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Abstract: Magnetic resonance imaging (MRI) is commonly used in medical diagnosis and minimally
invasive image-guided operations. During an MRI scan, the patient’s electrocardiogram (ECG) may
be required for either gating or patient monitoring. However, the challenging environment of an
MRI scanner, with its several types of magnetic fields, creates significant distortions of the collected
ECG data due to the Magnetohydrodynamic (MHD) effect. These changes can be seen as irregular
heartbeats. These distortions and abnormalities hamper the detection of QRS complexes, and a
more in-depth diagnosis based on the ECG. This study aims to reliably detect R-peaks in the ECG
waveforms in 3 Tesla (T) and 7T magnetic fields. A novel model, Self-Attention MHDNet, is proposed
to detect R peaks from the MHD corrupted ECG signal through 1D-segmentation. The proposed
model achieves a recall and precision of 99.83% and 99.68%, respectively, for the ECG data acquired
in a 3T setting, while 99.87% and 99.78%, respectively, in a 7T setting. This model can thus be used in
accurately gating the trigger pulse for the cardiovascular functional MRI.

Keywords: magnetohydrodynamic (MHD) effect; magnetic resonance imaging (MRI); electrocardiogram
(ECG); operational neural networks (ONN); R-peak detection; feature pyramid network (FPN)

1. Introduction

The use of functional magnetic resonance imaging (fMRI) has been proven to be an
excellent method for evaluating the functional condition of the heart [1]. Other imaging
methods, such as echocardiography, cardiac computed tomography (CT), and nuclear
medicine, are complemented by cardiovascular fMRI, which plays an important role in
the diagnosis and treatment of cardiovascular diseases, as well as in research [2]. It is
also standard for assessing cardiac structure and function [3]. fMRI can also be used to
obtain functional information regarding vascular blood flow. Along with being a valuable
tool for diagnosis, fMRI is also used in surgical planning of complex congenital heart
diseases [4]. Procedures such as taking biopsies, tumor therapies, and electrophysiological
studies benefit from fMRI.

A prerequisite for cardiovascular fMRI is the adequate synchronization of image
acquisition with the cardiac cycle [5]. For that, the use of an accurate triggering pulse is
required to permit the successive acquisition of imaging sequences in line with the phase of
the heart. It is possible to generate the triggering pulse using a variety of methods, including
photoplethysmography signals [6], a Doppler ultrasound [5]-based method, and an optical-
based sensor [7]. However, the most common and straightforward way to accomplish this
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goal is to record an electrocardiogram (ECG) in parallel with MRI and use the location of
the R-peak on the ECG to trigger the acquisition [8,9]. Therefore, good synchronization
is necessary for collecting precise data in fMRI, which is highly dependent on the precise
detection of R-peaks from the ECG signal. Additionally, concurrently recording an ECG
with an MRI scan can also be used for diagnostic purposes. ECG is an essential tool for
evaluating cardiovascular function and frequently appears in clinical practice. Because
it might be challenging to visually monitor or converse with the patient while inside the
MRI scanner, the attending physician or clinical staff must rely on the patient’s vital data
to make a diagnosis. MRI patients, especially those in critical or unstable condition, need
to be adequately monitored during the procedure [10]. For example, patients coming
from an intensive care unit (ICU) or patients under anesthesia need proper monitoring. A
diagnostically useful surface ECG is unavoidable for MRI-guided electrophysiological (EP)
operations, which are sparingly carried out in modern day practice, but have the potential
to become more significant in the foreseeable future [11,12].

However, the imaging setup (high static magnetic field, gradient switching, radio
frequency (RF) pulse) of MRI greatly undermines the synchronization process by heavily
distorting the recorded ECG signal. A high magnetic field mainly distorts the ECG signal,
known as the Magnetohydrodynamic (MHD) effect [13,14]. Blood, consisting of charged
ions, is subjected to a continuous flow due to the pumping activity of the heart. When a
subject is placed under a magnetic field, the magnetic field exerts a force on the dynamic
ions of the blood [14]. This force is known as Lorentz force, and it acts perpendicular to the
direction of the applied magnetic field and the direction of the blood flow. Due to this, ions
distribute themselves in the periphery of blood vessels and produce an electric voltage.
The induced potential due to the MHD effect superimposes the recorded ECG signal and
alters the waveform of the recorded signal. Many other parameters influence the MHD
effect, as summarized in Figure 1. In the distorted ECG signals, the amplitude of the T
wave eclipses that of the R-peak and makes it difficult to detect the location of R peaks [15].
Similarly, in most cases, due to the superposition of the ECG and MHD signals, a detailed
and reliable morphological analysis of the ECG (e.g., the P wave, ST segment, or the T
wave) during MRI exams is not possible [16–20]. Another challenge is the detection of the
QRS complex. Depending on the characteristics of the MHD signal, QRS detection might
be hampered [21].

Numerous studies have examined the effects of various noise sources, including the
MHD effect and artifacts, on ECG signals. In addition, abnormal ECG signals, such as
arrhythmia and premature ventricular contraction [22], have been investigated. There have
also been studies conducted that deal with separating fetal ECG from mother ECG [23].
These studies were conducted in various experimental settings, and multiple algorithms
have been proposed for detecting R-peaks, generating trigger signals, and classifying
normal and abnormal ECG signals. During the earlier stages of working with MHD-
affected ECG signals, extraction of referenced ECG signals from the distorted signal was
predominant. In the extraction of referenced ECG signals, various filtering techniques
were incorporated, such as Independent Component Analysis (ICA) [9], Wilcoxon filter [24],
Least mean squares (LMS) adaptive filtering [25], as well as other adaptive filtering methods.

Numerous studies have been conducted on the detection of R-peaks in non-MHD cor-
rupted ECG signals. One of the most popular methods is the Pan-Tomkins algorithm [26].
The algorithm uses filtering, differentiation, squaring, and thresholding to detect the R-
peaks. Adaptive filtering and template matching have been used to further improve the
detection performance. Continuous wavelet transform with selective scale [27] and Shan-
non’s energy [28] have also been used to detect R-peak locations, while discrete wavelet
transform was used in [29]. In [30], the authors used sorting and thresholding squared
double difference signals from ECG data to estimate R-peak locations. Another study
conducted by Mabrouki et al. [30] consisted of cleverly combining Hilbert transform and
empirical mode decomposition. While, in [31], a novel empirical mode decomposition
algorithm was used, called ensemble empirical mode decomposition with the adaptive
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noise (CEEMDAN). The algorithm addresses the issue of ‘mode-mixing’ and different real-
izations of signal with Gaussian white noise. The method uses modes 2–5 from CEEMDAN
to detect the R-peak locations.
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In terms of R-peak detection in MHD corrupted signals, Vectorcardiogram (VCG) [32–35]
had been extensively used along with the signal processing techniques before the adoption
of decomposition techniques. The extraction of the R-peaks reference vector from the ECG
signal recorded outside of an MRI scanner was a prerequisite for this method. The location
of R-peaks in MHD affected the ECG signal and was determined using projections of the
VCG signal across the reference R-peak’s directions [32], where the reference R-peak is
the extracted R-peak vector from the ECG signal taken outside of the MRI scanner. Eu-
clidean, as well as cosine [32], directions were incorporated with the projection for better
accuracy. Derivative-based methods [33] have also been studied in various experiments.
Krug et al. [9] used Independent Component Analysis (ICA) to diminish the effects of
MHD in ECG waveform, and R-peaks were then detected. Twelve-lead ECG data were
processed using ICA after being captured in a 7T MR scanner. To locate the dominant inde-
pendent component (IC) in the ECG signal, an automated source identification approach
was presented. Once the IC was selected, it could be utilized for R-peak detection. The
decomposition-based technique supplanted other signal processing-based techniques with
the emergence of wavelet decomposition and wavelet transform to detect R-peaks [36], or
for signal processing to extract the reference ECG signal [36,37] with greater accuracy. With
the improvements in computation power, both machine learning associated with signal
processing [38–40] and deep-learning-based approaches [41–43] have become ubiquitous
and have been intensively used in the detection of R-peaks/beat detection in noisy and
abnormal ECG signals.

The motivation of this study is to devise a robust R-peak detection system for MHD
corrupted ECG signals using a deep learning technique that seemed promising for highly
corrupted Holter ECG datasets [44]. The authors believe that the inherent adaptability of
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deep learning models will help handle the noisy nature of the data. To this end, this work
aims to contribute to the field by:

• Proposing a novel deep learning model, Self-Attention MHDNet, which can accurately
detect R-peaks by approaching the problem as a segmentation problem.

• Assessing the performance of the model on ECG data collected from both 3T and 7T
MRI machines.

• Pioneering the use of deep learning models for R-peak detection in MHD corrupted
ECG signals.

• Demonstrating that three-channel ECG signals are sufficient for detecting R-peaks in
multi-channel ECG signals.

The manuscript is organized as follows: In Section 2, the methodology employed in
this study is expounded, encompassing a concise depiction of the dataset, the problem
formulation, the network architecture, the training methodology, and the evaluation metrics.
The outcomes of the ablation study, the evaluation of the model, and a comparison with
the current literature are presented in Section 3. Finally, the manuscript is concluded with
Section 4.

2. Materials and Methods

In this section, the experimental setup, problem formulation, dataset description, pre-
processing steps, and the proposed deep neural network architecture along with training
methodology for detecting R-peaks in MHD-corrupted ECG signals are discussed. Finally,
the various metrics used for evaluating the model are described.

The process of detecting R-peaks from patients inside MRI has been summarized
in Figure 2. Patients were scanned using an MRI scanner while their ECG signals were
recorded. Due to the presence of MRI magnetic fields, the ECG signals were corrupted
by the MHD effect. The corrupted ECG signals were first preprocessed, then they were
split into training, validation, and test sets. The training set was used for training the
proposed model, while the validation set was used to choose the best model. The resulting
best-trained model was then used on test data to detect R-peaks.
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Figure 2. Detection of R peaks in three-channel ECG waveforms collected from patients under MRI.

2.1. R-peak Detection as av Segmentation Problem

Segmentation is a popular method in the biomedical image and signals domain for
its ability to isolate the regions of interest (ROIs) [45]. Most segmentation models are
variants of the UNet model [46], which consist of an encoder and a decoder. The 2D
segmentation models take an image as input and produce a mask where the region of
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interest is depicted as 1, while the background is depicted as 0. This methodology can
be adopted for detecting R-peaks in ECG signals, based on our previous work [44]. In
this case, the region of interest is the R-peak location. The R-peak locations are manually
annotated by expert physicians. The R-peaks are modeled as a rectangular pulse with a
height of 1.0 and a length of 13 samples (roughly 12.7 ms) [44]. A corrupted ECG and its
corresponding R-peaks as pulses are shown in Figure 3. The signals are ‘widely’ plotted so
that the width of the pulse train can be easily seen. In this work, the proposed model will
map a corrupted three-channel ECG signal to a pulse train, where the pulses refer to the
R-peak locations.
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Figure 3. R-peak detection as a segmentation problem. Here, (a) depicts Channel 1 or Lead I of
corrupted ECG, and (b) depicts the R-peaks as a pulse train.

2.2. Dataset Description

The dataset used here is taken from Krug et al. [47], as they made the dataset public in
“PhysioNet” [48,49]. The motivation behind the collection of this dataset was to carry out
further research on analyzing the ECG signals corrupted by the strong static magnetic fields
generated by MRI machines. The dataset contained 53 records from 29 subjects. The data is
annotated by either Physicians or ECG experts. In this work, ECG data corrupted by 3T
(23 subjects) and 7T (5 subjects) magnetic fields are used, as the number of subjects for 1T
(only 1 subject) is insufficient for training deep learning models. Moreover, in this dataset,
the number of ECG channels is not uniform for all subjects. Some subjects have twelve
channels, while the others have only three channels (Lead I, II, and III). Therefore, for both
3T and 7T machines, three channel ECG signals have been used. The dataset was sampled
at 1024 Hz and segments of 4 s duration were applied as input to the deep learning models.

2.3. Preprocessing

The MHD corrupted ECG signals were filtered with a bandpass filter of 0.05 Hz to
100 Hz bandwidth. After the bandpass filtering, a notch filter or narrowband band stop
filter with a central rejection frequency of 50 Hz was applied to clean power line distortions.
Figure 4 depicts the effect of preprocessing steps on raw ECG signals. The waveforms
in Figure 4a,c show ECG signals corrupted by magnetic fields of 3T and 7T, respectively.
The aforementioned preprocessing steps were applied to both signals. The result of the
preprocessing steps on signals in Figure 4a,c are shown in Figure 4b,d, respectively.

2.4. Model Architecture

In this work, a novel architecture is proposed for detecting R-peaks via a segmen-
tation model, named Self-Attention MHDNet. The network utilizes the concepts of Self-
Organizing Operational Neural Networks (Self-ONN) [50–54], Feature Pyramid Networks
(FPN) [55], and Attention mechanism. This subsection explains the Self-ONN layers, the
actual network, and how the Attention mechanism works.
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Figure 4. Result of preprocessing on MHD corrupted ECG signals. The preprocessing steps convert
the raw ECG signal corrupted by a 3T magnetic field in (a) to obtain the clean signal in (b). The same
steps were also taken to filter raw ECG signal corrupted by 7T magnetic field in (c) to obtain the clean
signal in (d).

2.4.1. Self-ONN

This work proposes a new architecture using Self-ONN [50–54] for R-peak detection.
Operational Neural Networks (ONNs) employ generative neurons rather than homoge-
neous linear approximations used by Convolutional Neural Networks (CNNs) [50,51,54].
ONNs are conceptual expansions of the neural network class, Generative Operational
Perceptrons (GoPs) [51]. Self-ONNs are an efficient version of ONN, where the operators
are no longer selected from a library of operators. Because genuine neurons execute a wide
range of neurochemical processes, these ONNs and Self-ONNs emulate them by simulating
numerous synaptic connections and operations in the deep learning layer. For an input
feature xn−1, of nth neuron, the approximation function f (x) can be formulated by using
Equations (1)–(3).

f(x) = f(x0) +
f′(x0)

1!
(x− x0) +

f′′(x0)

2!
(x− x0)

2 + · · ·+ fq(x0)

q!
(x− x0)

q (1)

f(x) = f(0) +
f′(x0)

1!
(x) +

f′′(x0)

2!
(x)2 + · · ·+ fq(x0)

q!
(x)q (2)

f(x) = b +ω1(x) +ω2(x)
2 + · · ·+ωq(x)

q (3)

This approximation is derived with the help of the Taylor Series approximation. As
shown in Equation (3), b is the bias that is formulated from the Taylor series approximation
on x→0. For Self-ONN layers, tan h activation, instead of ReLU, is used so that the
approximation is bound between −1 and 1. Several studies have shown that Self-ONN-
based model designs outperform CNN-based architecture [53,54,56]. Previous work has
also studied how Self-ONN compares in R-peak detection for Holter ECG signals [44].
Hence, it is important to examine the effectiveness of a deep Self-ONN model for R-peak
detection in MHD-affected ECG.
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2.4.2. Self-Attention MHDNet

The model, as shown in Figure 5, contains four layers in the encoder section and four
layers in the decoder section with a bottleneck in between. Each Self-ONN layer (q = 3)
is followed by an instance norm and tanh activation. The architecture requires the signal
length to decrease as we go deeper and for it to increase as we go ‘upwards’ from the deeper
layers. For decreasing the signal lengths, we use a max pooling layer, which decreases
the length by a factor of 2. For increasing the signal lengths, we use an upsampling layer,
which increases the length by a factor of 2. As a result, the signal length is halved as we go
deeper. The first layer of the encoder contains only 16 filters. The number of filters doubles
as we go deeper into the network, with the bottleneck having 256 filters. The kernel size is
kept the same throughout the model with a size of 11.
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In place of a normal skip connection between the encoder layer and the decoder layer,
an attention block is placed in between to focus on the relevant parts of the signal. The
attention block takes in the encoder signal from the ith layer and the decoder signal from
the i + 1th layer. The attention-guided signal is then concatenated with the decoder signal
from the ith layer.

In a normal encoder-decoder architecture, the feature map of the final layer is passed
through an ONN layer to obtain the final segmentation mask. However, taking inspiration
from FPN, a feature concatenation approach is taken. Feature maps from the first, second,
and third decoder layers are concatenated together. Deeper layer feature maps are interpo-
lated to match the shape of the feature maps in the output layer (layer 1). The resulting
feature map is then passed through an ONN layer of kernel size 1 that produces the final
output.

2.4.3. Attention Mechanism

The attention mechanism helps in focusing the features of the model into maximum
relevancy. Figure 6 demonstrates the attention mechanism in detail. The attention block
takes in two signals viz. the encoder signal (from ith layer) and the decoder signal (from
i + 1th layer). Both the encoder and decoder go through an ONN layer of kernel size
1 followed by instance normalization. The ONN layer has the same number of filters as the
number of channels in the signal. The decoder signal is then upsampled by a factor of 2,
and then added to the encoder signal in a summation operation. The resulting signal is
introduced to some non-linearity in the form of tanh activation.
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layer are taken as inputs into the attention block.

The signal is then passed through an ONN layer of 1 filter with kernel size 1, which is
later normalized via instance normalization. We now have a vector that is the same length
as the encoder signal. Another non-linearity is introduced in the form of sigmoid activation
so that the vector is between 0 and 1. The vector is then multiplied elementwise with the
encoder signal. The product is then given as the output of the attention block.

2.5. Training Methodology

The dataset is split into five folds, where three folds are used for training, one fold
for validation, and one fold for testing. The split is carried out in such a way that there is
no leaking of the same subject’s data between the folds. The results reported in this study
were calculated by averaging over all five folds. The training data is split into segments of
4-s duration with a 75% overlap. The process is the same for both 3T and 7T. This ensures
that there is enough data for the training phase. This resulted in 2809 segments for 7T data
and 9171 segments for 3T data. A batch size of 128 is used to train the model for 100 epochs.
The Adam optimizer is used to optimize the cross-entropy loss with a learning rate
of 1 × 10−3.

2.6. Evaluation Criteria

The trained models were quantitatively evaluated in two categories: segmentation
and R-peak detection. Intersection over Union (IoU) and Dice Similarity Coefficient (DSC)
are computed to robustly quantify the performance of the network in 1D segmentation
mask generation. IoU and DSC are calculated using Equations (4) and (5), respectively.
Here, TP, FN, and FP refer to true positive, false negative, and false positive, respectively,
in terms of the segmented 1D waveform data points.

IOU =
TP

TP + FN + FP
× 100% (4)

DSC =
2× TP

2× TP + FN + FP
× 100% (5)

For R-peak detection, three metrics are employed viz. recall, precision, and F1-score,
as shown in Equations (6)–(8), respectively. It is also essential to note that the number of
true positives, false positives, and false negatives was obtained within 70 milliseconds of



Bioengineering 2023, 10, 542 9 of 17

the true peak location [44]. For R-peak detection, TP, FP, and FN refer to instances where
the R-peak is properly detected, falsely detected, or not detected, respectively.

Recall =
TP

TP + FN
× 100% (6)

Precision =
TP

TP + FP
× 100% (7)

F1− score =
TP

TP + 1
2 (FP + FN)

× 100% (8)

For easy readability, the five metrics were converted from ratios to percentages.

3. Results and Discussion

In this section, we present the experimental outcomes of the study with brief discus-
sions on each. Firstly, the authors conduct an ablation study regarding the importance of
various blocks that make up the proposed network. The authors then analyze the R-peak
detection capability of the model in 3T and 7T data. Finally, the performance of the pro-
posed network is compared to the current literature in R-peak detection of MHD corrupted
signals. The models were newly trained for both 3T and 7T data.

3.1. Ablation Study

To verify the effect of the various modules on the proposed model, an ablation study is
conducted where the effect of Self-ONN layers and attention mechanism is studied. In each
experiment, the model is newly trained following the structure discussed in Section 2.5.
The results of the ablation study are shown in Table 1 and Figure 7. An FPN architecture
(using CNN instead of Self-ONN) is used as the baseline model, while all other parameters
are kept the same. The baseline model performs well with IoU and DSC of 96.35% and
96.33% for 3T, and 93.85% and 95.55% for 7T. Changing CNN layers to Self-ONN layers
results in IoU and DSC increasing to 97.88% and 98.36% for 3T, and 95.01% and 97.31% for
7T. For 3T, it shows an improvement of 1.53% and 2.53% in terms of IoU and DSC. On the
other hand, 7T shows an improvement of 1.16% and 1.76% in terms of IoU and DSC.

Table 1. Effect of various mechanisms on the performance of the proposed model.

3T 7T

Network IoU (%) DSC (%) IoU (%) DSC (%)

FPN 96.35 96.33 93.85 95.55

Self-FPN 97.88 98.86 95.01 97.31

Self-Attention MHDNet 98.97 99.01 97.01 98.36

Adding an attention mechanism pushed the model’s performance to an even higher
level. The IoU increased from 97.88% to 98.97% (3T) and from 95.01% to 97.01% (7T) when
compared to the Self-FPN model. The DSC increased from 98.86% to 99.01% (3T) and from
97.31% to 98.36% (7T) for the same situation. This addition caused the most improvement
in IoU for 7T, as it increased by 2.00%. Thus, replacing CNN with Self-ONN layers and then
adding an attention mechanism appears to be a promising method for detecting R-peaks in
MHD-affected ECG.
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performance, while the Self-FPN and Self-Attention MHDNet outcomes are shown as improvements.

3.2. R-peak Detection Analysis

The ablation study proved that Self-Attention MHDNet outperforms all other vari-
ations of FPN in segmenting the R-peak pulse train by a significant margin. Hence, the
performances of R-peak detection are computed on the results of that model where the
Self-Attention MHDNet model has been separately trained for both 3T and 7T data. The
previously discussed evaluation metrics are shown in Table 2. It can be observed that recall,
precision, and F1-score for both settings are above 99%. Furthermore, the F1-score is used
as the main metric as it is a harmonic sum of recall and precision. Considering that, even
though both models performed very well, the performance in the 7T setting marginally
outperformed the model in the 3T setting.

Table 2. Performance evaluation of Self Attention MHDNet in R-peak detection for 3T and 7T settings.

Network Magnetic Field
Strength Recall (%) Precision (%) F1-Score (%)

Self-Attention
MHDNet

3T 99.83 99.68 99.76

7T 99.87 99.78 99.82

For qualitative evaluation, Figure 8 depicts the prediction of R-peaks from three-
channel ECG waveforms under the 3T setting. Only channel 1 or lead I of the ECG is
visualized. The green shaded area shows the location of the actual R-peak. In the 3T setting,
the R-peaks correspond to the highest peaks in the signal. This is because the signal is not
distorted to a high degree due to the MHD effect. As a result, the model can easily learn
the patterns for R-peak locations compared to the 7T setting, which will be described later.
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the test set. Green spikes denote the ground truth R peaks annotated by clinical experts, while the
red crosses denote the predicted R-peaks.

Similar to the 3T setting, Figure 9 depicts the predicted R-peaks from three-channel
ECG waveforms under a 7T magnetic field. The first observation from the figure is that
the ECG waveforms are distorted to a very high degree. While in some cases, the R-peaks
are in a trough before the largest peak (as in Figure 9f), in other cases, the R-peaks are in a
smaller peak before the largest peak (as in Figure 9d). Despite that, the model was able to
reliably predict the R-peaks in the corrupted ECG signals.

As shown in Tables 1 and 2, the model is not 100% accurate. There are some missing
cases. Figure 10 depicts some signals where the model failed to detect some R-peaks in the
signal. It is important to note that the model correctly identified most of the R-peaks in
the waveform. In Figure 10, two types of errors are noticed. In Figure 10a,b,d, the model
missed the R-peaks when it was almost out of bounds. That was the most common error in
this work. The other error can be seen in Figure 10c, where the model missed the R-peak by
roughly 0.2 s. It is important to notice that the second type of error only occurred for ECG
under 7T settings.

3.3. Heart Rate Analysis

The proposed system is very accurate in predicting R-peaks in ECG waveforms. While
R-peaks can be used for gating under an MRI machine, they can also be used to monitor
the heart rate (HR). Abnormal heart rates often signify that the patient is under duress. To
demonstrate the performance of the proposed system in heart rate estimation, the R-peaks
were used to calculate the R-R intervals and, consequently, the heart rate. The actual
heart rate and predicted heart rate were calculated from actual and predicted R-peaks,
respectively. The heart rates were analyzed with the help of a regression plot, as shown
in Figure 11. In a regression plot, the estimated heart rate is plotted against the actual
heart rate. Then, a trendline is fitted through the data points. An ideal model will have
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a trendline with a gradient, i.e., a Pearson’s Correlation Coefficient (PCC) of 1. As seen
in Figure 11, the trendline almost perfectly fits the data points for both 3T and 7T, and
shows a very high correlation. Moreover, the heart rate estimation for the 3T setting has
a PCC of 0.998 compared to the PCC of 0.987 for the 7T setting; which makes sense, as
the 3T magnetic field distorts the signal less than the 7T magnetic field. Nevertheless, our
proposed approach showed excellent performance in estimating heart rate.
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Figure 11. Analysis of heart rate prediction using a regression plot for ECG under a (a) 3T and a
(b) 7T setting.

Further analysis of the estimated and actual heart rate was carried out using the
Bland-Altman plot in Figure 12. In a Bland-Altman plot, the difference in estimated and
actual heart rate is plotted against the average of the estimated and actual heart rate. The
black dotted line represents the average of all the differences, while the red dotted lines
represent the 95% confidence interval. Hence, in ideal conditions, the plot will contain all
the data points that have a y-coordinate of 0. It will essentially be a horizontal line along the
x-axis. In this case, Figure 12 shows that the spread of error in the prediction of heart rate is
quite small. The 95% confidence intervals for 3T and 7T settings range from 0.23 beats per
minute (bpm) to −0.23 bpm, and from 2.54 bpm to −2.37 bpm, respectively.
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3.4. Comparison with Current Work

The results obtained from an experiment must be compared with the literature. How-
ever, it is very difficult to do so in tasks where the main resource, the dataset, is scarce.
Hence, to ensure a fairer comparison, the performance of various methods that used a
version of the dataset used in this work is reported in Table 3. Unfortunately, no literature
could be found that used the exact data and no work was found that used 3T data of this
dataset. The methods that have been reported were all implemented by Krug et al. [9].
Krug et al. first showed the performance of the methods M1, M2, M3, and M5 on the
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7T data. M1 used an ECG lead and showed a respectable precision and recall of 89.40%
and 87.10%.

Table 3. Comparison of this work with the current literature in R-peak detection of MHD-
corrupted ECG.

Method Magnetic Field Precision (%) Recall (%) F1-Score (%)

ICA of ECG for R-peak detection [9] 7T 99.10 99.20 -

M1: R-peak detection in a single ECG lead [57] 7T 89.40 87.10 -

M2: R-peak detection in a single VCG lead [57] 7T 91.20 88.90 -

M3: 3D VCG-based R-peak detection [32] 7T 57.50 72.10 -

M5: ICA of the VCG for R-peak detection [57] 7T 87.50 84.30 -

Self-Attention MHDNet
7T 99.87 99.78 99.82

3T 99.83 99.68 99.76

However, in M2, when VCG was used, the performance jumped to 91.20% and 88.90%
in precision and recall, respectively. When 3D VCG was used in M3, the results drastically
dropped. The precision was less than 60% and the recall was 72%. M5 used an ICA-based
method that had a precision of 87.50% and recall of 84.30%. Krug et al. chose to improve
this ICA-based method and were able to obtain very good precision and recall of 99.10%
and 99.20%, respectively. Our method, however, outperformed [9] this with a precision of
99.87% and a recall of 99.78%.

Despite accurately predicting the R-peaks in the ECG waveforms, which are corrupted
under 3T and 7T magnetic fields, the model still needs to be tested for robustness in external
datasets, which are not currently available. Another limitation is that the proposed model
needs a separate model for 3T and 7T. It might not properly work in cases where the field
strength will be different. In the future, the authors aim to create a model that will be
able to robustly detect the R-peaks regardless of the degree of MHD effect on ECG. To
ensure robustness, the model could be evaluated with external data. These studies would,
however, require extensive data collection. This study is a step towards building a universal
R-peak detector in MHD-corrupted ECG signals.

4. Conclusions

In the field of medical diagnosis and image-guided interventions, Magnetic Resonance
Imaging (MRI) is a commonly used technique. An electrocardiogram (ECG) may be
used to monitor the patient’s heart during an MRI scan to ensure cardiac gating, capture
information at end diastole or end systole, or acquire partial images throughout the cardiac
cycle and average these signals out over several heartbeats. However, the strong magnetic
fields present in an MRI scanner can lead to significant distortions of the ECG data due to the
Magnetohydrodynamic (MHD) effect. These distortions, which can cause abnormalities in
the heartbeat pattern, make it challenging to detect QRS complexes and limit the diagnostic
potential of ECG readings. Hence, in this work, a novel network, Self-Attention MHDNet,
was proposed to detect R-peaks in the ECG waveforms collected inside an MRI scanner.
This model formulates the detection process as a 1D-segmentation problem. In a 3 Tesla
(T) environment, the proposed model attained precision and recall percentages of 99.83%
and 99.68%, respectively. On the other hand, in a 7T environment, the model could obtain
precision and recall rates of 99.87% and 99.78%, respectively. It was also shown that only
three channels of ECG (Lead I, II, and III) are enough to accurately detect R-peaks in ECG
signals distorted by the MHD effect. Furthermore, an ablation study was conducted, where
it was found that the addition of Self-ONN layers and the attention mechanism improved
the segmentation capabilities of the model. Therefore, the proposed approach could be
used to robustly detect the locations of the R-peaks in the MHD corrupted ECG signals by
3T or 7T MRI machines for accurate gating of the cardiovascular functional MRI.
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50. Keleş, O.; Tekalp, A.M.; Malik, J.; Kιranyaz, S. Self-Organized Residual Blocks For Image Super-Resolution. In Proceedings of the
IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA, 19–22 September 2021; pp. 589–593.

51. Kiranyaz, S.; Ince, T.; Iosifidis, A.; Gabbouj, M. Operational neural networks. Neural Comput. Appl. 2020, 32, 6645–6668. [CrossRef]
52. Kiranyaz, S.; Malik, J.; Abdallah, H.B.; Ince, T.; Iosifidis, A.; Gabbouj, M. Self-organized operational neural networks with

generative neurons. Neural Netw. 2021, 140, 294–308. [CrossRef]
53. Malik, J.; Kiranyaz, S.; Yamac, M.; Guldogan, E.; Gabbouj, M. Convolutional versus Self-Organized Operational Neural Networks

for Real-World Blind Image Denoising. arXiv 2021, arXiv:2103.03070.
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