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Abstract: Recent studies have highlighted the possibility of using surface electromyographic (EMG)
signals to develop human–computer interfaces that are also able to recognize complex motor tasks
involving the hand as the handwriting of digits. However, the automatic recognition of words from
EMG information has not yet been studied. The aim of this study is to investigate the feasibility of
using combined forearm and wrist EMG probes for solving the handwriting recognition problem of
30 words with consolidated machine-learning techniques and aggregating state-of-the-art features
extracted in the time and frequency domains. Six healthy subjects, three females and three males
aged between 25 and 40 years, were recruited for the study. Two tests in pattern recognition were
conducted to assess the possibility of classifying fine hand movements through EMG signals. The
first test was designed to assess the feasibility of using consolidated myoelectric control technology
with shallow machine-learning methods in the field of handwriting detection. The second test was
implemented to assess if specific feature extraction schemes can guarantee high performances with
limited complexity of the processing pipeline. Among support vector machine, linear discriminant
analysis, and K-nearest neighbours (KNN), the last one showed the best classification performances
in the 30-word classification problem, with a mean accuracy of 95% and 85% when using all the
features and a specific feature set known as TDAR, respectively. The obtained results confirmed
the validity of using combined wrist and forearm EMG data for intelligent handwriting recognition
through pattern recognition approaches in real scenarios.

Keywords: EMG; handwriting; pattern recognition; feature extraction; signal processing; human–
machine interface

1. Introduction

Nowadays, the role of surface electromyography (EMG) is central in the development
of smart assistive technologies. This is certainly due to the large amount of tools available
in the field of signal processing and machine learning. Indeed, the literature provides
a variety of software packages that facilitate the training and validation of EMG-based
human–machine interfaces able to decode the human intent of motion within a given set of
movements [1,2]. Such interfaces find application in prosthetic control of upper and lower
bionic limbs [3,4], but also for the realization of intelligent human–computer interactions in
virtual and augmented reality, and for biometric identification [5–8]. Myoelectric interfaces
can also find application in modern scenarios since they can be used to decode handwrit-
ten characters or digits [9,10], supporting the development of immersive rehabilitation
protocols with a consistent involvement of the cognitive centres of the brain [11].
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Many pieces of evidence in the literature suggest the use of strengthening the hand-
writing motor skills to mitigate the effects carried by the pathology [12–14]. In children
affected by dysgraphia, for instance, handwriting exercises delivered through human–
machine interfaces can be particularly beneficial as they may provide timely feedback to
correct their style [13]. Another important rehabilitation scenario of handwriting involves
Parkinson’s disease, where handwriting difficulties occur frequently and are generally
known as micrographia, i.e., the reduction of writing amplitude, eventually resulting in a
reduced legibility [15]. In this context, past studies have shown that handwriting exercises
help improve the writing size in those subjects affected by Parkinson’s disease [16,17]. An-
other important application of handwriting rehabilitation is related to motor hand ability
recovery in patients after a severe traumatic brain injury, or after coma. In both cases,
the use of handwriting showed improvements in patient condition, showing progressively
improved adherence to recovery of normal functionalities of the hands [18–20].

It should be noted that EMG-based interfaces for handwriting recognition software
have been less investigated compared to other technologies that generally employ pattern
recognition methods trained with 2D images recorded on touch screen tablets, which can
also associate pressure information of the pen [21,22]. However, these data sources did not
reflect the actual volition of human movement, and handwriting is recognized only after
having complete 2D information [22]. On the other hand, EMG can directly mirror the motor
control volition and data and can be used in a sequential manner to create architectures
that recognize the handwriting online., i.e., with an update frequency that can be used to
making the interaction more fluent [10]. Hence, although EMG has been considered as a
potential option for handwriting recognition, only a few studies have explored its use in
classifying digits or letters [9,10]. The recognition of handwritten characters from EMG
data has been tackled using template matching, dynamic time warping, and deep-learning
methods [9,23,24]. However, these approaches require large databases and impose a high
computational burden during the training phase, making the practical applicability of
such architectures limited. Indeed, in [9], each participant wrote 36 characters on a screen,
and each character was repeated one thousand times to create a dataset useful to train deep-
learning-based models. Confirmation regarding the large amount of data for delivering
reliable EMG-based deep-learning models can also be found in the recent literature [8],
especially when one would realize plug-and-play devices. Furthermore, similar to [24],
the EMG data were first mapped to pen coordinates before the classification step, which
was obtained from a tablet. Such aspects may challenge the applicability of EMG-based
human–computer interfaces when they need to be tailored on specific subjects [10].

Hence, the development of reliable and fast-calibrating myoelectric interfaces based
on shallow pattern recognition technique results are still appealing and deserve to be
investigated. In passing, recent studies have reported advancements in the EMG electrode
locations for the development of human–computer interfaces able to extend the capability
of the human being in smartly interacting with software [8]. To do this, the recent literature
has focused on showing the importance of the forearm and wrist as a good location to
acquire EMG for the development of transferable architectures in real scenarios [8,10,25,26].
However, the full potentialities of the aforementioned architectures were not completely
investigated in complex handwriting tasks as the recognition of a set of words. Hence,
the aim of this study is to investigate the feasibility of using combined forearm and wrist
EMG signals to develop a 30-word handwriting recognition architecture. For this reason,
five consolidated feature sets in the field of myoelectric control were employed to extract
signal characteristics in the time and frequency domains. Moreover, the possible advantage
of opportunely smoothing the classifier output signal was also assessed by applying a
majority voting approach [27].

The paper is thus organized as follows: Section 2 reports the experimental protocol,
the methodologies for processing EMG data, the pattern recognition algorithms, and the
metrics used for assessing classification performances. For results and discussion, respec-
tively, Sections 3 and 4 present the performances obtained for all the classifiers with respect
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to the five feature sets employed and the implications of using such models with and
without correction strategies. Finally, Section 5 concludes the manuscript with the main
findings of the present work and possible associated limitations.

2. Materials and Methods
2.1. Study Population

A total of six healthy subjects, three females and three males aged between 25 and
40 years, were recruited for the study considering an age range in accordance with [10,25,28].
Subjects did not manifest any impairment or cognitive disturbance, and they were not
affected by neurological disorders. Before applying for the study, each subject was informed
about the experimental procedure, which involved the use of commercial devices with
conformity declaration approval. All of them provided written consent to participate in the
experiment, which was conducted following the protocols of the Declaration of Helsinki.

2.2. Experimental Protocol

All participants were equipped with a total of six surface EMG electrodes with a
sampling frequency of 1000 Hz that operated synchronously (FREEEMG system, BTS-
Bioengineering, Milan, Italy). The electrodes were placed by the same expert operator over
the forearm and wrist in order to reduce the inter-operator variability. More specifically, the
first four electrodes were employed for covering the forearm: electrodes 1 and 4 were placed
on the extensor digitorum and the flexor carpi ulnaris, whereas electrodes 2 and 3 recorded
the myoelectric activity of the flexor carpi radialis and the brachioradialis [10]. The last two
electrodes, i.e., electrodes 5 and 6, were placed respectively on the distal ending of the flexor
carpi radialis in correspondence of the deep flexor pollicis longus, and in correspondence
of the extensor digiti minimi (Figure 1). Such a configuration guaranteed a wide spatial
coverage of the arm, facilitating the recording of EMG signals from the bellies of the deep
layer of muscles involved in the control of fine finger and wrist movements [29,30]. All the
experimental sessions were conducted within the Movement Analysis Laboratory of the
Università Politecnica delle Marche.

(a) (b)
Figure 1. Electromyographic (EMG) probes location in the dorsal (panel (a)) and medial (panel
(b)) view of the arm. This setup was used to record the electrical activity of the wrist and forearm
muscle for each subject. All probes was placed by the same expert in order to minimize effects due to
inter-operator variability.
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After being instrumented, all subjects were asked to sit on a chair in a comfortable
posture for writing with their dominant hand in their natural cursive style. Then, they
were asked to take a pen and write on a sheet of paper a total of 30 words, i.e., respectively,
10 nouns, adjectives, and verbs chosen among the most commonly employed in English
(http://oxforddictionaries.com (accessed on 22 of May 2023); see Table 1). Each word was
written 10 times with a pause of 5 s between two consecutive written words. The number
of repetitions was selected to obtain a consistent amount of data for creating balanced
training–validation and testing folds. This mitigated possible biases in the computation
of the performance metrics, and at the same time allowed us to keep the acquisition time
within reasonable limits [4]. Moreover, after completion of a sequence, each subject was
asked to take a break for at least two minutes to prevent fatigue. During each rest period,
the EMG data were saved in an appropriate folder and the subject was ready to face
another trial. Each trial contained information relative to a specific word, and subjects
proceeded by writing nouns, adjectives, and verbs in the order indicated by the class
reported in Table 1. Eventually, for each subject a total of 30 recordings, i.e., one per each
word containing 6 EMG signals with 10 activation events, were available for pre-processing
and feature extraction.

Table 1. Each subject was asked to handwrite nouns (10), adjectives (10), and verbs (10) according to
the experimental protocol described in Section 2.2. To each word corresponds a label number that
associates the word with the specific class used in the myoelectric pattern recognition problem.

Nouns Adjectives Verbs
Word Label Word Label Word Label

time 1 good 11 be 21
person 2 new 12 have 22

year 3 first 13 do 23
way 4 last 14 say 24
day 5 log 15 get 25

thing 6 great 16 make 26
man 7 little 17 go 27

world 8 own 18 know 28
life 9 other 19 take 29

hand 10 old 20 see 30

2.3. Data Pre-Processing and Feature Extraction

For each record, EMG signals were filtered with a fourth-order, zero-phase Butter-
worth band-pass filter between 35 Hz and 450 Hz. Then, muscle onset state for data
segmentation was opportunely identified with the threshold method [31,32]. An example
of the segmentation step for a data record is reported in Figure 2.

The six EMG signals associated with each word repetition were segmented to create a
database, allowing for the extraction of features in both the time and frequency domains
(TD and FD) [1,4]. A sliding window of 150 ms with an overlap of 75 ms was used to
calculate the features listed in Table 2 [10].

For each subject, a matrix was created with a number of rows corresponding to the
total number of segmented windows and a number of columns corresponding to all the
features computed for each channel. Data at feature level were then aggregated according
to the feature sets that are commonly used for myoelectric pattern recognition [1,10]. In this
study, five sets of characteristics were considered, the first being the Hudgins set, which
consists of four time-domain features (MAV, WL, SSC, ZC) [33]. The second set was the Du
set, which includes six time-domain features i.e., IEMG, VAR, WAMP, WL, SSC, ZC [34].
Two other feature sets proposed in [1] were also taken into account: Phinyomark 1, which is
composed of five time-domain and two frequency-domain features, i.e., MAV, WL, WAMP,
ZC, AR, MNF and PSR, and Phinyomark 2, which is made up of four time-domain features,
i.e., WPermEn, CC, RMS and WL. Finally, the last feature set considered was TDAR, which
is composed of seven features, namely MAV, SSC, WL, VAR, WAMP, AR, and ZC [35].

https://web.archive.org/web/20111226085859/http://oxforddictionaries.com/words/the-oec-facts-about-the-language
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Figure 2. Segmentation of forearm (blue traces) and wrist (orange traces) EMGs performed to identify
the handwriting 10-fold repetition of the word “great” by subject 2.

Table 2. EMG features extracted in the time (16) and frequency (10) domains (TD and FD, respectively),
with their abbreviations. More information regarding their computation can be found in [1,10].

Domain FeatureName Abbreviation

TD

Integrated EMG IEMG
Mean Absolute Value MAV

Variance of sEMG VAR
Root Mean Square RMS
Waveform Length WL

Difference Absolute Mean Value DAMV
Difference Absolute Standard Deviation Value DASDV

Zero Crossing ZC
Myopulse Percentage Rate MYOP

Willison Amplitude WAMP
Slope Sign Change SSC

Fuzzy Entropy FuzEN
Weighted Permutation Entropy WPermEN

Histogram of EMG, 10-bins HIST
Auto-Regressive Coefficients, 4th Order AR

Cepstrum coefficients of the 4th Order AR process CC

FD

Mean Frequency MNF
Median Frequency MDF

Peak Frequency PKF
Total Power TTP

1st Spectral Moment SM1
2nd Spectral Moment SM2
3rd Spectral Moment SM3

Frequency Ratio FR
Power Spectrum Ratio PSR

Variance of Central Frequency VCF

2.4. Classification Algorithms

In this study, three state-of-the-art classification algorithms were used for myoelectric
control: linear discriminant analysis (LDA), support vector machine (SVM), and K-nearest
neighbours (KNN) [1,4,36]. Concerning the LDA, it is a statistical learning model that has
demonstrated applicability in myoelectric hand gesture recognition [1,3,37]. Here, a prin-
cipal diagonal covariance matrix model was assumed to model the data [37]. Regarding
the SVM, a linear kernel was employed, and a one-versus-one approach was used to deal
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with the multi-class nature of the handwriting recognition problem through SVM [37,38].
Finally, KNN is a non-parametric machine-learning model that requires the definition of
the number of neighbours (k) to consider, and a distance metric between data points [37,38].
In this case, k was set equal to 2 and Euclidean norm was used.

2.5. Pattern Recognition Tests

Two pattern recognition tests were conducted to assess the possibility of classifying
fine hand movements, that is writing 30 words, through EMG-based pattern recognition.
In the first one, all the features in TD and FD were combined and used to train and test
intra-subject models. Thus LDA, SVM, and KNN were trained for each subject using a
five-fold cross validation scheme on 70% of the subject’s data, while the remaining 30% was
used for testing. As done in previous studies [4,10], attention was paid to balancing the
data split in each stage, i.e., learning, validation, and testing, to reduce bias in the models,
thus avoiding overoptimistic results.

The second test was conducted to evaluate the classification performance of the
aggregated sets reported in Section 2.3. This experiment was implemented to determine if
consolidated feature extraction schemes can be useful in a complex classification problem,
such as the one faced in this study, which involves more precise control of the wrist and
hand movement. To do this, LDA, SVM, and KNN were trained to model intra-subject EMG-
based classification of the 30 written words using the aforementioned training–validation
and classification scheme. Thus, the Hudgins, Du, Phinyomark 1, Phinyomark 2, and TDAR
sets were split into 70% of training data, which were then used in a five-fold cross validation
scheme, while the remaining 30% was used for testing. It is worth noting that, in both
experiments, the training and testing sets were split randomly but balanced, as suggested
in [10].

Moreover, the effect of smoothing the classification output using majority voting (MV)
was investigated, as suggested when classifiers have to be used in real scenarios [29,39].
MV is a post-processing approach used to enhance the model’s performance, and it utilizes
a stream of class decisions that resulted from a sliding window with an overlapping scheme
to reduce any potential noisy decision [40]. More formally, given a streamed number of
votes, M, from the classifier, the smoothed MV decision, dMV, can be expressed as

dMV = arg max
c

M
2

∑
i=− M

2

I(di = c), (1)

where c represent the class label and I(di = c) is an indicator function that equals 1 if
the ith vote, di, is equal to class c, and 0 otherwise [27,29,39]. The number of votes, M,
is determined by the processing time, the time consumed during feature extraction and
classification, and the acceptable delay, which is the response time of the control system [27].
In this study, M was set to 4.

2.6. Performance Metrics and Statistical Analysis

To properly assess the results obtained in the pattern recognition tests described in
Section 2.5, three metrics have been taken into account during the testing of the models,
i.e., the accuracy, the F1 score, and the Matthews correlation coefficient (MCC). The accuracy
can be computed as the ratio between the correct predictions over the total predictions
made, more formally:

Acc =
TP + TN

TP + FP + TN + FN
, (2)

where TP, TN, FP, and FN are, respectively, the number of true positives, true negatives,
false positives, and false negatives.

The second metric used to assess the goodness of the performances is the F1 score,
which is the harmonic mean between recall and precision. Such a metric combines a
measure of the ability to correctly categorise the cases, with an index of robustness, given
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by the proportion of instances that are not missed. The F1 score determines how well the
model performs and it is computed as

F1 =
Precision · Recall

Precision + Recall
, (3)

where
Precision =

TP
TP + FP

(4)

Recall =
TP

FN + TP
. (5)

The last metric employed was the MCC, which is more sensitive to unbalanced datasets.
Thus, although in this study attention was paid to balancing the split between training
and testing data, MCC can be employed to confirm or not the indication given by the
accuracy metric. The MCC metric can range between −1 and 1, and positive values close
to 1 indicate a good performances of the model. Such a metric can be computed as

MCC =
TP · TN − FP · FN√

(TP + FP) · (TP + FN) · (TN + FP) · (TN + FN)
. (6)

The statistical differences between different conditions were assessed using the Wilcoxon
paired rank sum test, with statistical significance set at 0.05.

3. Results

Table 3 summarizes the results obtained testing for the KNN, SVM, and LDA models.
The KNN showed good classification performances in the 30-word classification problem,
with a mean accuracy of 85%. Such goodness is also confirmed by F1 and MCC, which
yielded values of 84%. On the other hand, SVM and LDA showed poor performances, with
a mean accuracy not superior to 65% and 37%, respectively. These results were confirmed
by MCC and F1, which indicated that the use of all the features grouped together, if fed to
the LDA and SVM models, did not lead to robust results among the subjects.

Table 3. Acc, F1, and MCC metrics for the first pattern recognition test for all the subjects with KNN,
SVM, and LDA classifiers.

Subject KNN SVM LDA
Acc F1 MCC Acc F1 MCC Acc F1 MCC

1 0.82 0.82 0.82 0.64 0.65 0.62 0.37 0.38 0.32
2 0.87 0.82 0.82 0.66 0.68 0.64 0.33 0.33 0.26
3 0.85 0.85 0.84 0.60 0.61 0.58 0.31 0.31 0.23
4 0.86 0.86 0.85 0.63 0.63 0.61 0.39 0.41 0.35
5 0.83 0.83 0.83 0.63 0.64 0.62 0.38 0.42 0.38
6 0.88 0.88 0.88 0.68 0.68 0.66 0.42 0.42 0.38

Average 0.85 0.84 0.84 0.64 0.65 0.62 0.37 0.37 0.32

Regarding the second experiment, Figure 3 summarizes the accuracy obtained in
testing for the five sets and for the three machine-learning models used. As confirmed
in the first experiment, KNN outperformed both SVM and LDA, with the latter showing
the worst performancs. These results are also confirmed when the MV scheme is applied,
as reported in Figure 4.

The KNN model had an average accuracy higher than 70%, with the TDAR and
Phinyomark 1 sets performing significantly better than the other sets (p < 0.05). However,
when comparing the two sets, there was no significant difference in the mean accuracy
(p = 0.5887). The mean accuracy for TDAR and Phinyomark 1 was 74.6% and 73.4%, respec-
tively, with no relevant difference in the interquartile range (see Figure 3). This supports
the lack of a significant difference between the two sets. The same can be said for the other
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two classification algorithms, with the TDAR set having the best performance metrics, even
with poor performances, i.e., average accuracy of 39.3% for the SVM and of 29.0% for the
LDA algorithm without the MV application.

Figure 3. Mean accuracy (ACC) among the subjects obtained with respect to the specific feature sets
considered (see Section 2.5), reported in the x-axis of the figure.

Figure 4. Mean accuracy (ACC) among the subjects obtained with respect to the specific feature sets
considered (see Section 2.5), reported in the x-axis of the figure. In this case, the effect of using the
majority voting (MV) approach is highlighted with respect to Figure 3.

Concerning the application of MV, it should be noted that it boosted the performances
of all the classifiers employed. In the case of KNN (see Figure 4), the role of feature sets
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is completely lost, as no significant differences were found when comparing all five sets.
This indicates that the applied post processor consistently improved the classification
performance up to a mean accuracy that is higher than 95%. However, if one keeps the
focus on the SVM model (Figure 4), TDAR and Phinyomark 1 confirmed their superior
performances compared to the other sets (p < 0.05), with a non-significant difference
between the two. In this case, LDA showed poor performance in terms of accuracy, with
large variability among the subjects (Figure 4). Moreover, even if TDAR and Phinyomark 1
again seemed to be the best sets, i.e., mean accuracy, respectively, of 61.4% and 60.8%,
the pair comparison between the sets did not reveal any significant difference (p > 0.05),
showing a not preferred set when LDA was used as the classifier for this task.

4. Discussion

In this study, different intelligent models that combined EMG information extracted
from the wrist and forearm were developed and evaluated for solving 30-word hand writing
recognition. Although previous studies showed the possibility to transfer myoelectric
control scheme in the field of handwriting recognition [10], the analysis was focused on
a set of ten digits, whereas in the present work a large dataset containing EMG signals
recorded for a large set of words was investigated to better unveil the nature of myoelectric
control during handwriting. Indeed, the EMG signals from sensors positioned on the wrist
resulted in rich information to characterise complex motor tasks, and they can be combined
with standard electrode configurations that limit the acquisition only at the level of the
forearm [10,25].

As shown in Figure 2, wrist EMG activity resulted in good quality signals with the
amplitude significantly higher in the activation epochs with respect to rest phases. This
was encountered in all the subjects analysed, supporting the availability of rich information
from data recorded close to the wrist, even if muscle tendon terminations are present in a
greater percentage close to the wrist with respect to active fibres [41]. However, the surface
EMG probes may also have captured motor commands coming from the active fibres
present in connection with the wrist joint [41], eventually providing signals with detectable
information [10].

The first pattern recognition test confirmed the hypothesis about the feasibility of using
combined forearm and wrist EMG probes for solving handwriting recognition problems
with consolidated machine-learning techniques and aggregating state-of-the-art features
extracted in TD and FD [1,27,42]. It should be noted that such an experiment confirmed
previous results in the literature [9,43], but it also revealed the possibility of using consoli-
dated myoelectric control technology with shallow machine-learning models in the field
of handwriting recognition, thus supporting the transfer of methodologies available in
the literature for developing human–machine interfaces able to recognize written words
by the humans solely based on EMG signals [10,25]. Indeed, the aggregation of a large
set of features in the TD and FD domains without a refinement in the processing pipeline
(i.e., feature selection, feature reduction, postprocesssing in the classification output) was
enough for reaching a classification accuracy greater than 80% for all the subjects in testing
for the KNN model (Table 3). Moreover, the trends observed for F1 score and MCC metrics
supported the goodness of the accuracy as the principal metric for comparing the results
obtained in all the performed experiments since the MCC and F1 showed value that are
close to 1, with a trend similar to the accuracy (Table 3).

Another point that should be highlighted in the first pattern recognition experiment
is the superior performance of KNN as compared to LDA and SVM, and this appeared
consistently among the subjects. This may be imputed to the non-parametric nature
of KNN [37], which does not require a priori knowledge of the data distribution and
it can fit irregular decision functions due to an increase of complex patterns present in
the data. Conversely, both the LDA and linear SVM-based architectures may suffer in
fine partitioning the feature space required in this study and are not encountered in
typical hand gesture recognition problems where both linear SVM and LDA resulted
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to be efficient [25,44]. Hence, rather than employ linear approaches, the results suggest
the use of nonlinear kernels to better capture the complex hidden pattern within the data.
This was confirmed when features were aggregated in specific sets for training and testing
the models, as indicated in the second experiment (see Section 2.5). Indeed, the KNN
remains the best model with and without the use of the MV postprocessor (Figures 3 and 4),
supporting the use of KNN to solve the myoelectric control problem with a large number
of classes. However, in the best scenario without MV, KNN reached a mean accuracy lower
than 80% when TDAR or Phinyomark 1 was employed (Figure 3), and this may hamper the
direct use of the model in a real context. In any case, the investigation of the performances
given by specific feature sets was important to better frame the possible line of processing
for extracting reliable information from EMG data. Thus, the present study supports TDAR
as a viable set of EMG characteristics, even when sparse EMG probes are used instead
of high-density channels [3]. It is also worth noting that TDAR is slightly different from
Hudgins (see Section 2.3). The main difference lies in the inclusion of VAR WAMP and
AR coefficients, which are not present in Hudgins. These additional features may be more
sensitive to fine motor control commands, which could be more difficult to capture using
Hudgins [3].

Comparing the KNN accuracy obtained in this work with respect to previous studies in
which the letter recognition problem was faced, one can notice that, without the use of MV,
the model fed with TDAR shows accuracy value greater than the one in [23], where a mean
accuracy of 84.3% was obtained through dynamic time warping. However, the model shows
lower performance with respect to other approaches proposed in [9,24,28,45], where a mean
accuracy greater than 92% was obtained by using techniques based on template matching,
modified time warping, and deep-learning approaches. These values of accuracy were
reached only when KNN was combined with MV (see Figure 4), where a 99.0% detection
accuracy was obtained, making the result comparable with the 98.6% obtained in [28], where
auto-encoder for feature extraction and SVM for classification were used with 15 young
adults. However, it is important to highlight that in the present study the problem faced
has a higher level of complexity. Indeed, the EMG patterns belong to a word in which
multiple letters are written consecutively and for which complex motor control planning is
actuated by the central nervous system. Moreover, the present classification task took into
account 30 classes, i.e., 30 words, which is a high number if compared with the majority of
myoelectric pattern recognition studies focused on handwriting recognition, as confirmed
in [9]. These considerations not only justify the lower performance obtained in testing
(see Figure 3), i.e., not greater than 75%, but also motivates the use of MV for smoothing
decision output [27], eventually boosting the performances of the KNN model toward
values that can guarantee future validation steps in a real-time context. With all the feature
sets, the KNN reached an accuracy value greater than 95%, suggesting the use of the model
in practical applications. Furthermore, by comparing the accuracy of KNN in the first and
second experiments without MV (respectively, Table 3 and Figure 3), one can recognize that
the use of aggregated TD and FD features contributes to the development of classifiers with
superior performance compared to the state-of-the-art feature sets employed in the second
experiment. This suggests that the use of specific sets, as defined in Section 2.3, can lead
to a loss of information that eventually limits the capability of training models to classify
unseen data. However, enlarging the number of features increases the complexity of the
KNN, indicating the potential use of feature reduction schemes, such as spectral regression
methods, when considering a wider range of features, as done in the first experiment [3].

It should be mentioned that the MV technique introduces a time latency of M/2 sam-
ples of the decision output since it provides the most probable class knowing M/2 samples
before and after the current decision output [27]. Considering the selection of M = 4 and
considering a feature update rate of 1/0.075 = 13.33 Hz, this introduces a latency of 150 ms,
and it defines a new decision output frequency of 1/0.15 = 6.66 Hz. Thus, performance
improvements were paid at the cost of having a final model with an update frequency
that is half of the original one. This aspect may represent a limitation, and it suggests a
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future research line that can be investigated. Indeed, modern myoelectric interfaces can
require output update rates that guarantee efficiency up to 25 Hz. This finds confirmation
in [27], where feature update and output decision rates were increased by selecting the
TDAR feature set together with reduced window length and adopting the high-density
EMG sensing technology. A further limitation of the study can be related to the number
of subjects recruited to undergo the experiment. However, it should be noted that the
number of subjects recruited is coherent with previous studies [9,10]. From this perspective,
the enlargement of the dataset may represent a future step toward the generalization of
such architecture in real practice, particularly if one is interested in investigating the use
of deep-learning techniques [8], which have been shown to be efficient for handwriting
recognition applications, even if they were not tested using small EMG window lengths [9].
Moreover, although in this study forearm and wrist EMG channels were used together,
future research may focus on comparing the two mentioned locations for automatic hand-
writing recognition. Indeed, no consensus regarding the optimal location can be found in
previous studies [10,25]. While forearm and wrist electrodes provided comparable results
in hand gesture recognition problems [25], a drop in performance was observed when
transitioning from forearm to wrist in the automatic recognition of handwritten digits [10].

5. Conclusions

The study investigated the combination of wrist and forearm EMG data for intelligent
handwriting recognition architectures able to decode words from myolelectric signals in
healthy young adults. Shallow pattern recognition models, i.e., SVM, LDA, and KNN, were
investigated to evaluate the possibility of transfer methodologies typically employed in
myeoelctric control in the field of handwriting recognition. Among the aforementioned
classifiers, KNN showed the best performances in the pattern recognition experiment pro-
posed, i.e, when a large feature set made of 26 different type of features where considered,
and when state-of-the-art feature sets were used with an MV post processor. This research
suggests the possibility to develop myoelectric handwriting recognition systems with a
consistent number of classes, i.e., 30 words using myoelectric information with approaches
that can be used in real scenario.
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