in breast cancer radiotherapy [43], and tracking lung
changes in COPD [44]. Deep learning has shown promising results in hyperpolarized gas
MRI. In a research article [45], deep learning was utilized to improve image reconstruction
quality. A deep cascade of residual dense networks (DC-RDNs) was crafted to reconstruct
high-quality DW images from substantially undersampled k-space data. The study utilized
hyperpolarized 129Xe lung ventilation images from 101 participants to create synthetic
DW-MRI data, which then trained the DC-RDN. The performance of the DC-RDN was
subsequently assessed using both retrospectively and prospectively undersampled multi-
ple b-value 129Xe MRI datasets, demonstrating its effectiveness in enhancing DW-MRI for
lung morphometry. Another study also introduced PhysVENeT [46], a 3D multi-channel
convolutional neural network that synthesizes 3D ventilation surrogates from MRI scans.
This approach, which incorporates physiologically informed ventilation mapping and
structural imaging, showed superior performance over conventional mapping and other
DL methods, offering an accurate reflection of ventilation defects with minimal overfit-
ting. Several studies have also used DL techniques for the segmentation of ventilated
lungs [47–49].

This manuscript aims to present a review of DL-based automatic segmentation tech-
niques as applied to hyperpolarized MRI of the lung. We will explore the ways these
advanced techniques are enhancing our ability to identify and quantify ventilation defects,
thereby offering potential improvements in the diagnosis and management of lung diseases.

2. The Current Golden Standard

“Hyperpolarized 3He Magnetic Resonance Functional Imaging Semiautomated Seg-
mentation” [36] presents a comprehensive study on the application of manual and semi-
automated volume measurements in the context of hyperpolarized 3He MRI of the lung.
The study’s primary goal was to explore the efficiency and accuracy of semiautomated
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segmentation methods in the analysis of ventilation defects in lung diseases such as asthma,
COPD, and CF. This study involved a total of 15 subjects, with each group consisting of
5 subjects with asthma, COPD, and CF, respectively. The demographic characteristics of
these subjects were meticulously recorded and analyzed, providing a robust foundation for
the study’s findings.

The study utilized multistep segmentation software developed in MATLAB R2007b.
The segmentation of 3He MR images was initiated using a hierarchical K-means clustering
algorithm [50], a histogram-based method that partitions observations into clusters based
on the nearest mean.

Additionally, 1H MR images were segmented using a Seeded Region-Growing Algo-
rithm (SRGA) [51]. This pixel-based method begins with a seed point and expands the
region by selecting neighboring pixels with similar properties. The process continues until
no further growth of the region is possible.

The segmented 1H MR images were subsequently registered, as referenced in [52]
to segmented3He MRimages. This process distinguished ventilation defects from the
background, resulting in the creation of a 3He voxel cluster map.

The study demonstrates that the semiautomated volume measurement method is as
reliable as manual methods for patients with asthma, COPD, and CF. The strong correla-
tion between the two methods and minimal bias, as shown with Bland–Altman analysis,
supports the semiautomated approach’s accuracy in quantifying ventilation defects in
hyperpolarized 3He MRI of the lung.

However, the semiautomated method has limitations. It requires about 45 min per
patient, which is still substantial, especially in clinical settings. Additionally, it requires
significant manual intervention, such as excluding the trachea from the hyperpolarized
gas MRI segmentation, adding to the overall time and effort. Figure 1 visualizes the
semi-automated process and its limitations.
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Figure 1. Illustration of the semi-automated segmentation method and its limitations. (a) Significant
manual intervention is required in the process, particularly in the removal of the trachea from the
hyperpolarized gas MRI segmentation. Description of what is contained in the first panel. (b) A
visual representation of the registration process using landmarks, demonstrating the intricate steps
involved in the segmentation method. The green color indicates the distribution of hyperpolarized
gas. Screenshots taken using MATLAB R2021b.

These limitations highlight the need for a more efficient, fully automated process.
DL-based segmentation methods show promise in automating complex tasks like image
segmentation, reducing the need for manual intervention.
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3. Overview of Deep Neural Networks

In this part of our review, we examine the fundamental principles and structures
of DL. We initiate our discussion by providing a thorough outline of key types of Deep
Neural Networks. Following this, we focus on the diverse layers that make up deep
networks, detailing their specific roles and functions. We then emphasize the importance
of evaluation metrics, which serve as crucial tools for gauging the effectiveness of these
models. Finally, we transition to a discussion on the commonly used architectures in
medical image segmentation, highlighting their prominence in the field.

3.1. Deep Neural Network Architectures
3.1.1. Convolutional Neural Networks (CNNs)

Convolutional Neural Networks (CNNs) have established themselves as some of the
most impactful and commonly used architectures within the DL networks, particularly for
tasks related to computer vision. Waibel et al. [53] further developed CNNs by introducing
shared weights across temporal receptive fields and using backpropagation training for
phoneme recognition. LeCun et al. [54] also contributed to the field by designing a CNN
architecture specifically for the task of document recognition.

Convolution is a critical mathematical operation within the structure of CNNs. It
operates linearly, taking input data and multiplying it by specified weights. This operation
is executed with the assistance of a filter or mask, which is essentially a two-dimensional
weight array and is generally smaller than the input data. The procedure entails conducting
an element-wise multiplication, or dot product, between the filter and an equivalent-sized
patch of the input. This results in a single output value. This process is systematically
replicated across the whole input image, creating a two-dimensional output array known as
a feature map. A notable aspect of this operation is the consistent application of the same fil-
ter across the entire image, allowing the algorithm to identify a particular feature regardless
of its position in the image. This key feature is referred to as translation invariance.

A key strength of CNNs is their capability to self-learn filters, eliminating the necessity
for manual filter creation. By leveraging the power of backpropagation, an essential training
technique, the network adjusts the weights of the filters based on the error it calculates
during the training phase. This advantage provides a more dynamic and adaptive approach
to identifying relevant features within the data.

The learning process occurs across various layers, each responsible for identifying
distinct types of features within the data. The layers closer to the input are typically tasked
with learning low-level features such as lines and edges, serving as the building blocks
for more complex pattern recognition. As we move deeper into the network, the layers
progressively learn to recognize more complex, higher-order features like shapes and object
parts. This hierarchical learning structure allows the model to gradually construct a more
intricate understanding of the input data, from simple, foundational elements to complex,
composite features. A representation of the CNN general workflow is provided in Figure 2.
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3.1.2. Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) [56] represent another class of DL architectures
that have shown significant promise in tasks involving sequential data. Each neuron in a
layer of an RNN receives input not only from the previous layer but also from its previous
time step, enabling the model to exhibit temporal dynamic behavior and recognize pat-
terns across time. This makes them particularly adept for tasks such as natural language
processing, speech recognition, machine translation, music generation, and sentiment clas-
sification, where the order of the input data carries significant information. Key advantages
of RNNs include their ability to process inputs of any length and maintain compact model
size, regardless of the larger inputs. However, RNNs do face challenges, including higher
computational costs, difficulty in accessing distant past information, and issues related to
the vanishing or exploding gradient problem.

Vanishing and exploding gradients are common issues encountered during the training
of neural networks, particularly those with deep architectures like RNNs. Both problems
can make it difficult for an RNN to learn and maintain long-term dependencies in the data.
To address this, Long Short-Term Memory (LSTM) [57] networks and Gated Recurrent Unit
(GRU) [58] were introduced. A depiction of the general workflow of RNNs can be seen in
Figure 3.
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Figure 3. Schematic representation of RNNs [59].

3.1.3. Encoder–Decoder Network Models

Encoder–Decoder models are a class of DL models that have shown significant results
in a variety of tasks. These models consist of two main components: an encoder model that
is responsible for compressing data into a compact latent representation, and a decoder
model that reconstructs the original data from this latent representation. The overall goal
of these models is to learn a representation of the data that can capture its structure. A
notable application of encoder–decoder models can be found in medical imaging. The study
titled “Low-Dose CT With a Residual Encoder-Decoder Convolutional Neural Network”
by Hu Chen and colleagues (2017) [60] showcases a model that integrates an autoencoder,
deconvolution network, and shortcut connections to form a residual encoder–decoder
convolutional neural network (RED-CNN), specifically designed for low-dose CT imaging.
The model was trained on patch-based data and demonstrated competitive performance in
terms of noise suppression, structural preservation, and lesion detection.

3.1.4. Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a groundbreaking and potent method-
ology used in unsupervised and semi-supervised learning [61]. GANs, a relatively recent
innovation, draw inspiration from noise-contrastive estimation and harness implicit model-
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ing of high-dimensional data distributions. The structure of GANs is bifurcated into two
neural networks: a generative network, tasked with learning the patterns within a database
to synthesize plausible new data, and a discriminative network, which categorizes samples
as either original or generated data. These two networks participate in a competitive
interplay, where the loss of one network equates to the gain of the other. The fundamental
principle of GANs is to motivate the generator to produce a data distribution that closely
mirrors that of real data, with the generative networks being indirectly trained with a
dynamically updated discriminative network.

Since their introduction, GANs have been extensively applied across a wide range
of tasks in computer vision, including image segmentation. Various GAN architectures
have been developed and deployed, such as fully connected GANs [62], Convolutional
GANs [63], Conditional GANs [64], Wasserstein-GAN [65], GANs with inference models,
and Adversarial autoencoders. The adaptability and effectiveness of GANs have led
to their incorporation in numerous studies and projects, showcasing their potential to
enhance accuracy and enable semi-weakly supervised semantic segmentation. As the field
continues to progress, GANs are anticipated to assume an increasingly pivotal role in the
advancement of deep learning and computer vision. A visual representation of the general
workflow of GANs is illustrated in Figure 4.
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Figure 4. Schematic representation of GANs [66].

3.2. Deep Neural Network Layers
3.2.1. Activation Layer

In deep learning models, the activation layer is essential as it determines the necessary
information for accurate predictions. Typically found after the convolutional layers in
CNNs, these layers function on feature maps. The activation function within these layers
decides if a neuron’s input should be activated based on the input’s significance for the
model’s prediction accuracy. These functions must be efficient due to the fact that they
will be applied across millions of neurons. Moreover, in CNNs, backpropagation requires
these functions to be non-linear, demanding additional computational efficiency. Over the
years, several activation functions such as sigmoid [67], softmax [68], Rectified Linear Units
(ReLU) [69], Leaky ReLU [70], and the recently introduced Swish [71] have been developed.

The sigmoid function,

σ(x) =
1

1 + e−x (1)
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which ranges from 0 to 1, is ideal for models predicting probabilities. The SoftMax function

σ(
→
z )i =

ezi

∑K
j=1 ezj

(2)

is a more general sigmoid function commonly used for multi-class classification. However,
these functions can be computationally intensive and may face the issue of vanishing
gradients.

ReLU
ReLU (x) = max(0, x) (3)

is a widely used activation function because of its simplicity and ability to handle the
vanishing gradient problem. However, it can experience the “dying ReLU” problem as it
outputs zero for all negative inputs, inhibiting backpropagation.

Leaky ReLU,
Leaky ReLU(x) = max(0.01× x, x) (4)

an improved version of ReLU, addresses this problem but may introduce some inconsis-
tencies for negative input predictions. Both Leaky ReLU and ReLU can still encounter the
exploding gradient problem with larger input values.

Parametric ReLUs (PReLUs)

PReLU (x) = max(0, x) + α×min(0, x) (5)

extend this concept by transforming the leakage coefficient into a parameter that is learned
concurrently with the other parameters of the neural network. Here, α is a learnable
parameter. This innovative approach allows the network to self-adjust the coefficient
based on the specific requirements of the data, thereby enhancing the adaptability and
performance of the model.

Lastly, the Swish function,

Swish (x) =
x

1 + e−x (6)

a further improvement of ReLU developed by Google researchers, maintains computational
efficiency and can sometimes outperform ReLU.

3.2.2. Pooling and Batch Normalization

Pooling layers are a crucial component of CNNs. Pooling layers are generally placed
between consecutive convolutional layers within a CNN architecture. Their main role is to
diminish the spatial dimensions of the representation, which in turn reduces the number of
parameters and computational load in the network. This controls overfitting and makes the
network invariant to small translations. Multiple types of pooling operations exist, with
Max pooling and average pooling being the most commonly utilized.

Max pooling is the most common type of pooling, and it involves defining a spatial
neighborhood (for example, a 2 × 2 window) and taking the largest element from the
rectified feature map within that window. Instead of taking the average element value, we
take the maximum element. This highlights the most present feature in the local region
of the feature map. Max pooling has been favored in practice due to its performance in
experiments and its ability to preserve the presence of the feature, no matter how small.
Average pooling is a process that computes the average value for each patch on the feature
map. This means that each max pooling operation (over a 2 × 2 window) is replaced with
an unweighted average over the same window. This was often used traditionally but has
recently been largely replaced with max pooling, which performs better in practice.

Pooling layers provide a form of translation invariant representation in the feature
map, which can be beneficial in image classification tasks where objects may appear in
different locations of the input image1. Pooling layers contribute to making the repre-
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sentation approximately invariant to minor translations of the input. This translation
invariance is particularly beneficial when the presence of a feature is more significant
than its precise location. Batch normalization [72] is a strategy used for efficiently training
deep neural networks. It involves standardizing the inputs to a specific layer across each
mini-batch, thereby stabilizing the learning process and markedly decreasing the number
of epochs required to train deep networks. This technique was introduced to tackle the
issue of internal covariate shift, a phenomenon where the distribution of inputs for each
layer shifts during the training process due to changes in the parameters of preceding
layers. This can slow down the training process and make it difficult to train models with
saturating nonlinearities. It has been shown to have a dramatic effect on the optimization
performance of neural networks. Moreover, batch normalization can also act as a form
of regularization, effectively reducing the generalization error, similar to how activation
regularization functions.

3.2.3. Optimizers

Optimizers play a crucial role in deep learning, as they are responsible for updating
the weight parameters and minimizing the loss function. They are the driving force behind
the training of deep learning models, and their efficiency can significantly impact the
performance of these models. In the context of deep learning, several optimizers have been
developed to improve the performance of models.

Stochastic Gradient Descent (SGD) [73] is one of the most basic optimization algorithms
in deep learning. It uses a fixed learning rate for all parameters throughout the entire
training process, and it is known for its fast convergence ability.

The Adaptive Gradient Algorithm (Adagrad) [74] is an optimizer that uses different
learning rates for each parameter in the model. It adapts the learning rate according to the
frequency of each parameter’s update, which can be particularly beneficial for dealing with
sparse data and large-scale problems.

Root Mean Square Propagation (RMSProp) [75] is an optimization algorithm designed
to address the diminishing learning rates in Adagrad. RMSProp uses an exponentially
decaying average to discard history from the extreme past, allowing it to converge rapidly
after finding a convex bowl.

Adadelta [76] builds upon Adagrad’s framework, aiming to mitigate its steeply de-
clining learning rate. Unlike Adagrad, which accumulates all historical squared gradients,
Adadelta limits the scope of these gradients to a constant window, denoted as ‘w’. This
is achieved by setting the state as a progressively diminishing average of past squared
gradients. Adam (Adaptive Moment Estimation) [77] is another popular optimizer that
computes adaptive learning rates for different parameters. It stores an exponentially
decaying average of past gradients similar to momentum and RMSProp. This character-
istic renders it particularly effective for problems with large datasets or a high number
of parameters.

DL optimizers are essential for effectively training models and achieving high perfor-
mance. The choice of optimizer can significantly impact the model’s ability to learn from
the data and generalize well to unseen data.

3.2.4. Fully Connected Layers

Fully connected layers, also known as dense layers, play a crucial role in the architec-
ture of neural networks. These layers are characterized by their interconnectivity, where
each neuron in a layer is connected to all neurons in the previous layer. This dense inter-
connection allows for the integration of learned features from prior layers, thus enabling
the network to learn more complex representations. Fully connected layers are typically
used toward the end of a neural network, following several convolutional or recurrent
layers that are responsible for feature extraction. The role of the fully connected layers is to
take these extracted features and combine them in various ways to solve the problem the
network is designed to address, such as classification or segmentation [78].
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3.2.5. Dropout Layer

Dropout layers [79] are a powerful and intuitive regularization technique. Dropout
operates on the principle of randomly omitting units and their connections within the
neural network during the training phase. By doing so, it hinders excessive co-adaptation
among units, resulting in a network with enhanced generalization capabilities. During
training, dropout effectively trains a large ensemble of thinned networks with shared
weights, where each thinned network gets trained very rarely, if at all. This effectiveness
stems from the fact that with each instance of training, a newly ‘thinned’ version of the
network is generated and subjected to training. The thinned networks are derived from the
original network by removing non-output units independently with a certain probability
during the training phase. Dropout has demonstrated a notable ability to curb overfitting,
yielding substantial enhancements compared with other regularization techniques.

3.3. Evaluation Metrics

Assessment metrics are vital for evaluating the effectiveness of semantic segmentation
models in deep learning. These metrics provide quantitative measures that reflect the
accuracy and effectiveness of the model in segmenting images. They are essential in
comparing different models, tuning model parameters, and improving model performance.
In the medical imaging field, these metrics are particularly important due to the high
precision required in tasks such as tumor detection and organ delineation. The choice of
evaluation metric can significantly impact the perceived performance of a model and guide
the development of more effective models. In the following sections, we will delve into
some of the most popular and widely used evaluation metrics for semantic segmentation.

3.3.1. Precision

Precision [80], often referred to as the positive predictive value, is a critical evaluation
metric in semantic segmentation tasks, particularly in the context of medical imaging.
Precision is defined as the ratio of true positive predictions (i.e., the number of pixels
correctly identified as belonging to a particular class) to the total number of positive
predictions made by the model, which includes both true positives and false positives
(i.e., the number of pixels incorrectly identified as belonging to that class). Mathematically,
it can be expressed as:

Precision =
True Positives

True Positives + False Positives
(7)

Precision provides an estimate of how many of the pixels that the model classifies
as belonging to a particular class are actually of that class. A model with high precision
demonstrates a low rate of false positives, which is especially valuable in scenarios where
the consequences of false positives are significant. However, it is important to note that
precision does not take into account false negatives (i.e., pixels of a particular class that
the model fails to identify), and thus should be considered alongside other metrics such as
recall (or sensitivity) for a more comprehensive evaluation of model performance.

3.3.2. Recall

Recall [80], also known as sensitivity or true positive rate, is another vital evaluation
metric in the domain of semantic segmentation, particularly in medical imaging applica-
tions. Recall is defined as the ratio of true positive predictions (i.e., the number of pixels
correctly identified as belonging to a specific class) to the actual number of pixels that truly
belong to that class, which includes both true positives and false negatives (i.e., the number
of pixels that are incorrectly identified as not belonging to that class). Mathematically, it
can be expressed as:

Recall =
True Positives

True Positives + False Negatives
(8)
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Recall provides an estimate of the model’s ability to correctly identify all pixels of
a particular class. When a model exhibits high recall, it means it has a low rate of false
negatives, which is particularly advantageous in situations where avoiding false negatives
is crucial. However, it is important to note that recall does not take into account false
positives (i.e., pixels that the model incorrectly identifies as belonging to a particular class)
and thus should be used in conjunction with other metrics such as precision for a more
comprehensive evaluation of model performance.

3.3.3. F-Measure

The F-measure [81], also known as the F1 score, is a widely used evaluation metric in
semantic segmentation, particularly in the field of medical imaging. The F-measure is the
harmonic mean of precision and recall, two critical metrics that respectively measure the
model’s ability to avoid false positives and false negatives. By combining precision and
recall, the F_measure provides a single metric that balances the trade-off between these two
aspects. Mathematically, it can be expressed as:

F_measure = 2× Precision× Recall
Precision + Recall

(9)

The F-measure offers a comprehensive measure of the model’s performance. A high
F-measure indicates that both the precision (i.e., the model’s ability to correctly identify
pixels of a particular class without incorrectly classifying other pixels as belonging to that
class) and the recall (i.e., the model’s ability to correctly identify all pixels of a particular
class) are high. This makes the F-measure particularly useful when it is equally important
to minimize both false positives and false negatives.

3.3.4. Dice Coefficient

The Dice coefficient [82], also known as the Sørensen–Dice index or Dice similarity
coefficient (DSC), is a prominent evaluation metric used in semantic segmentation, particu-
larly in the field of medical imaging. The Dice coefficient measures the overlap between
two samples and is particularly useful for comparing the pixel-wise agreement between a
predicted segmentation and its corresponding ground truth.

Mathematically, the DSC is calculated by doubling the area of overlap between the
predicted and actual ground truth segments and then dividing by the sum of the total pixel
counts in both the predicted and ground truth segments.

DSC = 2× Area of Overlap
Total Number of Pixels in Both Images

(10)

The Dice coefficient provides an estimate of the model’s ability to correctly identify the
boundaries of a particular class. A high Dice coefficient indicates a high degree of overlap
between the predicted and actual segments, suggesting that the model accurately identifies
the boundaries of the class.

3.3.5. Intersection over Union

Intersection over Union (IoU) [82], also known as the Jaccard index, is a commonly
used evaluation metric in semantic segmentation, particularly in the field of medical
imaging. IoU measures the overlap between the predicted segmentation and the ground
truth by dividing the area of overlap by the area of union.

Mathematically, IoU is determined by dividing the area of overlap between the pre-
dicted and ground truth segments by the area of their union. It can be expressed as:

IoU = 2× Area of Overlap
Area of Union

(11)
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IoU provides an estimate of the model’s ability to correctly identify both the location
and extent of a particular class. A high IoU indicates a high degree of overlap between the
predicted and actual segments, suggesting that the model accurately identifies the location
and extent of the class.

3.3.6. Area Under the Curve

The Area Under the Curve (AUC) [81], specifically, the Receiver Operating Character-
istic (ROC) curve, is a widely used evaluation metric in semantic segmentation, particularly
in the field of medical imaging. The ROC curve represents a graph that demonstrates the
diagnostic capability of a binary classification system across varying discrimination thresh-
olds. The Area Under the Curve (AUC) offers a quantification of the model’s proficiency in
differentiating between positive and negative classes.

Mathematically, the AUC is the integral of the ROC curve, and it quantifies the overall
performance of a model across all possible classification thresholds. An AUC of 1 indicates
a perfect classifier, while an AUC of 0.5 suggests a random classifier.

AUC provides an aggregate measure of the model’s performance across different
levels of sensitivity and specificity. A high AUC indicates that the model has a high true
positive rate for a given false positive rate across various threshold settings.

3.4. Medical Image Segmentation Architectures

With the advent of deep learning, a variety of architectures have been proposed and
developed specifically for medical image segmentation, offering significant improvements
in accuracy and efficiency over traditional methods. In the following sections, we delve into
some of the most prominent and widely used architectures for medical image segmentation.

3.4.1. Fully Convolutional Networks

Fully Convolutional Networks (FCNs) [83] have emerged as powerful and efficient
approaches to semantic segmentation. FCNs are a class of models within the broader
family of convolutional networks, which have been instrumental in driving advances
in image recognition tasks. The primary innovation of Fully Convolutional Networks
(FCNs) lies in their capacity to process inputs of any size and generate outputs with
corresponding dimensions while maintaining efficient inference and learning. A distinctive
characteristic of Fully Convolutional Networks (FCNs) is their capability to integrate deep,
broad semantic details with shallow, detailed appearance information. This is achieved
with a novel architecture that includes in-network upsampling layers, which enable pixel-
wise prediction and learning in networks with subsampled pooling. This combination
of deep and shallow information allows FCNs to make local predictions that respect the
global structure of the image.

One of the primary advantages of FCNs for semantic segmentation is their ability to
provide an end-to-end solution, even when dealing with images of varying sizes. This
feature, combined with their other strengths, makes FCNs highly effective tools in the
field of semantic segmentation. The limitations of FCNs encompass their substantial
computational demands and the challenges they face when adapting to three-dimensional
imagery. The architecture of an FCN is depicted in Figure 5.

3.4.2. U-Net

U-Net [84] is another influential architecture that has made significant strides in the
field of semantic segmentation, particularly in biomedical image processing. The archi-
tecture is designed as an encoder–decoder network, with the encoder extracting features
from the input image and the decoder using these features to generate a segmentation map.
The U-Net architecture is characterized by its symmetric structure. The encoding path
progressively captures the context in the image, while the decoding path helps in precise
localization using transposed convolutions. Thus, U-Net combines the advantages of both
local features and the global context, which is crucial for accurate semantic segmentation.
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A distinctive feature of U-Net is the introduction of skip connections between the encoder
and decoder. These skip connections allow the network to use information from the earlier
layers in the later layers, which helps in recovering the full spatial resolution of the output.
This is particularly useful in tasks like medical image segmentation, where every pixel can
be important.
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Figure 5. Schematic representation of an FCN [83].

U-Net offers several advantages for semantic segmentation. It provides an efficient
way to deal with the limited amount of annotated images in the medical field, as it can be
trained with relatively few images and still deliver high segmentation accuracy. Further-
more, the use of skip connections allows U-Net to capture both high-level and low-level
features, leading to more precise segmentation. The structure of the U-Net architecture is
demonstrated in Figure 6.
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Figure 6. Schematic representation of the U-Net [84].

3.4.3. V-Net

V-Net [85] is a powerful architecture designed specifically for volumetric medical
image segmentation. This refers to a 3D adaptation of the U-Net architecture, specifically
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crafted to work directly with 3D images. This feature is especially beneficial in medical
imaging contexts, where data frequently comprise 3D volumes like MRI or CT scans. The
architecture of V-Net is characterized by its symmetric structure. Comparable to the U-Net
architecture but with notable distinctions, this network is segmented into various stages,
each functioning at different resolutions. Each stage consists of one to three convolutional
layers, and a residual function is learned at every stage. Such an architecture enhances
the likelihood of convergence compared with networks that do not incorporate residual
learning. A distinctive aspect of the V-Net architecture is its use of volumetric kernels in
the convolutions executed at each stage. This enables the model to effectively grasp three-
dimensional spatial information, essential for precise segmentation in three-dimensional
medical imaging. During the compression pathway, the resolution is decreased using
convolution with 2 × 2 × 2 voxel-wide kernels, applied with a stride of 2, akin to the
pooling layers found in other network architectures. The configuration of the V-Net
architecture is depicted in Figure 7.
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Figure 7. Schematic representation of the V-Net [85].

3.4.4. U-Net++

U-Net++ [86] is an enhanced version of the U-Net architecture, designed to address
some of the limitations of the original U-Net. The U-Net++ architecture introduces sev-
eral innovative features that enhance its performance in semantic segmentation tasks,
particularly in the field of medical imaging.

The architecture is characterized by its dense convolutional blocks and deep super-
vision design. The dense convolutional blocks are designed to reduce the semantic gap
between the feature maps of the encoder and decoder, making the learning task easier
for the model. These blocks take into account not only the information from the previous
nodes in the same level but also the nodes in the level below it. This dense connectivity
allows the model to capture both high-level and low-level features, leading to more precise
segmentation. The deep supervision design of U-Net++ allows the model to operate in
two modes: the accurate mode and the fast mode. In the accurate mode, the outputs from
all branches in level 0 are averaged to produce the final result. In the fast mode, not all
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branches are selected for outputs. This flexibility allows U-Net++ to adapt to different
computational and accuracy requirements.

U-Net++ offers several advantages for semantic segmentation. The use of dense
connections and deep supervision allows U-Net++ to capture both high-level and low-level
features, leading to more precise segmentation. The structure of the U-Net++ architecture
is demonstrated in Figure 8.
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Figure 8. Schematic representation of the U-Net++ [86].

3.4.5. Attention U-Net

The Attention U-Net [87] presents an innovative approach to image segmentation by
incorporating an attention gate (AG) mechanism. This mechanism enables the model to con-
centrate on specific target structures within an image, thereby enhancing its generalization
capability and reducing computational waste on irrelevant activations.

The attention mechanism can be categorized into two types: hard and soft. Hard
attention, although effective in highlighting relevant regions, is non-differentiable and
necessitates the use of reinforcement learning for training. Conversely, soft attention
assigns weights to different regions of the image based on their relevance, allowing for
differentiation and training using standard backpropagation. This method ensures that the
model focuses more on regions with higher weights during the training process.

The integration of attention into the U-Net architecture addresses the issue of imprecise
spatial information during the upsampling phase. U-Net uses skip connections to combine
spatial information from both the downsampling and upsampling paths. However, this
process often results in the propagation of redundant low-level features. The application
of soft attention at these skip connections effectively suppresses activations in irrelevant
regions, thereby reducing feature redundancy.

Attention gates utilize additive soft attention, taking two input vectors: x and g. The
vector g, derived from the next lower layer of the network, possesses superior feature
representation due to its origin deeper within the network. These vectors undergo an
element-wise summation, followed by a ReLU activation layer and a 1 × 1 convolution.
The resulting vector is then scaled within the range of [0, 1] through a sigmoid layer,
producing the attention coefficients. These coefficients, indicative of feature relevance, are
then upsampled to the original dimensions of the x vector and multiplied element-wise
to the original x vector, effectively scaling the vector based on relevance. The schematic
representation of the Attention U-Net architecture can be seen in Figure 9.

3.4.6. ResUNet++

ResUNet++ [88], an enhanced version of the ResUNet architecture, has been developed
specifically for medical image segmentation tasks, with a particular focus on pixel-wise
polyp segmentation in colonoscopy examinations. The architecture integrates multiple
sophisticated elements, such as residual blocks, squeeze and excitation blocks, Atrous
Spatial Pyramidal Pooling (ASPP), and attention blocks, enhancing its overall functionality
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and efficiency. ResUNet++ is based on the Deep Residual U-Net (ResUNet) framework,
combining the advantages of deep residual learning with the U-Net structure. Its architec-
ture consists of a stem block, three encoder blocks, an Atrous Spatial Pyramidal Pooling
(ASPP) section, and three decoder blocks. In each encoder block of this architecture, there
are two consecutive 3 × 3 convolutional blocks followed by identity mapping. A strided
convolution layer is then used to reduce the spatial dimensions of the feature maps. Sub-
sequently, the output goes through a squeeze-and-excitation block. The Atrous Spatial
Pyramidal Pooling (ASPP) functions as a bridge, offering a wider contextual perspective.
The decoding path mirrors the encoding path, utilizing residual units and attention blocks
to enhance the effectiveness of feature maps. At the end of the decoder block, its output is
routed through the ASPP. Following this, a 1 × 1 convolution using a sigmoid activation
function is applied to generate the final segmentation map. The structure of the ResUNet++
model is depicted in Figure 10.
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Figure 9. Schematic representation of the Attention U-Net [87].

3.4.7. R2U-Net

The R2U-Net [89] model incorporates the strengths of deep residual models, Recurrent
Convolutional Neural Networks (RCNN), and U-Net to deliver superior performance in
segmentation tasks. The architecture of R2U-Net consists of convolutional encoding and
decoding units, similar to U-Net. In the R2U-Net architecture, instead of typical forward
convolutional layers, Recurrent Convolutional Layers (RCLs) and RCLs integrated with
residual units are utilized within both the encoding and decoding units. The incorporation
of residual units with RCLs aids in creating a more effective, deeper model. Additionally,
this model features an efficient feature accumulation mechanism within the RCL units,
ensuring enhanced and more robust feature representation. This is particularly benefi-
cial for extracting very low-level features crucial for segmentation tasks. The R2U-Net
distinguishes itself in three key ways: Firstly, it uses RCLs and RCLs with residual units
rather than standard forward convolutional layers in both its encoding and decoding stages.
Secondly, it incorporates an effective feature accumulation technique within the RCL units,
enhancing feature representation. Lastly, it omits the cropping and copying unit found in
the basic U-Net model, relying solely on concatenation operations, which leads to a more
advanced architecture with improved performance. It also has several advantages over
the U-Net model. It is efficient in terms of the number of network parameters. Although
R2U-Net maintains the same quantity of network parameters as U-Net and ResU-Net, it
demonstrates superior performance in segmentation tasks. The inclusion of recurrent and
residual operations in R2U-Net does not augment the total number of network parameters,
yet it markedly enhances both training and testing performance. The R2U-Net model’s
architecture is visually represented in Figure 11.
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Figure 10. Schematic representation of the Attention ResU-Net ++ [88].

3.4.8. nnU-Net

nnU-Net [90] is a robust tool for semantic segmentation that utilizes deep learning to
automatically adapt to a given dataset. It simplifies the user experience by analyzing train-
ing cases and configuring a corresponding U-Net-based segmentation pipeline, eliminating
the need for user expertise in the underlying technology.

The nnU-Net framework encompasses the entire deep learning project pipeline, from
preprocessing to model configuration, training, postprocessing, and ensembling. This
broad scope makes it a versatile tool for various applications. Its automatic configuration
feature addresses critical components like preprocessing and network architecture.
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Figure 11. Schematic representation of the Attention R2U-Net [89].

As an open-source tool, nnU-Net delivers state-of-the-art segmentation results right
out of the box. Its robustness and self-adapting framework have earned it recognition in
the field of medical image segmentation and beyond. Its auto-configuration ability makes
it a user-friendly solution for a wide range of segmentation tasks.

4. Deep Learning Approaches for Quantifying Ventilation Defects in Hyperpolarized
Gas MRI

The application of deep learning techniques to medical imaging has opened new
avenues for enhancing diagnostic accuracy and efficiency. This is particularly evident in
hyperpolarized gas Magnetic Resonance Imaging, where these advanced computational
methods have shown significant promise in quantifying ventilation defects. The following
discussion delves into five pioneering research studies that have successfully used deep
learning approaches in this context. Each of these studies provides unique insights into the
potential of deep learning in improving the analysis and interpretation of hyperpolarized
gas MRI data, thereby contributing to our understanding of various pulmonary conditions.

4.1. Convolutional Neural Networks and Template-Based Data Augmentation for Functional Lung
Image Quantification

In the research paper [48], the authors explore the potential of CNNs in the context
of functional lung imaging. The authors present their work on a CNN segmentation
framework, specifically tailored for functional lung imaging using hyperpolarized gas.
They also address the practical challenges associated with deep learning, such as the need
for large training datasets, and propose a novel data augmentation strategy to mitigate
this issue.

4.1.1. Materials and Methods

This study utilized a combination of proton and ventilation images sourced from
the authors’ previous and ongoing research. The ventilation images were particularly
noteworthy, as they were obtained from both helium-3 and xenon-129 acquisitions. This is
significant because the authors’ existing segmentation processing approach [91] did not
distinguish between these two types of ventilation gas acquisition protocols, a feature
they anticipated would be reflected in their proposed methodology. The acquisition of
hyperpolarized MR images was executed in strict adherence to an Institutional Review
Board-approved protocol, with each participant providing written informed consent.

MRI data were acquired using a 1.5 Tesla whole-body MRI scanner, equipped with
broadband functionality and specialized hyperpolarized gas chest radiofrequency coils. The
study utilized two distinct imaging protocols, both of which incorporated hyperpolarized
gas and proton imaging acquisitions. The first protocol harnessed 3D balanced steady-
state free-precession or spoiled gradient echo pulse sequences, while the second protocol
used a contiguous, coronal, 2D gradient echo pulse sequence with an interleaved spiral
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sampling scheme. In keeping with ethical guidelines, all data were de-identified prior
to analysis, thereby ensuring the ethical integrity of the study and the preservation of
participant privacy.

In the study, the authors used the U-net architecture to construct distinct models for
the segmentation of both structural and functional lung images. In instances where dual
acquisition yielded both types of images, the structural images were utilized to generate a
mask for the segmentation of the ventilation image. This approach was facilitated with an
open-source implementation, developed by the authors’ group and made available through
the ANTsRNet Rpackage [92].

Furthermore, the authors implemented a multilabel Dice coefficient loss function,
which is a crucial component in evaluating the performance of the segmentation models.
They also developed specific batch generators for the generation of augmented image data
on the fly. This dynamic approach to data augmentation ensures a diverse and robust
training set, enhancing the performance and generalizability of the segmentation models.

4.1.2. Template-Based Data Augmentation

The authors of the study innovatively address a common challenge in deep learning
algorithms—the requirement for extensive training datasets. They introduce a novel data
augmentation method based on templates, utilizing image data from the population to
create an optimal representative template that considers both shape and intensity char-
acteristics. This approach facilitates the transmission of each piece of individual training
data across the space of all other training data, effectively enlarging the overall size of the
dataset. During model training, a new augmented data instance is created by mapping a
randomly selected source subject to the space of a target subject. This approach enables the
expansion of a training dataset of size N to a dataset of size N2. The authors also discuss a
variant of this method, where a template is built from M datasets (where M > N), resulting
in an augmented dataset size of M × N.

The authors applied this template-based data augmentation separately for proton and
ventilation data, creating distinct templates for each. They used 60 proton MR images,
allowing for 3600 potential deformable shapes, which could be further augmented using
conventional strategies. Similarly, a ventilation template was created from the training
ventilation images. This innovative approach to data augmentation signifies a substantial
contribution to the field of medical image segmentation. Figure 12 illustrates the process
of template-based data augmentation for generating both the proton (on the left) and
ventilation (on the right) U-net models.

4.1.3. Deep Learning-Based Segmentation Architecture

In their study, the authors used a dataset comprising 205 proton MR images, each
accompanied by left/right lung segmentations, and 73 ventilation MR images with cor-
responding masks. Separate U-net models were trained for these images. The dataset
underwent denoising and bias correction, a process that required less than a minute per
image. The authors utilized an R script to read the images and segmentations, establish
the model, configure model parameters, and initialize the batch generator. To handle
the proton data, a 3D U-net model was constructed, capitalizing on the distinctive 3D
shape of the lungs. However, this approach faced limitations due to the GPU’s memory
capacity. The authors acknowledged that this limitation could potentially be addressed
with additional computational resources. In the batch generator, transforms derived from
the template-building process described earlier were utilized for the proton data. Random
assignments of reference and source subjects were made, and during each iteration, these
random pairings were used to generate augmented data. The U-net ventilation model was
developed using 73 ventilation MRIs, and the reduced dataset size was a consequence of
data pruning to achieve class balance. Although the functional images were processed as
3D volumes and a 3D ventilation template was created for template-based data augmenta-
tion, the resulting U-net model was 2D. This choice was guided by factors such as shorter
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training and prediction times for 2D models compared with 3D models. Additionally, it
was determined that 2D models were sufficient for functional lung imaging, as existing
state-of-the-art methods lacked complex shape priors. The modified U-net is depicted in
Figure 13.
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Figure 12. The template-based data augmentation process used in the creation of proton (left) and
ventilation (right) U-net models. A template is established and used to generate transformations
for each subject. These transformations, which are deformable and invertible, for the kth subject,
Sk to the template, T, are denoted by ϕk: Sk↔T and are utilized during model training. The data
augmentation process involves randomly selecting a reference and a target subject during batch
processing. As an example, the transformation from Subject 1 to the space of Subject 2, represented
by the green curved arrow, is defined as ϕ2

−1(ϕ1) [48].
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Figure 13. The adapted U-net framework for both structural and functional lung segmentation [48].

The authors highlighted that segmentation of any ventilation image would be con-
ducted on a slice-by-slice basis, with each slice being segmented using the 2D model.
Regarding data augmentation, complete 3D transforms were provided to the batch genera-
tor. During each iteration, a set of 3D augmented images was dynamically generated, and
a subset of slices was randomly chosen for each image until the batch set was fully formed.
The training process for both the 3D U-net structural model and the 2D U-net functional
model was relatively time-intensive, requiring approximately 10 h in total. However, once
the models were constructed, the prediction time was remarkably efficient, taking less than
a second per image. Both the training and prediction processes were performed using an
NVIDIA Titan Xp GPU. A summary of their configured U-Net architecture is provided in
Table 1.
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Table 1. A summary of the U-Net parameters used in the referenced study.

Parameter Proton Model Ventilation Model

Adam optimization learning rate 0.00001 0.0001

Number of epochs 150 150

Training/validation data split 80/20 80/20

CL 1 kernel size 5 × 5 × 5 5 × 5 × 5

CL activation ReLU ReLU

CL number of filters Starts with N = 16,
doubles at every layer

Starts with N = 32,
doubles at every layer

Dropout layer rate
MPL 2 size

0.2
2 × 2 × 2

0.2
2 × 2 × 2

MPL stride length 2 × 2 × 2 2 × 2 × 2

U/TCL 3 kernel size 5 × 5 × 5 5 × 5 × 5

U/TCL stride length 2 × 2 × 2 2 × 2 × 2

U/TCL activation ReLU ReLU
1 Convolution layers. 2 Max pooling layers. 3 Upsampling/transposed convolution layers.

An illustration of the proposed workflow is provided in Figure 14.
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Figure 14. The training of U-net models for both proton and ventilation imaging incorporates
template-based data augmentation. This offline training requires significant computational resources
but is executed only once. The subsequent preprocessing for each subject involves MR noise reduction
and bias correction. The proton mask, derived from the proton U-net model, is incorporated as an
additional channel for ventilation image processing [48].

4.1.4. Results

In the referenced study, the researchers implemented the U-net structural model,
developed using template-based data augmentation, on a test dataset comprising the same
62 proton MRIs utilized in a prior investigation. The performance of this U-net model
was subsequently juxtaposed with a refined version of the Joint Label Fusion (JLF) [93]
technique, a method currently in use in their ongoing studies.
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The refinement of the JLF method involved a strategic deviation from the use of
the complete atlas set, which would necessitate a substantial number of pairwise image
registrations. Instead, the center of the image under segmentation was aligned with each
atlas image, followed by the computation of a neighborhood cross-correlation similarity
metric. The ten most similar atlas images were then selected for the JLF scheme.

The comparative performance of the two methodologies was assessed using the Dice
overlap metric. The U-net model demonstrated a Dice overlap of 0.93 ± 0.03 for the left
lung, 0.94 ± 0.02 for the right lung, and 0.94 ± 0.02 for the whole lung. The refined
JLF method, while achieving marginally higher Dice overlap scores (0.95 ± 0.02 for the
left lung, 0.96 ± 0.01 for the right lung, and 0.96 ± 0.01 for the whole lung), required
significantly more processing time. The U-net model required less than a second per subject
for processing, in contrast with the JLF method, which demanded approximately 25 min
per subject. This time difference persisted even when the JLF method utilized four CPU
threads to execute eight parallel pairwise registrations for each evaluation image.

As for the results of the ventilation lung MRI lung segmentation, the researchers
implemented their deep learning methodology on the evaluation data from their previous
work. The probability images generated as output were combined into a unified seg-
mentation image. This segmentation image was subsequently compared to the manual
segmentation results and the outcomes produced by Atropos, a method introduced in
their previous work. Notably, they excluded Otsu thresholding and K-means thresholding
due to their subpar performance and disregard for spatial information, a feature that both
computational methods and human readers consider.

In the absence of a definitive ground truth, the researchers used the STAPLE algo-
rithm to create consensus labeling. To assess performance, they utilized the Dice overlap
coefficient to measure the agreement between each segmentation rater and the consensus
labeling. Below are the mean values for total lung, normal lung, and ventilation defect
from the results:

• Reader 1 recorded values of 0.89± 0.07 for total, 0.91± 0.06 for normal lung, and 0.6± 0.3
for ventilation defect.

• Reader 2 reported values of 0.92 ± 0.05 for total, 0.94 ± 0.04 for normal lung, and
0.57 ± 0.3 for ventilation defect.

• Reader 3 observed values of 0.94 ± 0.03 for total, 0.96 ± 0.03 for normal lung, and
0.63 ± 0.3 for ventilation defect.

• Atropos yielded results of 0.92 ± 0.03 for total, 0.94 ± 0.03 for normal lung, and 0.71 ± 0.3
for ventilation defect.

• U-net generated values of 0.94 ± 0.03 for total, 0.96 ± 0.03 for normal lung, and 0.70 ± 0.3
for ventilation defect.

The processing time varied significantly across methods: Atropos required less than
a minute per subject, human readers took between 30 and 45 min, and the U-net model
processed each subject in less than a second. This highlights the remarkable processing
efficiency of the U-net model. Figure 15 presents a comparison of ventilation segmentation
between manual human interpretation and the two computational methodologies.

4.2. 3D Deep Convolutional Neural Network-Based Ventilated Lung Segmentation Using
Multi-Nuclear Hyperpolarized Gas MRI

In the study [94], Astley et al. present a novel deep learning approach to enhance the
segmentation of ventilated lung regions in MRI scans. Utilizing hyperpolarized gases such
as 3He and 129Xe, the authors use a 3D deep convolutional neural network to accurately
delineate ventilated areas. This method stands out for its ability to handle the high-
dimensional data inherent in hyperpolarized gas MRI, providing a significant advancement
over traditional segmentation techniques.
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Figure 15. Comparison of ventilation segmentation between manual human interpretation and the
two computational methodologies. Observe the impact of partial volume effects at the lung apex,
marked by the yellow arrow, which the Atropos method erroneously classifies as a ventilation defect.
In contrast, the U-net method and the human evaluator accurately identify this area [48].

The paper details a meticulous training process using the NiftyNet [95] framework
and TensorFlow [96], optimized using Adam [77] with carefully tuned learning rates and
batch sizes to maximize the efficacy of the CNN. The authors’ approach demonstrates
a marked improvement in segmentation accuracy when compared with conventional
methods, as evidenced by their comprehensive testing across five different experimental
setups. Notably, the combination of 3He and 129Xe scans in the training set emerged as
the most effective strategy, highlighting the potential of multi-nuclear imaging data in
enhancing deep learning models.

4.2.1. Materials and Methods

The study involved 3D volumetric MRI scans using hyperpolarized 3He and 129Xe
gases, conducted on a 1.5T MRI system. For signal transmission and reception, flexible
quadrature radiofrequency coils tuned to the respective Larmor frequencies of 3He and
129Xe were used. The scans achieved an in-plane resolution of 4 × 4 mm2. The 129Xe MRI
scans varied from 16 to 34 slices, averaging 23 slices with a slice thickness of 10 mm. In
contrast, the 3He MRI scans had a range of 34 to 56 slices, with an average of 45 slices and a
thinner slice profile at 5 mm.

The dataset compiled for the study was retrospectively collected from various clinical
observational studies and patients who underwent clinical scans. It encompassed a total
of 743 volumetric hyperpolarized gas MRI scans, which included 248 scans (11,370 slices)
using 3He and 495 scans (11,520 slices) using 129Xe, from 326 subjects. The distribution of
slices was roughly equal between the two gases.

Every MRI scan was paired with a meticulously hand-crafted ground truth segmen-
tation of the ventilated lung regions. These segmentations underwent a rigorous process,
involving multiple expert observers’ meticulous editing and subsequent review by an
independent imaging scientist. This comprehensive approach was taken to guarantee the
accuracy and consistency of the segmentations. In the event of any identified errors, such
as the unintentional inclusion of the trachea or background noise within the segmenta-
tions, manual corrections were diligently applied. This meticulous attention to detail was
essential to preserve the dataset’s integrity and accuracy.

4.2.2. Deep Learning-Based Segmentation Architecture

The study utilized a V-Net [85] fully convolutional neural network, which processes
3D scans using volumetric convolutions. The network used PReLu [69] activation functions
and binary cross-entropy loss [97] for optimization. The Adam optimizer was harnessed
with a defined spatial window size and batch size. The learning rate underwent adjust-
ments during both the initial training and fine-tuning stages of the model. Training and
inference were executed on an NVIDIA Tesla V100 GPU using the NiftyNet framework
on TensorFlow. The researchers systematically conducted a series of experiments to assess
the influence of various network architectures, loss functions, and pre-processing methods.
These experiments were carried out on a subset of 431 hyperpolarized gas MRI scans,
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encompassing both healthy subjects and patients with pulmonary conditions. Out of these
scans, 29 were dedicated to parameterization testing, while 40 were utilized for internal
validation. Notably, the V-Net architecture, coupled with the cross-entropy loss function,
demonstrated outstanding performance, as evidenced by its superior Dice similarity coeffi-
cient, average Hausdorff distance, and Hausdorff 95th percentile distance. Pre-processing
techniques like normalization and denoising were tested but did not yield significant
improvements, leading to their exclusion from the larger dataset.

Five distinct experimental methods were used to train the network on different combi-
nations and iterations of 3He and 129Xe scans. These methods were designed to determine
the most effective training process across various metrics, with each method being rigor-
ously compared using the same testing set.

4.2.3. Results

The study used five different deep learning training strategies to optimize the net-
work’s performance:

• Training solely on 232 scans with 3He gas for 25,000 iterations.
• Training solely on 437 scans with 129Xe gas for 25,000 iterations.
• Initial training on 232 scans with 3He gas for 20,000 iterations, followed by further

training on 437 scans with 129Xe gas for 5000 iterations using the weights from the first
training phase.

• Initial training on 437 scans with 129Xe gas for 20,000 iterations, followed by further
training on 232 scans with 3He gas for 5000 iterations using the weights from the first
training phase.

• Combined training on 669 scans with both 3He and 129Xe gases for 25,000 iterations.

In the assessment of segmentation performance across various deep learning exper-
imental methods, the approach that integrated training on both 3He and 129Xe isotopes
demonstrated superior results. This method achieved a DSC of 0.958, an average Hausdorff
distance (Avg HD) of 2.22 mm, a 95th percentile Hausdorff distance (HD95) of 8.53 mm,
and an XOR metric of 0.087. These values were the highest recorded for the respective
metrics among the tested methods. In contrast, traditional segmentation methods such as
K-means and SFCM lagged, with K-means recording significantly higher values of Avg HD
(37.28 mm) and HD95 (98.79 mm), indicating less precise segmentation. The other DL meth-
ods varied in performance, with individual methods trained exclusively on either 3He or
129Xe showing competitive results but not exceeding the combined approach. Fine-tuning
across isotopes also influenced performance, with slight variations in metric outcomes.

When evaluating the segmentation performance of deep learning methods stratified
by disease, the data indicated that training on 129Xe exclusively provided the best result
for healthy subjects with a mean DSC of 0.952. For lung cancer patients, training on 3He
and fine-tuning on 129Xe was most effective, achieving a mean DSC of 0.955. Patients with
COPD showed the highest mean DSC of 0.968 when trained on 129Xe, fine-tuned on 3He.
In cases of CF, combined training on 3He and 129Xe yielded a mean DSC of 0.956. The
segmentation for premature children was best when trained on 3He, fine-tuned on 129Xe
with a mean DSC of 0.929. For Interstitial Lung Disease (ILD), training on 129Xe alone was
most effective with a mean DSC of 0.959. Lastly, clinical referrals saw the highest mean DSC
of 0.961 with combined 3He and 129Xe training. These results showcase the effectiveness of
tailored DL training approaches for different diseases in improving segmentation accuracy.
A comparison of performance on testing scans is provided in Figure 16.

The study concludes that deep learning techniques excel in segmenting lung regions
from hyperpolarized gas MRI scans, with a large and diverse dataset enhancing the model’s
accuracy and generalizability. The combined use of 3He and 129Xe scans in training im-
proved the model’s performance, achieving a high Dice similarity coefficient. While the
study notes limitations such as potential observer variability and an imbalance in the
dataset, future research aims to refine the model further.
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Figure 16. Comparative analysis of segmentation accuracy in hyperpolarized gas MRI. The deep
learning (DL) method using combined 129Xe and 3He data is contrasted with standard segmentation
techniques (SFCM and K-means). Statistical significance is denoted with p-values from paired
t-tests. For two individual cases—Case 1 representing a COPD patient and Case 2 a clinical referral
patient—the Dice similarity coefficient (DSC) and average Hausdorff distance (Avg HD) metrics are
presented for each segmentation method [94].

4.3. Large-Scale Investigation of Deep Learning Approaches for Ventilated Lung Segmentation
Using Multi-Nuclear Hyperpolarized Gas MRI

In the study [47], the authors conducted a thorough series of experiments aimed
at identifying the most efficient 3D CNN architecture, loss function, and pre-processing
techniques for hyperpolarized gas MRI segmentation. Their research encompassed the
evaluation of five distinct deep learning methods, all implemented with the optimal con-
figuration. The ultimate goal was to attain precise, resilient, and rapid segmentation of
ventilated lungs in hyperpolarized gas MRI scans.

The performance of these methods was assessed using a variety of evaluation metrics
and a diverse testing set, which included both 3He and 129Xe noble gas scans along with
corresponding expert segmentations. The authors also explored the impact of the type of
noble gas on the performance of deep learning.

In addition, they compared the top-performing deep learning method with traditional
approaches. Lastly, they assessed the correlation and agreement of ventilated lung volume
for the best-performing deep learning method in comparison to volumes derived from
expert segmentations.

4.3.1. Materials and Methods

In the study, all participants underwent 3D volumetric hyperpolarized gas MRI scans
using either 3He or 129Xe. These scans were carried out on a 1.5 Tesla HDx scanner, utilizing
3D steady-state free precession sequences. The MRI signals were transmitted and received
using flexible quadrature radiofrequency coils tuned to the Larmor frequencies of the
respective gases. The in-plane resolution for both types of scans was set at 4 × 4 mm2. The
129Xe scans consisted of between 16 and 34 slices, averaging 23 slices, with a slice thickness
of 10 mm. On the other hand, the helium-3 scans ranged from 34 to 56 slices, averaging
45 slices, with a slice thickness of 5 mm.

The study utilized a dataset compiled retrospectively from various research and
clinical studies involving patients who underwent hyperpolarized gas MRI scans. The
dataset, approved for use by the Institutional Review Boards at the University of Sheffield
and the National Research Ethics Committee, was fully anonymized and complied with all
relevant guidelines and regulations. It comprised 759 volumetric hyperpolarized gas MRI
scans, split almost evenly between 3He and 129Xe scans, from 341 subjects. These subjects
included both healthy individuals and patients with a range of pulmonary conditions.
Each scan in the dataset was paired with an expert-edited segmentation representing the
ventilated region of the lungs. These segmentations, collected from numerous retrospective
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studies, were generated using various semi-automated methods and edited by multiple
expert observers. An experienced imaging scientist conducted quality control, manually
correcting potential errors to ensure segmentation accuracy and removing any voxels
outside of the lung parenchymal region defined by a structural 1H MRI scan.

4.3.2. Deep Learning-Based Segmentation Architecture

The research carried out extensive parameterization experiments with the aim of
pinpointing the most efficient 3D CNN architecture, loss function, and pre-processing
techniques for hyperpolarized gas MRI segmentation. In this study, the researchers used
nn-UNet [90], a fully convolutional neural network, to process 3D scans with volumetric
convolutions. The network was trained end-to-end using hyperpolarized gas MRI volu-
metric scans. They utilized a 3D version of the U-Net, which was modified to alleviate
memory constraints, thereby allowing for 30 feature channels. The size of the convolu-
tion operations varied from 3 × 3 × 3 to 1 × 1 × 1, contingent on the network layer. A
visual representation of the modified 3D nn-UNet network is provided in Figure 17. Each
hyperpolarized gas MRI scan underwent a pre-processing phase using spatially adaptive
denoising. This method was specifically designed to account for both Rician noise and
spatially varying noise patterns. The denoising process was implemented using the De-
noiseImage function in ANTs 2.1.0 across three dimensions, with standard parameters
applied. For data augmentation, the researchers used constrained random rotation and
scaling. The rotation was limited to a range of −10◦ to 10◦, and scaling was within −10% to
10%. These random rotations or scalings were applied within these specified limits. Each
rotation axis and scaling factor were assigned a unique random value. Table 2 summarizes
the network configurations.
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Figure 17. The adapted 3D nn-UNet network used in the referenced study. The deconvolution side,
which parallels the convolutional path and includes an extra 1 × 1 × 1 SoftMax layer, is not depicted
in the figure [47].
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Table 2. A summary of the nnU-Net parameters used in the referenced study.

Parameter Value

Activation function PReLU

Learning rate (initial training) 1 × 10−5

Learning rate (fine-tuning) 0.5 × 10−5

Spatial window size [96, 96, 96]

Batch size 2

The dataset was divided into two subsets: a training set comprising 75% of the data
and a testing set containing the remaining 25%. The training set comprised 237 3He scans
and 436 129Xe scans, while the testing set included 86 scans, each from a different subject.
The researchers ensured that there was no overlap between the subjects in the training and
testing sets.

The researchers conducted five distinct deep learning experimental methods to train
the network, as listed below:

1. Training on 237 3He scans for 30,000 iterations.
2. Training on 436 129Xe scans for 30,000 iterations.
3. Training on 237 3He scans for 20,000 iterations, then fine-tuning on 436 129Xe scans for

10,000 iterations.
4. Training on 436 129Xe scans for 20,000 iterations, then fine-tuning on 237 3He scans for

10,000 iterations.
5. Training on both 436 129Xe and 237 3He scans for 30,000 iterations.

Each of the networks underwent training using the NiftyNet framework designed for
medical imaging deep learning. These training sessions, as well as the subsequent inference
processes, were carried out on an NVIDIA Tesla V100 GPU equipped with 16 GB of RAM.

4.3.3. Deep Learning vs. Conventional Methods

During the comparison to conventional methods, the researchers evaluated their deep
learning approach against two traditional machine learning methods, namely, Spatial Fuzzy
C-Means (SFCM) [98] and K-means clustering [36]. The K-means algorithm is commonly
used in hyperpolarized gas MRI segmentation to group data points into clusters centered
around their respective centroids. In contrast, the SFCM method uses a bilateral filter to
reduce noise while preserving edges, considering spatially close pixels with high correlation
to belong to the same cluster. It incorporates voxel membership within a defined window
and adjusts the central pixel based on weighting variables. The performance of each of the
five deep learning experimental approaches, as well as the two traditional methods, was
assessed using a variety of metrics on the test dataset, which is listed in Table 3.

Table 3. A summary of the performance of each of the five deep learning experimental approaches.

Metric Description Formula

DSC (Dice similarity coefficient) Measures overlap between the ground
truth 1 and predicted 2 segmentations DSC = 2 |PR ∩ GT|

|PR| + |GT|

Avg HD (average boundary
Hausdorff distance)

Average distance between the most
distant point of the predicted and ground

truth segmentation, and vice versa
Avg HD(PR, GT) = max(d(PR, GT), d(GT, PR))

HD95 (95th percentile
Hausdorff distance)

The 95th percentile of the Hausdorff
distance was used to remove the impact

of outlier voxels
HD(PR, GT) = max(h(PR, GT), h(GT, PR))

XOR (relative error metric) Evaluates segmentation errors XOR = |PR ∩ GT′| + | |PR′ ∩ GT| |
|GT|

1 GT = ground truth. 2 PR = predicted.
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4.3.4. Results

A variety of statistical tests was used to analyze the data. The normality of the data
was first assessed using Shapiro–Wilk tests. In cases where normality was not met, non-
parametric tests were utilized. To assess the statistical significance of variations among the
different experimental deep learning methods, either one-way repeated-measure ANOVA
or Friedman tests were performed, with post hoc multiple comparisons adjusted using the
Bonferroni correction. To assess the impact of the noble gas used (either 3He or 129Xe) on the
segmentations in the testing set, independent t-tests or Mann–Whitney U tests were used.
The top-performing DL method was compared to traditional segmentation approaches
using either one-way repeated-measure ANOVA or Friedman tests, with post hoc multiple
comparisons adjusted using the Bonferroni correction. To compare the volumes of DL-
generated and expert segmentations, Pearson or Spearman correlations were calculated
and Bland–Altman analysis was conducted. All statistical analyses were carried out using
Prism 8.4 (GraphPad, San Diego, CA, USA) and SPSS Statistics 26.0 (IBM Corporation,
Armonk, NY, USA). Five deep learning methods were applied to generate segmentations
for 86 test scans. These scans included both healthy subjects and patients with various
pulmonary pathologies, and the segmentations were created using either 3He or 129Xe.
The quality of these segmentations was evaluated by comparing them with the original
scans and expert segmentations. The DL methods were generally successful in excluding
voxels outside the lung parenchyma and accurately identifying ventilation defects. One
interesting case involved a healthy subject with a zipper artifact caused by electronic noise
in the hardware. Some models were able to accurately exclude this artifact, while others
could not distinguish between the artifact and ventilated lung voxels.

Figure 18 illustrates the quality of segmentation for a healthy individual and patients
with four distinct pathologies, utilizing five different deep learning experimental methods
with either 3He or 129Xe.

The combined 3He and 129Xe method was identified as the best-performing method,
generating the most accurate segmentations across all four metrics. This method also
showed statistically significant improvements over all other DL methods in the DSC,
exclusive OR (XOR), and 95th percentile Hausdorff distance (HD95) metrics.

The study evaluated the combined 3He and 129Xe DL model on 31 2D spoiled gradient-
echo 3He hyperpolarized gas MRI ventilation scans with varying MRI sequences and
acquisition parameters. The findings demonstrated that the model exhibited strong gener-
alization, providing consistent and high-quality segmentations regardless of the specific
MRI sequence used.

Additionally, the study examined the ventilated volume using the combined 3He and
129Xe method. The DL segmentation volume showed a strong correlation (r = 0.99) with the
expert segmentation volume and displayed minimal bias, with a deviation of only −0.8%.
The study also compared the performance of the DL methods with two conventional
segmentation methods, namely, K-means clustering and Spatial Fuzzy C-Means (SFCM).
The DL segmentation method exhibited significant improvements over these conventional
methods, accurately excluding low-level noise and artifacts, as well as non-lung regions
such as the trachea and bronchi.

Figure 19 presents a qualitative comparison of the combined 3He and 129Xe deep
learning methods with two traditional segmentation methods (K-means and SFCM) across
three cases.

The study showcased the effectiveness of deep learning segmentation methods in
processing a large dataset of 759 scans from patients with diverse lung pathologies. The
combined 3He and 129Xe DL method outperformed all other methods across various
metrics, demonstrating its unbiased performance irrespective of the noble gas used. This
is particularly relevant given the global shift toward the use of 129Xe due to the scarcity
of 3He.
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Figure 18. Sample coronal slices for a healthy individual and four cases with distinct pathologies, each
corresponding to a different deep learning experimental approach. The figure includes individual
DSC values, as well as median (range) DSC values [47].

Bioengineering 2023, 10, x FOR PEER REVIEW  19  of  24 
 

 

Figure 19. Evaluating the performance of the combined 129Xe and 3He deep learning method in com-

parison to traditional segmentation methods (SFCM and K-means) on test scans [47]. 

   

Figure 19. Evaluating the performance of the combined 129Xe and 3He deep learning method in
comparison to traditional segmentation methods (SFCM and K-means) on test scans [47].
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The CNN outperformed traditional methods across all evaluation metrics, effectively
addressing challenges like background noise and artifacts while accurately excluding
ventilation defects and airways. This hints at the possibility of reducing post-segmentation
manual editing time. The study emphasized the importance of additional validation
for DL-based methods, not only considering ventilated lung volume but also VDP for
clinical applicability. Furthermore, CNN-generated segmentations demonstrated a strong
correlation and minimal bias compared with expert volumes in estimating ventilated
lung volumes.

4.4. Quantification of Lung Ventilation Defects on Hyperpolarized MRI: The Multi-Ethnic Study
of Atherosclerosis (MESA) COPD Study

In the research paper titled “Quantification of lung ventilation defects on hyperpo-
larized MRI: The Multi-Ethnic Study of Atherosclerosis (MESA) COPD study” [49] by
Xuzhe Zhang et al., the authors developed a deep learning framework for the segmen-
tation of lung MRI scans. The approach uses a cascaded U-Net model to segment both
proton (1H) and hyperpolarized 3He MRI scans, distinguishing among non-ventilated,
hypo-ventilated, and standard ventilated areas. A key aspect of their methodology is the
use of data augmentation techniques, which increased the diversity of the training data and
improved the model’s robustness. The authors tested this model on participants with and
without COPD and found its performance to be similar across both groups. The research
also highlights the robustness of the model in quantifying ventilation defects, which was
improved with the use of conventional data augmentation and the cascaded U-Net. The
authors innovatively used a pre-trained generative adversarial network (GAN) for data
augmentation, creating a realistic synthetic dataset. This approach is particularly beneficial
in scenarios where the available training data are limited, as it allows for the generation
of additional, synthetic training samples that can enhance the learning capabilities of the
model. The use of GANs for data augmentation is a cutting-edge technique that has shown
promise in various applications, including medical imaging. The synthetic data generated
using the GAN closely mimics the distribution of the real data, thereby providing the model
with a broader range of data to learn from and potentially improving its performance. The
authors acknowledged the limitations of their study, including the manual selection of
regions of interest (ROIs) for threshold determination and the potential propagation of
errors from original to augmented data.

4.4.1. Materials and Methods

The study under review utilized data from the MESA COPD Study [99], focusing
on smokers with a significant smoking history. A subset of these participants underwent
simultaneous 1H and 3He MRI scans. The researchers selected 9–10 registered 1H and 3He
MRI coronal slices per participant, which were then divided into training and test datasets
in a 3:1 ratio. The majority of the slices were used for training, with a portion set aside
for validation. The remaining slices were used for testing. The study was conducted in
compliance with HIPAA rules and received the necessary approvals.

The 3He MRI was conducted using a 3 T Achieva Philips MR scanner, complemented
with a flexible wrap-around 3He radio frequency coil. The 3He gas was polarized to an
average of 29%, facilitated with a 3He polarizer from GE Healthcare.

The investigation yielded 544 slices of both 1H and 3He pulmonary MRI scans, ob-
tained from 56 participants. Each slice underwent annotation and semi-automatic seg-
mentation. The creation of a reliable ground-truth method was made possible with the
collaborative efforts of the Image Analysis Core Lab, encompassing experienced image
analysts, radiologists, physiologists, and physicians.

The researchers used a detailed method for annotating full lung masks, using coronal1H
MRI images from each participant to precisely define lung boundaries. The study focused
on a specific region of interest (ROI) in each coronal slice of the lungs, deliberately omitting
areas influenced by partial volume effects. For enhanced accuracy, they computed the
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average and standard deviation of the lung ROI’s signal intensity in each coronal slice. Lung
segmentation in 1H MRI images was then conducted using a region-growing technique,
finely adjusted to thresholds based on the lung ROI’s mean signal intensity and its variation.
This ensured a reliable and precise segmentation process. Additionally, manual refinements
were made where needed, mainly for subtle anatomical adjustments including the exclusion
of low-intensity areas such as cortical bones, central airways, and the background.

The study used a thorough process to annotate ventilation in lung scans. Lung masks
derived from 1H MRI images were utilized on corresponding 3He slices to establish lung
boundaries. The signal intensity (SI) from the heart and central airways served as bench-
marks for identifying non-ventilated and ventilated regions, respectively. On-ventilated
regions were segmented using a region growing method. Regions with ventilation were
subsequently classified into two distinct types: those with normal ventilation and those
with hypo-ventilated, using designated threshold values for differentiation. Analysts,
blinded to the participants’ clinical information, performed the image analysis. Inter-
reader and intra-reader agreements were evaluated using ten randomly selected MRI scans.
For manual selection of ROI, region expansion, and corrections, the study utilized the
SliceOmatic tool, developed by TomoVision in Magog, Canada.

4.4.2. Deep Learning-Based Segmentation Architecture

The deep learning framework incorporated separate 1H and 3He segmentation models,
each trained on their respective MRI datasets. The developed framework was engineered
for ventilation defect segmentation using supervised training. In this process, annotated
full lung masks from the 1H MRI were fed into the 3He model accompanied by the 3He
MRI data.

The framework was built as an end-to-end system for testing purposes. Initially, the
1H MRI underwent segmentation using the 1H segmentation model. The segmented full
lung masks obtained from this step were then integrated with the 3He MRI data, serving as
input for the 3He segmentation model.

The U-Net architecture was utilized to build both the 1H and 3He segmentation
models. The 1H segmentation model utilized a modified U-Net, substituting its max
pooling layer with a 2D convolution layer for generating full lung masks. In contrast, the
3He segmentation model used a cascaded U-Net. This cascaded architecture used full lung
masks and 3He MRI scans as dual-channel input, initially segmenting into non-ventilated
and ventilated areas. The segmented ventilated areas were then processed further to
distinguish between hypo-ventilated and normal-ventilated regions. Both 1H and 3He MRI
image intensities were normalized within a range of [−1, 1]. Figure 20 demonstrates the
U-Net structure, highlighting the replacement of the max pooling layer with a 4 × 4 kernel
2D convolution layer.

This deep learning framework, with its unique use of separate 1H and 3He segmen-
tation models and the U-Net architecture, offers a novel approach to lung segmentation.
Figure 21 presents the end-to-end deep learning framework proposed in the referenced study.

Both conventional and Generative Adversarial Network (GAN)-based data augmen-
tation (GAN-DA) methods were applied to the dataset. Conventional data augmentation
(conventional-DA) involved random scaling, translation, rotation, shearing, and flipping.
Flipping, while not typically variable in MRI scans, was used to boost model generalization.
This technique ensured the model remained unbiased against specific lung patterns that
might predominate in left versus right lungs or in apical versus basal and central versus
pleural regions. GAN-DA utilized a dual-GAN network approach. The initial GAN [100]
was designed to create 1H and 3He lung masks from random latent noise. Meanwhile, the
second GAN, a conditional one using pix2pixHD [101] was developed to generate realistic
1H and 3He MRI images. The GAN-based DA method is illustrated in Figure 22.
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Figure 20. The modified U-Net architecture used in the referenced study [49].
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Figure 21. A traditional U-Net was used to segment the full lung mask from the 1H MRI. For the
segmentation of 3He, a two-layer cascaded U-Net was used. Initially, the 3He MRI was divided into
ventilated (depicted in blue) and non-ventilated (shown in red) lung regions. Further segmentation
was applied to the ventilated regions, categorizing them into normal-ventilated areas (depicted in
green) and hypo-ventilated zones (illustrated in yellow) within the lungs [49].
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Figure 22. In the GAN-based approach, first, an unconditional GAN, was tasked with generating
randomly created complete synthetic lung masks. Second, a conditional GAN played a pivotal role
in converting these random masks into synthetic 1H MR images [49].
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Table 4 summarizes the four different models.

Table 4. A summary of four different DA models.

Model Name Training Data Number of Slices (for Both
1H MRI and 3He MRI)

Non-DA Model Original coronal slices without any
data augmentation 328

Conventional-DA
Model

Original coronal slices in addition to
10-fold slices generated with

conventional data augmentation
3608

GAN-DA Model
Original coronal slices in addition to

10-fold slices generated with dual-GAN
data augmentation

3608

Combined-DA Model

Original coronal slices in addition to
five-fold slices generated with both

conventional and GAN
data augmentation

3608

The deep learning models were developed using Python (version 3.6) and the PyTorch
library [102]. Each model was subject to random initialization and trained under specific
parameters. The 1H lung segmentation model completed 15 epochs using a batch size
of 16, whereas the 3He ventilated region model was trained with a batch size of 4 for
100 number of epochs. A linear learning rate decay strategy was implemented, which
gradually reduced the learning rate from an initial value of 0.0001 to 0. For the 1H model,
it started from the 5th epoch, and for the 3He model, it started from the 50th epoch. The
model that demonstrated the best performance on the validation set was then used for test
set evaluation.

The loss function was a hybrid, combining cross-entropy (CE) and Dice loss. The CE
component compared the probability distributions of predictions and actual labels, while
the Generalized Dice Loss (GDL) served as a spatial regularity constraint on the prediction.
Both 1H and 3He models were optimized using the Adam optimizer to minimize the overall
loss function. CE, DSC, GDL, and the overall loss function are defined as:

CE = −∑W
w=0 ∑H

h=0 ∑C
c=0 Y(w, h, c)log (P(w, h, c)) (12)

DSC =
1

W×H×C ∑W
w=0 ∑H

h=0 ∑C
c=0

2× Y(w, h, c)Y’(w, h, c)
Y(w, h, c) + Y’(w, h, c)

(13)

GDL = 1− 2
W × H × C ∑W

w=0 ∑H
h=0 ∑c

c=0
Weightc ×Y(w, h, c)× P(w, h, c)
Weightc ×Y(w, h, c) + P(w, h, c)

(14)

L = CE + GDL (15)

To verify that the models were not overfitting, four-fold cross-validation was con-
ducted. The dataset was randomly divided into four groups, each serving as a test dataset,
with the remaining three groups used for training. A summary of 1H lung segmentation
and 3He ventilated region segmentation parameters are provided in Table 5.
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Table 5. Summary of the 1H lung segmentation and 3He ventilated region segmentation parameters.

Model Training Parameters 1H Lung Segmentation
3He Ventilated Regions

Segmentation

Epochs 15 100

Batch size 16 4

Initial learning rate 0.0001 0.0001

Decay start epoch 5 50

Loss function CE + Dice Loss CE + Dice Loss

Optimizer Adam Adam

4.4.3. Results

The evaluation of segmentation models involved DSC and Mean Surface Distance
(MSD). These metrics were applied to the entire 3D volume of the full lungs. For comparing
various DA strategies, both DSC and MSD were considered. Additionally, the effectiveness
of the cascaded U-Net model was contrasted with that of the standard U-Net in segmenting
3He ventilation defects. Statistical analyses, such as the Wilcoxon signed-rank test, were
used to evaluate differences in DSC and MSD outcomes between GAN-DA and traditional
DA techniques for the 1H segmentation model. Similar methods were used to assess
differences between cascaded and standard U-Net models for the 3He segmentation model.
The Wilcoxon signed-rank test was also applied to contrast actual ground truth values with
predicted values for the overall lung volume determined with the 1H model. Additionally,
this test was used to compare the volumes of non-ventilated, hypo-ventilated, and normally
ventilated regions as identified with the 3He model.

In relevant instances, the Bonferroni–Holm correction method was used. To assess
the differences in model performance between participants with and without COPD, the
Mann–Whitney U test was utilized. The Kruskal–Wallis H Test was applied to compare
model performances across a four-fold cross-validation. All statistical procedures were
conducted using SAS 9.4, and significance was determined using two-tailed tests with
a significance level set at α = 0.05. As for the 1H MRI segmentation, the DSC showed
improvement with the combined DA model (0.965 ± 0.010) and the conventional-DA
model (0.961 ± 0.011) when compared with the non-DA model (0.955 ± 0.012). However,
the GAN-DA model (0.959 ± 0.010) did not show a significant improvement.

MSD was lower in the conventional-DA model, averaging 0.594 ± 0.137 mm, in
contrast to the non-DA model, which had a higher MSD of 1.055 ± 0.953 mm. Models
utilizing a combined-DA approach further decreased the surface distance to an average
of 0.657 ± 0.254 mm compared with the non-DA model. However, the MSD for the
GAN-DA model, at 0.928 ± 0.690 mm, did not show a significant difference from the
non-DA model’s performance. No notable difference was observed between the total
lung volume as predicted with deep learning and the actual ground truth total lung
volume (3.727 ± 1.075 L compared to 3.721 ± 1.109 L). These findings suggest that both
the combined-DA and conventional-DA models enhanced segmentation performance
relative to the non-DA model, while the GAN-DA model did not demonstrate a significant
enhancement. For the 3He segmentation, GAN-DA and combined-DA did not enhance the
segmentation of 3He MRI; hence, only conventional-DA was applied in 3He model training.
The cascaded U-Net model achieved DSCs of 0.840± 0.057, 0.715± 0.175, and 0.883 ± 0.060
for non-ventilated, hypo-ventilated, and normal-ventilated regions, respectively.

The cascaded U-Net model outperformed the traditional U-Net model in terms of
DSC and MSD for non-ventilated regions. There was no significant difference in DSCs and
MSDs between COPD and non-COPD participants.

The volumes for non-ventilated, hypo-ventilated, and normally ventilated regions,
as predicted with deep learning, did not significantly deviate from their corresponding
ground truth volumes. Additionally, segmentation using the cascaded U-Net demonstrated



Bioengineering 2023, 10, 1349 34 of 44

greater alignment with the ground truth compared with segmentation performed with the
traditional U-Net. In a four-fold cross-validation, no overfitting was observed in either
the traditional U-Net or the cascaded U-Net. A comparison of the traditional U-Net and
cascaded U-Net is provided in Table 6.

Table 6. Evaluation of traditional U-Net vs. cascaded U-Net for ventilation defect segmentation in
the test set (sample size: 14).

Traditional U-Net Cascaded U-Net p-Value

Non-ventilated DSC 0.818 ± 0.055 0.840 ± 0.057 <0.001
Non-ventilated MSD (mm) 1.432 ± 1.343 1.275 ± 1.396 <0.005
Hypo-ventilated (3He) DSC 0.697 ± 0.192 0.715 ± 0.175 0.24

Hypo-ventilated (3He) MSD (mm) 1.288 ± 1.357 1.166 ± 1.237 0.30
Normal ventilated (3He) DSC 0.875 ± 0.070 0.883 ± 0.060 0.50

Normal ventilated (3He) MSD (mm) 1.359 ± 0.845 1.506 ± 1.054 0.76

Based on the literature reviewed, the cascaded U-Net framework streamlined the ventila-
tion segmentation workflow, yielding outputs that align with semi-automated benchmarks.

Both conventional and combined data augmentation techniques markedly enhanced
the segmentation of full lung masks from baseline levels. In a similar vein, the cascaded
U-Net notably boosted the accuracy of segmenting non-ventilated areas compared with
the traditional U-Net. This advanced cascaded U-Net used a multi-layered, hierarchi-
cal approach to tackle multi-class segmentation, leveraging the stratified nature of lung
ventilation. Table 7 presents the results of ventilation defect segmentation using the cas-
caded U-Net for participants with and without COPD. In conclusion, the end-to-end deep
learning model in the referenced study significantly reduced analysis time compared with
previous clustering methods, providing accurate full lung segmentation from 1H MRI and
multi-categorical ventilation segmentation from 3He MRI with a multi-channel scheme.
Figure 23 showcases a comparative analysis of the results of ventilation segmentation,
contrasting the performance between the traditional U-Net and the cascaded U-Net.

Table 7. Comparative analysis of ventilation defect segmentation using cascaded U-Net in partici-
pants with and without COPD in the test set (sample size: 14).

COPD, n = 8 No COPD, n = 6 p-Value

Non-ventilated DSC 0.851 ± 0.056 0.826 ± 0.061 0.41
Non-ventilated MSD (mm) 1.228 ± 1.630 1.338 ± 1.158 0.75
Hypo-ventilated (3He) DSC 0.653 ± 0.208 0.799 ± 0.066 0.06

Hypo-ventilated (3He) MSD (mm) 1.516 ± 1.561 0.700 ± 0.331 0.66
Normal ventilated (3He) DSC 0.861 ± 0.071 0.912 ± 0.024 0.18

Normal ventilated (3He) MSD (mm) 1.855 ± 1.158 1.042 ± 0.748 0.08

4.5. A Dual-Channel Deep Learning Approach for Lung Cavity Estimation from Hyperpolarized
Gas and Proton MRI

The paper titled “A Dual-Channel Deep Learning Approach for Lung Cavity Estima-
tion From Hyperpolarized Gas and Proton MRI” [103] presents a deep learning method
for estimating lung cavity volumes from MRI images. The study utilizes a dual-channel
approach that integrates hyperpolarized gas and proton MRI to generate lung cavity esti-
mations (LCEs) without manual intervention. This method is evaluated against manual
estimations, with the goal of producing biomarkers such as the VDP automatically.

The paper discusses various metrics for quantitative and clinical evaluation, including
the Dice similarity coefficient, average boundary Hausdorff distance, and a relative error
metric. These metrics assess the overlap and conformity of boundaries between ground
truth and predicted segmentation, as well as the accuracy of the LCE volumes.
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The results indicate that the dual-channel deep learning-generated LCEs are compa-
rable to manual estimations, suggesting that this method could be used to produce lung
function biomarkers efficiently.
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Figure 23. The color-coded regions represent non-ventilated (red), hypo-ventilated (yellow), and
normal-ventilated (green) lung areas. The encircled sections emphasize areas where the cascaded
U-Net segmentation aligns more closely with the ground truth compared with the traditional U-
Net [49].

4.5.1. Materials and Methods

The study obtained ethical approval and informed consent from all participants,
including retrospective data usage. It included MRI scans from 26 healthy individuals and
289 patients with lung conditions. The scans were acquired using a 1.5T MRI scanner with
specific settings for both hyperpolarized 129Xe and proton 1H MRI to capture lung images
at different capacities.

For image quality, artifacts were identified by experienced observers, and signal-to-
noise ratios were calculated to assess noise levels. Lung cavity estimations (LCEs) were
initially segmented using a semi-automatic method that combined spatial fuzzy c-means
clustering with manual editing by several observers with varying levels of experience.

The study’s MRI data were split into training and testing sets, with 15% of the scans
designated for testing. To avoid bias, each participant was represented by only one scan in
the dataset, and any additional scans were excluded. The training set consisted of 422 scans
from 257 individuals, while the testing set included 58 scans from 58 different participants.
The testing set was randomly selected but ensured representation from each health and
disease category. Demographically, the training set had a median age of 41 years and a
slightly higher proportion of females, while the testing set had a median age of 53 years
with an almost equal gender distribution.

4.5.2. Deep Learning-Based Segmentation Architecture

The study evaluated three deep learning methods for generating LCEs using different
input channels for each neural network:

• Ventilation-only method using 129Xe-MRI images.
• Structural-only method using 1H-MRI images.
• Dual-input method combining 129Xe-MRI and 1H-MRI images.

These methods utilized a 3D version of the UNet [84] architecture, optimized for
memory efficiency and allowing for 30 feature channels. The networks were trained
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with specific parameters to minimize overfitting and were trained for 300 epochs over
approximately 8 days on a powerful GPU.

Data augmentation techniques involving random rotation and scaling were applied to
the MRI scans before they were input into the network to enhance the robustness of the
model without increasing the dataset size.

The DL-generated LCEs were quantitatively evaluated using the DSC for overlap
accuracy, the average boundary Hausdorff distance (HD) for boundary conformity, and a
relative error metric (XOR) to estimate the manual editing time required for corrections.

Clinically, the study assessed the accuracy of the DL-generated LCE volumes and
calculated the VDP using a previously developed nn-UNet [90] for ventilated lung seg-
mentation. This allowed for the comparison of DL-derived VDPs with those derived from
manual segmentations. Ventilated volumes were determined using a binning method,
with ventilation defects identified as values below 33% of the mean signal intensity in the
lung cavity.

4.5.3. Results

The study’s results showed that the dual-input deep learning method, which uses
both 129Xe-MRI and 1H-MRI images, produced the most accurate LCEs compared with
manual segmentations. This method achieved high median scores across various metrics,
including the DSC, HD, and XOR.

Clinically, the dual-input DL method demonstrated a strong correlation with manual
LCEs, with minimal bias in lung volume measurements. This method’s VDP values also
showed no significant difference from those obtained manually, indicating its potential
reliability in clinical assessments.

The study also assessed the impact of image artifacts on the quality of DL-generated
LCEs. It was found that artifacts in 129Xe-MRI scans significantly affected the VDP differences
between manual and DL methods, whereas artifacts in 1H-MRI scans did not. Additionally, no
significant correlation was observed between the SNR and the differences in VDP, suggesting
that the SNR did not notably influence the DL segmentation performance.

Three failure cases were highlighted where the DL-generated VDPs deviated from the
manual assessments beyond acceptable limits. These included errors due to gas motion
artifacts, zipper artifacts, and excessive noise in MRI scans, which led to inaccuracies in the
DL-generated LCEs.

In conclusion, the authors developed a dual-channel CNN framework for LCE, cap-
italizing on the complementary strengths of both 1H-MRI and 129Xe-MRI scans. This
approach yielded superior performance over single-channel methods, effectively integrat-
ing functional and structural imaging data to enhance disease diagnosis in both adult
and pediatric populations. The researchers also incorporated an automated deep learning-
based technique for ventilated lung segmentation from hyperpolarized gas MRI scans,
which facilitated the accurate computation of a clinical biomarker, the VDP. Despite its
robustness against noise, the method’s performance declined in the presence of artifacts in
129Xe-MRI scans.

A qualitative evaluation highlighted the limitations of using either ventilation or
structural data alone, with the dual-input method successfully addressing misalignment
issues between the MRI modalities. This was attributed to the method providing adequate
contextual information for accurate LCE representation. The application of nn-UNet within
the dual-channel approach also allowed for more efficient memory usage, larger batch
sizes, and improved handling of volumetric data compared with traditional 2D CNNs. The
robustness of the approach was reflected in the limited bias observed in Bland–Altman
analysis across a diverse testing set. Furthermore, the deep learning workflow showed the
potential for streamlined clinical application, demonstrating the capacity to produce VDPs
comparable to manual calculations, significantly reducing the time required for analysis. A
quantitative assessment of three methods is reported in Table 8.
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Table 8. Quantitative assessment of ventilation-only, structural-only, and dual-channel DL methods
on a testing set of 58 scans. Median values are given.

LCE DL Method DSC Average HD (mm) XOR

Ventilation-only 0.952 2.22 0.095

Structural-only 0.935 4.19 0.132

Dual-channel 0.967 1.68 0.066

Despite the promising results, the study acknowledged limitations, such as the reduced
generalizability due to the uniformity of the acquisition protocol and the performance
not being tested on different MRI systems or protocols from various centers. Future work
suggests strategies to mitigate the impact of imaging artifacts and the possibility of a unified
model for both ventilated and structural lung segmentation, although this may currently
be limited by the size of the available training datasets.

Refer to Figure 24 for visual representation of the discrepancies between manual and
DL-generated VDP evaluations, along with artifact identification in the MRI slices of the
testing set.
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Figure 24. Coronal section examples showing fused 1H-MRI, 129Xe-MRI, and localized contrast
enhancement (LCE) from three distinct cases in the test cohort. These cases were identified as outliers
using Bland–Altman analysis, deviating beyond the accepted limits of agreement. The ventilated
distribution percentages (VDPs) as assessed by an expert and as generated with deep learning (DL)
are displayed for each case. Notable imaging artifacts are marked with green arrows: Case 1 presents
a motion artifact within the 129Xe-MRI, Case 2 displays a zipper artifact in the 1H-MRI, and Case 3 is
significantly affected by noise across the 129Xe-MRI [103].

5. Limitations and Future Work

This paper and the presented discussion provide a comprehensive review of five
distinct studies, each exploring the application of deep learning techniques for the seg-
mentation of lung MRI scans, specifically in the context of hyperpolarized gas MRI. The
first study focused on the use of 3D CNNs for the segmentation of hyperpolarized gas
MRI scans, comparing the performance of different deep learning methods. In the second
study, the authors introduced a 3D CNN approach with V-Net architecture to improve
lung segmentation in MRI scans. They achieved better results when using both 3He and
129Xe data. However, the study noted potential limitations, including observer variability
in manual segmentations and dataset imbalance. The third study conducted a large-scale
investigation of deep learning approaches for ventilated lung segmentation using multi-
nuclear hyperpolarized gas MRI. The fourth study developed a deep learning framework
for the segmentation of lung MRI scans using a cascaded U-Net model and evaluated
its performance on participants with and without COPD. The fifth paper introduced a
dual-channel deep learning method for estimating lung cavity volumes from MRI images
using hyperpolarized gas and proton MRI data. They used a 3D U-Net architecture, achiev-
ing accurate results in lung cavity estimations. However, potential limitations include
limited generalizability due to uniform acquisition protocols and decreased accuracy in the
presence of artifacts in 129Xe-MRI scans.
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The collective insights from the five papers suggest that deep learning models, specifi-
cally U-Net architectures, are remarkably effective in segmenting lung regions and quan-
tifying ventilation defects from hyperpolarized and proton MRI scans. These studies
demonstrate the growing potential of machine learning techniques in enhancing the accu-
racy and efficiency of pulmonary imaging analysis. Notably, cascaded U-Net models and
dual-channel approaches have shown substantial promise in improving the segmentation
of non-ventilated and hypo-ventilated lung regions, which is critical for the assessment
and management of chronic obstructive pulmonary disease (COPD). The use of data aug-
mentation, including Generative Adversarial Networks (GANs), to enrich training datasets
has emerged as a vital strategy to bolster the models’ performance, especially when dealing
with limited data scenarios.

Conclusively, these advanced deep learning frameworks offer a leap forward in au-
tomating the segmentation and analysis process, providing reliable biomarkers for lung
function assessment. The dual-channel method stands out by efficiently combining struc-
tural and functional data, enhancing the diagnosis and monitoring of lung conditions
in both adult and pediatric cohorts. However, the studies collectively acknowledge the
limitations posed by imaging artifacts and the variability in acquisition protocols, high-
lighting areas for future improvement. As the technology matures and datasets expand,
it is anticipated that these AI-driven methodologies will become more robust, paving the
way for widespread clinical adoption. Further research is recommended to address the
challenges associated with artifacts and to explore the potential of unified models that
accommodate diverse imaging systems and protocols. A summarized comparison of the
reviewed articles is presented in Table 9.

Despite the significant strides made in these studies, several limitations and potential
areas for future research were identified. Firstly, while the models developed and evaluated
in these studies showed promising results, they are tailored to the specific datasets used in
each study. Future work could focus on creating a more generalized model for segmentation
that can handle a wider variety of datasets, increasing its utility in different contexts.

Secondly, the creation of a more accurate and comprehensive dataset that encompasses
a similar distribution of different diseases or geographical data could significantly enhance
the performance of the models. A more representative dataset would allow the models
to learn from a broader range of cases, thereby improving their ability to generalize and
handle new, unseen data.

Thirdly, the potential of Vision Transformers (ViTs) in the segmentation of medical
images, such as hyperpolarized gas MRI of the lung, is a promising avenue for future
research. While CNNs have been the go-to architecture for image segmentation tasks, they
primarily focus on local features and spatial hierarchies. This localized focus can sometimes
be a limitation when global context is essential for accurate segmentation [104]. Vision
Transformers, on the other hand, have the inherent capability to model global interactions
across an entire image from the get-go. This is particularly beneficial for medical imaging,
where understanding the global context can be crucial for accurate diagnosis [105].

ViTs split the image into patches and treat these patches as tokens, which are then
processed by the transformer encoder. The encoder produces a contextualized sequence
of tokens that capture both local and global features. This sequence is then upsampled
to generate per-pixel class scores for segmentation. Such a mechanism allows ViTs to
capture intricate relationships between different parts of an image, thereby potentially
improving the segmentation accuracy. Moreover, ViTs have been shown to outperform
state-of-the-art CNNs in challenging datasets, achieving higher mean Intersection over
Union (IoU) scores [106].

The application of these advanced models to hyperpolarized gas MRI of the lung
could potentially yield even more accurate and efficient segmentation results. Given that
ViTs can be parallelized easily, they are also more scalable and can be trained on large
datasets, which is often a requirement in medical imaging research.
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Table 9. Overview of key studies reviewed in this paper. The table compares various papers in terms of their objectives, applied methods, data used for analysis,
principal findings, and recognized limitations.

Paper Title Objective Methods Data Key Findings Limitations

Convolutional Neural
Networks and template-based

data augmentation for
functional lung Image

quantification [48]

To explore the potential of CNNs
for functional lung imaging and

propose a data augmentation
strategy for addressing the need

for large training datasets.

U-Net architecture for image
segmentation, multilabel Dice
coefficient loss function, and a

novel template-based data
augmentation method.

A total of 205 proton MR
images and 73 ventilation MR
images with masks, from 3He

and 129Xe acquisitions.

Achieved high Dice overlap scores
for lung segmentation, with a

significant reduction in processing
time compared with

conventional methods.

Limited by GPU memory capacity,
necessitating the use of 2D over 3D

U-Net models and processing
time-intensive training.

3D deep convolutional neural
network-based ventilated lung

segmentation using
multi-nuclear hyperpolarized

gas MRI [94]

To enhance the segmentation of
ventilated lung regions in MRI

scans using a 3D deep
convolutional neural network.

Utilized V-Net architecture with
PReLu activation functions and

binary cross-entropy loss,
optimized with the
Adam optimizer.

A total of 743 volumetric
hyperpolarized gas MRI scans

from 326 subjects, including
both 3He and 129Xe gases.

Presented a novel approach that
improved segmentation accuracy

over traditional methods, with best
results when training on both 3He

and 129Xe data.

Potential observer variability in
manual segmentations and dataset

imbalance were noted
as limitations.

Large-scale investigation of
deep learning approaches for
ventilated lung segmentation

using multi-nuclear
hyperpolarized gas MRI [47]

To identify the most effective 3D
CNN architecture, loss function,
and pre-processing techniques

for the segmentation of
ventilated lungs in

hyperpolarized gas MRI scans.

Use of nn-UNet for 3D
volumetric convolutions and
spatially adaptive denoising,
along with comprehensive

experiments across five deep
learning methods.

A total of 759 volumetric
hyperpolarized gas MRI scans

from 341 subjects, including
healthy individuals and
patients with a range of
pulmonary conditions.

The combined training method
using both 3He and 129Xe gases

was the best-performing method,
producing accurate segmentations

and demonstrating unbiased
performance irrespective of the
noble gas used. CNNs proved

superior to traditional methods in
all evaluation metrics.

The study calls for further
validation of DL-based methods

using ventilated lung volume and
ventilation defect percentage for

clinical adoption.

Quantification of lung
ventilation defects on

hyperpolarized MRI: The
Multi-Ethnic Study of

Atherosclerosis (MESA) COPD
study [49]

To develop and validate a deep
learning framework for

segmenting lung MRI scans into
non-ventilated, hypo-ventilated,
and normal-ventilated regions.

The study uses a cascaded U-Net
model and conventional and

GAN-based data augmentation
to improve the robustness of the

segmentation model.

Utilized data from the MESA
COPD study involving 56

participants with significant
smoking histories, resulting in
544 slices each of 1H and 3He

pulmonary MRI.

The cascaded U-Net model showed
high accuracy and consistency with
semi-automatic reference standards

for both COPD and non-COPD
participants. Conventional data

augmentation improved the
segmentation performance

compared with the non-augmented
data model.

The study mentions manual ROI
selection for threshold

determination and the potential for
error propagation from original to
augmented data, and it stresses the

need for a consensus on lung
ventilation segmentation methods.

A dual-channel deep learning
approach for lung cavity

estimation from
hyperpolarized gas and proton

MRI [103]

To develop a deep learning
approach for estimating lung

cavity volumes from MRI images
using a dual-channel method that

integrates hyperpolarized gas
and proton MRI.

The study utilized a 3D U-Net
architecture with 30 feature
channels and applied data

augmentation for robust training.
It compared three deep learning
methods using different input

channels to produce lung cavity
estimations (LCEs).

Included MRI scans from 26
healthy individuals and 289

patients with lung conditions,
obtained using a 1.5T

MRI scanner.

The dual-input method, combining
hyperpolarized 129Xe -MRI and

proton 1H-MRI images, provided
the most accurate LCEs compared

with manual segmentations. It
showed a strong correlation with

manual estimations and consistent
VDP values.

The study’s generalizability might
be limited due to the uniformity of

the acquisition protocol, and its
performance has not been tested on
different MRI systems or protocols
from various centers. The method’s
accuracy decreases in the presence

of artifacts in 129Xe -MRI scans.
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Fourthly, the potential of transfer learning for this task has not been explored in these
studies. Transfer learning, which involves the application of knowledge gained from one
task to another related task, could potentially enhance the performance of the models.
Specifically, the transfer learning of low-resolution data could provide a better foundation
for high-resolution data, thereby improving the accuracy and efficiency of the models.

In conclusion, while the reviewed studies made significant contributions to the field
of lung MRI segmentation, there are several potential avenues for future research that
could further enhance the performance and utility of deep learning models in this area.
The studies demonstrated the power of deep learning in accurately segmenting lung MRI
scans, but there is still room for improvement and exploration. These potential avenues
for future research highlight the exciting opportunities that lie ahead in the field of lung
MRI segmentation using deep learning. The reviewed studies laid a solid foundation, and
future work building on this foundation could lead to significant advancements in the field.
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