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Abstract: Captioning is the process of assembling a description for an image. Previous research
on captioning has usually focused on foreground objects. In captioning concepts, there are two
main objects for discussion: background object and foreground object. In contrast to the previous
image-captioning research, generating captions from the geological images of rocks is more focused
on the background of the images. This study proposed image captioning using a convolutional
neural network, long short-term memory, and word2vec to generate words from the image. The
proposed model was constructed by a convolutional neural network (CNN), long short-term memory
(LSTM), and word2vec and gave a dense output of 256 units. To make it properly grammatical,
a sequence of predicted words was reconstructed into a sentence by the beam search algorithm
with K = 3. An evaluation of the pre-trained baseline model VGG16 and our proposed CNN-A,
CNN-B, CNN-C, and CNN-D models used BLEU score methods for the N-gram. The BLEU scores
achieved for BLEU-1 using these models were 0.5515, 0.6463, 0.7012, 0.7620, and 0.5620, respectively.
BLEU-2 showed scores of 0.6048, 0.6507, 0.7083, 0.8756, and 0.6578, respectively. BLEU-3 performed
with scores of 0.6414, 0.6892, 0.7312, 0.8861, and 0.7307, respectively. Finally, BLEU-4 had scores of
0.6526, 0.6504, 0.7345, 0.8250, and 0.7537, respectively. Our CNN-C model outperformed the other
models, especially the baseline model. Furthermore, there are several future challenges in studying
captions, such as geological sentence structure, geological sentence phrase, and constructing words
by a geological tagger.

Keywords: deep learning; vector embedding; convolutional neural network; recurrent neural network

1. Introduction

Geological observation involves field research by a geologist. One of the tasks is to
write about the rock’s content and take a photo of the rock. Each picture is paired with
its description. This task requires an expert to write carefully and accurately about each
image. Each description should contain the rock’s characteristics, including the rock’s color,
shape, and constituents. This process is an essential task because the information helps
in decisions on other activities, such as mining, land fertilization, field surveillance, and
drilling. Sometimes, a geologist finds the same characteristics in the rocks that correspond
to previous descriptions and repeatedly writes the same descriptions. It is interesting to
adopt these tasks for researching how to make descriptions for the content of a photo image.
The geologist’s experience can be assumed as staging for the creation of a description for
each rock image. In computer vision terms, those activities can be defined as captioning.
One challenging caption process is how to make the images and their descriptions pairwise.
With captioning in place, we can predict and describe the content of other photos. Adopting
a geologist’s knowledge as an intelligent system for captioning is one aspect that can be
explored. How to identify rocks and create descriptions of the content of rock images has
been proposed as a research topic.

J. Imaging 2022, 8, 294. https://doi.org/10.3390/jimaging8110294 https://www.mdpi.com/journal/jimaging

https://doi.org/10.3390/jimaging8110294
https://doi.org/10.3390/jimaging8110294
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com
https://orcid.org/0000-0001-8435-7522
https://doi.org/10.3390/jimaging8110294
https://www.mdpi.com/journal/jimaging
https://www.mdpi.com/article/10.3390/jimaging8110294?type=check_update&version=1


J. Imaging 2022, 8, 294 2 of 18

Most works have proposed some image-captioning concepts. Krizhevsky proposed a
CNN for ImageNet and contributed to image extractions [1]. Other research proposed by
Karpathy introduced some concepts to make a caption from an image [2]. Supported by
ImageNet classification, Karpathy successfully contributed to creating a captioning model
for MS COCO and Flickr images [2]. The foreground object is one focus for identifying
the objects in an image; the words are then joined to make a sentence that the reader can
understand. Ignoring the background object should be avoided when generating a caption.
The same works have contributed different ideas, such as captioning based on an identified
word-by-word phrase between an object and other objects [3]. Captioning based on text
analysis has also been proposed [4–9]. Other concepts, such as identifying objects by the
object element [10–16] and studying the generation of captions as part of speech guidance,
have been proposed by [8,9,17–23].

The development of the concept of image captioning cannot be separated from the
development of deep learning models. The convolutional neural network (CNN) and
recurrent neural network (RNN) can predict the word that pairs with the image region
and the predicted word is close to a human description. The CNN, developed by Le-
cun, has supported production feature images by approximating the classification of
the image [24,25]. On the other hand, the RNN also helps generate words that can be
paired with the image region, followed by the conditional probability formulation of
L(x) = p(x |x1 . . . xi−1; I) [26–36]. Model image captioning has been researched by many
using CNN block and language models, such as DenseNet and LSTM [9,17], CNN and
LSTM [19,26,33,37–39], inceptionV3 and RNN [14], and CNN and BERT [40,41]. One of the
important parts of captioning is word embedding, which provides a vector feature value
for each word. Word2vec [2,6,18,42–44] and one-hot-vector [20,23,34,44–47] are embedding
models that many scholars have used for image captioning.

Many research studies have introduced a captioning model that strengthens a fore-
ground object [5,11,12,14–16,18,20,23,36–38,44,46,48–56]. Images contain two parts: fore-
ground and background objects. Foreground objects are identified by making a class of
objects, such as cars, men, women, roads, stairs, grass, birds, and animals, whereas a
background object is an area lying behind the foreground objects at the back of the image,
including objects, such as walls, yards, and the sky. In a geological image, the rock is a
dominant background object presented at the back of the image [57–60].

The problem with this study was how to identify the object that appears behind the
more common objects. Previous research has not focused on the background of common ob-
jects. Thus, it is a challenge to research and explore this domain, especially with geological
rock images. Many researchers have proposed effective captioning models. Nevertheless,
the resulting BLEU (B@N) scores have not achieved a desirable score. Moreover, the geo-
logical rock captions have not proven similar to the geologist’s descriptions. A preliminary
experiment performed using CNN + LSTM + one hot vector only presented scores of
0.3990, 0.3830, 0.4050, and 0.3470 for B@1, B@2, B@3, and B@4, respectively [2]. The model
identified common objects, such as humans, cars, and animals. All background objects,
including the rock, were unnecessary to infer a caption. These results prove that there are
still challenges in captioning.

The interpretation of objects from the geologist’s perception encompasses all objects
that appear in the background of the image visualization. The geologist focuses on in-
terpreting the rock in the image and ignores the common objects. This is contrary to the
previous studies about captioning and a different way of presenting captions. Captioning
experiments from this perspective is directed to describing and identifying the rock in the
images. Other aspects in the images, such as people, cars, and animals, are not important
for identifying the rock. Furthermore, our model can predict the words for the rock in the
image and acquire the image’s caption. Figure 1 highlights the problem domain of the
study. The objective was to generate a caption for rock images. In line with the research
objective, the caption outcomes are in Indonesian and match with the image of the rock.
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Figure 1. Research Problem on captioning geological terms. The translation of the caption is greenish-
gray limestone, mudstone, flint crystal, and fine-grain claystone (CNN: convolutional neural network).

With regard to the problem and the proposed model, we propose contributions to
solve some problems relating to captioning. Our contribution can be presented as follows:

• Using geological field exploration to support captioning and build a model that
produces a caption from an image. We collected that geological knowledge and used
it to construct an algorithm and the architecture of the captioning model.

• Building the corpus for captioning that contains the pairwise images of rocks and
their captions.

• Building a captioning model that can interpret images of rocks and achieve outcomes
with an accuracy that is similar to a geologist’s annotation. Our models can outperform
the baseline model relating to the BLEU score and acquire captions that are similar to
a geologist’s annotation.

We arranged the sections in this paper as follows. The paper leads with an introduction,
which encompasses the urgency for this type of research and the research problems. The
methods section details content theory and related research, with associated research, such
as on convolutional neural networks, long short-term memory, BLEU score measurement,
and the estimation function. The subsequent section presents the proposed model to solve
the current problems. This paper also conveys the outcome of experiments using the
proposed model. Then, the discussion section explains the results. The last section presents
the conclusions.

2. Methods
2.1. Long Short-Term Memory (LSTM)

The LSTM language model can be used as part of the process of generating captions
automatically. Another method of sentence representation is the RNN, a simpler method
than LSTM. Karpathy used the same number of dimensions as the length of words in
the image descriptions from the experts [2]. The RNN method is a simple approach for
producing the sentence representation of the detected object. This approach does not
consider the order or context of information in a sentence. In the sequence, the results
obtained are not grammatically arranged. Karpathy used bi-gram techniques or two
dependency relations to generate a sentence with support from either the beam search
algorithm or the greedy search algorithm to overcome this [2].

Long short-term memory (LSTM) is a language model, the successor of the RNN, that
enables long-term learning. The LSTM unit has an additional hidden state as a nonlinear
mechanism that allows a state to perform a backpropagation process without modification,
change, or reset. Learning in LSTM uses simple function gates to learn speech recognition
and language translation [19]. Figure 2 is a simple form of the recurrent neural network
(RNN) and LSTM. LSTM is processed by repeating each process performed. In LSTM, the
value σ(x) = (1 + e−x)

−1 as a sigmoid function with an accurate boundary value between
0 and 1, whereas for nonlinear hyperbolic functions tanh(x) = ex−e−x

ex+e−x = 2σ(2x)− 1 with
input range values between −1 and 1.
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LSTM updates based on time t for input xt, ht−1, and ct−1 following the functions below:

it = σ(Wxixt + Whiht−1 + bi) (1)

ft = σ
(
Wx f xt + Wh f ht−1 + b f

)
(2)

ot = σ(Wxoxt + Whoht−1 + bo) (3)

gt = tanh(Wxcxt + Whcht−1 + bc) (4)

ct = ft
◦ ct−1 + it

◦gt (5)

ht = ot
◦tanh(ct) (6)

where it stands for input at timestamp t, ft is the symbol for the forget gate at timestamp t,
ot stands for the output gate at timestamp t, and gt is a hyperbolic function, ct stands for
the concatenation elementwise operation, and ht is an output state.

The RNN updates the values on time t for input xt and ht−1 following the formulas below:

ht = g(Wxhxt + Whhht−1 + bh) (7)

zt = g(Whzht + bz) (8)

where g is an elementwise nonlinearity, such as a sigmoid function or hyperbolic tangent,
xt is an input, ht ∈ RN is a hidden state with N hidden units, and zt is the output at time t.
For the length of the T input sequence x1, x2, . . . , xT , the update carried out is to calculate
sequentially by ignoring h0, h1, z1, h2, z2, . . . , hT , zT .

2.2. Part One Architectures

Our pipeline model was constructed and strengthened by: (1) image preprocessing,
including resizing, reducing, and cropping; (2) ensuring that the image could be recognized
without losing the pixel information when using the reduce function in the CNN; (3) finding
a suitable CNN for our domain, considering CNN layers, dropout, pooling, and dense
units. Captioning architecture is essential to generate a word approximate to the human
description. Identifying the rocks in the image differs with regard to the colors in the image.

Figure 3 depicts a geology caption model and divides the model into parts, such as
image extraction, word embedding, generating words, and assembling the captions. The
image extraction part is in part one and word embedding is in part two. The outcome
units are 256 units for each learning stage. We concatenated both outcomes between image
extraction and the LSTM unit. Furthermore, after compiling using an ADAM optimizer with
learning = 0.0001, we acquired 12,746,112, 2,397,504, 20,482,432, and 104,867,300 training
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parameters for CNN-A, CNN-B, CNN-C, and CNN-D, respectively. These parameters were
achieved from the reengineering of VGG16 and word embedding [2].
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Figure 3. Proposed deep learning architecture (CNN: convolutional neural network, LSTM: long
short-term memory).

Following the significant step, the captioning model always starts with a feature
extraction model. An input image had a size of 224 × 224 with RGB color and three
channels. We worked on the recognized image to convert it into an RGB value with three
channels. After that, we proposed the image extracts using a CNN, shown in Figure 3 [52].
Architecture classification is the classification model that identifies every single rock [53]. The
output of the convolution process was dense with 4096 units. The convolution utilized the
dropout function to avoid overfitting, with a rate of 0.5. Every value in a feature map was
scaled up using the formula x/(1–0.5), where x is the single feature map.

After the dropout function, the process continued to leverage linear activation or ReLU
and gave outcomes of 256 units [17]. The ReLu function calculated a maximized output
between the vector feature value and 0 or Max[x,0]. The ReLu function will present 0 if the
feature value is smaller than 0 or the original, x. The outcome of the ReLu function was
256 units. The outcome of part one was a sequence unit with a length of 256 neuron units.

The pipeline process of part one can be written as the following pseudocode:

1. Input Image (i1, i2, i3, . . . , in)—n stands for collecting the image, i;
2. Reduce image; function for reduction of image to a size of 224 × 224;
3. For I ∈ (i1, i2, i3, . . . , in)—I is the collection of the image:

a. Image_feature = CNN(I, C, F)—I is the image with a size of 224 × 224; C
represents the channels of convolutions; F is the filter matrix size that can be
3 × 3 or 5 × 5;

b. Feature_Pooling = MaxPooling(Image_feature)—operation of the MaxPool-
ing function;

c. Feature_ReLu = ReLu Activation (Feature Pooling)—run of the ReLu activation;
d. Feature_Dense = Dense(Feature_ReLu)—provides outcome units with 256 dense

units.

4. Return (Feature_Dense).
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2.3. Part Two Architectures

In Figure 3, part two is a concept to create a vector feature value from a geologist’s
description. Word2vec is an important embedding model that provides a vector sequence
value for each vocabulary unit. Word2vec can produce a vector with 306 × 100 dimensions
for word embedding [54]. After the embedding process, vector word embedding was
transformed into a vector feature for 22 words for captions that had 22 × 100 dimensions.
LSTM used those vectors to generate a word that matched the image feature. Furthermore,
the process continued to the dense layer to obtain the Max value via the ReLu function.
The last process in part two was to carry out an output of 256 units. This study used
the SoftMax, Equation (14), function to acquire a probability value and select the higher
probability as a proper word. Equation (14) is a SoftMax function σ : RK → [0, 1]K which
is defined as follows:

σ(z)i =
ezi

∑K
j=1 ezj

(9)

where i = 1 . . . K and z = (zi . . . zK) ∈ RK; σ(z)i is a probability value for every unit at
index-i; and ezi is an epsilon of the vector at each unit, z, at index-i.

We proposed the process flow of part two from our architectures. This pseudocode
writes the following schema of process:

1. C = Input (caption)—input the corpus from the geologist’s annotation;
2. X = ‘start_seq’—initialization of the word;
3. U = unique_word(C)—building a unique word into a vocabulary that attaches from

the corpus, C;
4. C_Index = Making_Index(C)—providing the index for each word of the vocabulary;
5. C_vector = Word2Vec(C_Index)—achieving the feature vector from the pre-trained

model. The outcomes were 306 × 100 dimensions;
6. W_embedding = Embedding (Vector word ‘Start_seq’ + C_vector);
7. Word_predict = LSTM (w_embedding);
8. Return (feature Length = 256 units).

After completing the processing of both parts, the process continues to add both units
to be one pairwise vector feature. In Figure 4, there is an operation ADD (X1, X2). This
means that both units were flattened from the image and text extraction to create one
flattened vector feature. After that, the last process was to operate the SoftMax function to
acquire the word classification. The word classification process aligns the predicted word
with the image feature.

2.4. Word Embedding

To provide vector value embedding, we used Word2Vec as a word embedding model
to provide a map of values of the words. Word2vec was introduced by Thomas Mikolov
and consists of two processes: continuous bag of words (CBOW) and continuous n-skip
gram. Each process has a unique task in handling a word. CBOW acts as a neural network
process that gives a probability value and selects the higher probability as a candidate
value. On the other hand, the continuous n-skip gram process takes the current word as
the input and tries to accurately predict the words before and after this current word [54].
This study used 100 dimensions for each word and there was a 306 × 100 vector space for
all words.
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3. Results

This section reports on the experiments’ achievement and is separated into two sub-
sections: dataset and experiments. We used Google Collaboratory Pro, Python version 3.6,
TensorFlow, a GPU, and 25 GB of RAM for the experiments. The GPU used by default
Google Collaboratory is NVIDIA T4 or P100.

3.1. Dataset

We started by collecting the images and carrying out the data preprocessing. Following
the proposed pipeline model in Figure 3, the first step was to reduce the image into
224 × 224 pixels with RGB color. As the input in the CNN, all images were set to 32 channels
in the first convolution process.

We collected 1297 images of geological rocks and divided them into two datasets. The
training dataset was 1001 images and the validation dataset was 296 images. In addition,
we added five captions for each image and acquired a caption from a geologist for each
image as a geological corpus. The caption was completed by the geologist following the
guidelines of writing lithology descriptions and arranged into the names of the rock, color,
and dominant rocks [55].

Figure 4 shows examples of images from the dataset and their captions. The captions
were written in the Indonesian language and we translated the text to make the captions
clear. This study was focused on developing a model in the Indonesian language, because
of its usefulness for further study. The translation is included for the purpose of making
the paper easy to read.

3.2. Experiments

The proposed models were assembled from reengineering the VGG16 and our model
called CNN-n. The choice of the name CNN-n is based on the experiments, which consisted
of several layers or shallow learning. Our model was divided into CNN-A, CNN-B, CNN-C,
and CNN-D sub-models. The CNN-n model was introduced from the image classification
results regarding rock types [56]. CNN-D using conv (32, 5) and conv (64, 5) produced
a larger number of output parameters than the CNN-A, CNN-B, and CNN-C models.



J. Imaging 2022, 8, 294 8 of 18

Simonyan and Zisserman stated that the filter plays an important role in extracting an
image [57]. Filters are square matrices with odd numbers, such as 1 × 1, 3 × 3, 5 × 5, and
7 × 7 [57]. In several studies on image extraction, scholars used many 3 × 3 filters. This
particular filter proved effective in extracting the image and providing a feature map for
recognizing the image [53,58].

Figure 5 shows several architectures from our re-engineered CNN models. We ob-
tained outputs for VGG16, CNN-A, CNN-B, CNN-C, and CNN-D of 134,260,544, 12,746,112,
2,397,504, 20,482,432, and 104,867,300, respectively. These values were created from the
flattening unit multiplied by the defined output unit. For instance, CNN-D had 104,867,300
parameters; for the CNN-D architectures in Figure 5d, the last fully connected (FC) layer
was 50 flattened units, 512 dense units, and 4096 FC units. The parameter size is created by
multiplication among the flattened units, dense units, and FC units. Thus, the parameter
output was 104,867,300. The 50 flattened units are array units that provide output from the
convolutional process after the MaxPooling layer and ReLu functions.
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Figure 5. Architectures of proposed CNN models. (a) CNN with seven layers convolutional and uses
three layers of MaxPooling, (b) CNN with seven layers convolutional and two layers of MaxPooling,
(c) same as (a) but different size of MaxPooling, (d) CNN with two layers convolutional, two
MaxPooling layers, and two fully connected (FC) layers.

We delivered the duplicate operation pruning for each model at the last layer of unit
classification. These actions were taken because we needed the weight of the units for the
subsequent process. The process continued to concatenate operations between FC units
from the CNN and LSTM units to gain a predicted word. This model follows the likelihood

function L(θ) =
n
∏
i

p(w1, w2, . . . wn, I|θ), where w stands for previous words, I is an image

region, and θ is a predicted word.
Figure 6 shows the accuracy curve for each CNN model and depicts the comparison

between loss and accuracy. We observed that the accuracy increased at 80 epochs. Our
CNN-A, CNN-B, CNN-C, CNN-D, and VGG16 architecture had accuracies of 0.9137, 0.9148,
0.9178, 0.9206, and 0.9228, respectively. Figure 6 presents how much the experiments were
influenced by the number of CNN layers and parameters in the domain under study. The
curves depend on the receptive field and channel settings.
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Figure 6. Accuracy and loss graphs of the proposed models: (a) CNN-A, (b) CNN-B, (c) CNN-C,
and (d) CNN-D. The experiments used 500 epochs as a training measure. The graphs show that each
model needed just below 100 epochs to reach its best accuracy.

Table 1 shows a comparison of the training parameters for each of the CNN architec-
tures. The VGG16 model had 134,260,544 training parameters for image extraction and
4096 dense units. However, CNN-B and CNN-D had the same processing time. In order to
achieve a sentence that could be adequately read, we generated sentences using a beam
search algorithm [59].

Table 1. Training parameter comparison. ADAM optimizer with lr = 0.0001, MaxPooling, ReLu
activation, and 4096 flattened units employed for tuning parameters.

Model Layer Filter Parameters Size Time(s)

VGG16 16 1 × 1, 3 × 3 134,260,544 224 × 224 1845

Ours_CNN-A 7 3 × 3 12,746,112 224 × 224 1860

Ours_CNN-B 7 3 × 3 2,397,504 224 × 224 1230

Ours_CNN-C 7 5 × 5 20,482,432 224 × 224 1885

Ours_CNN-D 2 5 × 5 104,867,300 224 × 224 1230



J. Imaging 2022, 8, 294 10 of 18

Table 2 presents several proposed models constructed with the CNN, LSTM, and
bi-LSTM. For the baseline model, we prefer VGG16 + bi-LSTM + one hot vector [61] and
several models, such as ResNet [14] and InceptionV3 [62]. Thus, we re-engineered several
models and embedded using Word2Vec.

Table 2. Comparison of BLEU-N scores. Results gained from experiments using the testing dataset
and executed using the baseline and proposed models.

Model Caption BLEU-1
(Unigram)

BLEU-2
(bi-gram)

BLEU-3
(3-gram)

BLEU-4
(4-gram)

VGG16 + LSTM + word2vec 0.5516 0.6048 0.6414 0.6526

ResNet50 +LSTM + Word2Vec 0.3990 0.3830 0.4030 0.3440

InceptionV3 +LSTM + Word2Vec 0.3320 0.3120 0.3300 0.2730

Ours_CNN-A + LSTM + word2vec 0.6464 0.6508 0.6892 0.6504

Ours_CNN-B + LSTM + word2vec 0.7012 0.7083 0.7312 0.7345

Ours_CNN-C + LSTM + word2vec 0.7620 0.8757 0.8861 0.8250

Ours_CNN-D+ LSTM + word2vec 0.5620 0.6578 0.7307 0.7537

CNN + LSTM + One-Hot,
adapted from [2], Copyright 2015, Karpathy et al. 0.3990 0.3830 0.4050 0.3470

InceptionV3 + LSTM + One-Hot [14] 0.3760 0.3410 0.3540 0.2960

ResNet50 + LSTM + One-Hot [14] 0.4030 0.3920 0.4150 0.3590

We employed the BLEU score to measure the precision of candidate captions and
reference captions. The measured BLEU scores for 500 epochs are shown in Table 2 using
the validation dataset. Supposing the translation results are identical to the reference
sentence and have the same length of words, then the BLEU score is 1.00. This study
used a pre-trained model, Word2Vec, to obtain a feature vector for every single vocabulary
word from the text processing. Using the proposed models, we achieved 306 × 100 feature
dimensions and then used a flattening operation to gain 256 units. We used the Indonesian
corpus ourselves to make a feature vector that related to geological captions. Table 2 shows
that the B@1 score was 0.6463, 0.7012, 0.7620, and 0.5620 for CNN-A, CNN-B, CNN-C,
and CNN-D, respectively. These scores were acquired from the following BLEU formula:

BLEU = BP ∗ e(∑
N
i=1 Wn log Pn) with BP =

{
1

e(1−r/c)
, if c > r
, if c ≤ r

.

This study leveraged the precise parameter metric, which was introduced by [60]. The
BLEU score emphasizes precise captions using the N-gram. Proper and grammatical order
is a significant requirement for clear meaning. The BLEU score measures how much a
caption is similar to a geologist’s descriptions.

Here, we have written an illustration for measuring a caption. For instance, we
acquired a caption, such as “singkapan batugamping klastik dengan berukuran butir
lempungan dengan lensa rijang” in Indonesian. We calculated the BLEU score by the
following algorithm [60]:

1. Tokenize each caption (w1, w2, . . . , wn);
2. Calculate the variable “count” and “clip_count” from the reference token and candi-

date token, see Figure 7;
3. Compute precision modification with formula pn = clip_count

word_length = 4
20 = 0.2,

4. If length of candidate <= reference, calculate brevity penalty (BP) with BP = e(1−
r
c )

= e(1−
20
2 ) = 0.442, else BP = 1;

5. Calculate BLEU-1 and the result can be seen in Table 2.
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Figure 7. Collecting tokens taken from reference and candidate captions in Indonesian. Candidate
is the number of words from the caption generation, ref-n is the number of words that have a
similar word as the candidate, Max ref count is a value from selecting Max (candidate, ref-n), and
clip_count is a value of Min (candidate, Max ref count). The yellow color is sum of candidate and sum
of cli-count.

Figure 7 express the collection of vocabulary for each reference. These tabular shows
the simulation counting of every single word in the caption. Candidate column show how
many words that have similar with the reference. Beside that, ref-1 trough ref-4 is the
calculating number of words to compare with the candidate.

Figure 8 shows an instance of the captioning from our training models. We validated
the training model using dataset validation, as shown in Figure 8. Different layers, fil-
ters, and training parameters caused different results. Varying the parameters supports
the creation of an accurately predicted word that aligns with the image area [2]. It is a
point of discussion because, in CNN operation, every mapping process results in a new
block value that is smaller than before. Reducing the H × W × D of the CNN block
avoided overfitting [5].

We compared the generated captions with ground-truth captions. Figure 8a compares
five geologist references as follows: Ref-1: singkapan batuan sedimen klastik dengan
bidang perlapisan yang tidak tegas, batulumpur karbonatan masif retakretak sebagian
hancur dan mulai lapuk—(translation) outcrop of clastic sedimentary rock with indis-
tinct layering, massive fractured carbonate mudstone partially crushed and beginning to
weather; Ref-2: singkapan batuan sedimen klastik dengan bidang perlapisan yang tidak
tegas masif retakretak sebagian hancur sehingga mulai lapuk dan batulumpur karbonatan—
(translation) outcrop of clastic sedimentary rock with indistinct layering areas, massive
cracks, partially destroyed so that it begins to weather and carbonate mudstone; Ref-3:
singkapan batuan sedimen klastik dan batulumpur karbonatan—(translation) outcrop
of clastic sedimentary rock and carbonate mudstone; Ref-4: batulumpur karbonatan dan
singkapan batuan sedimen klastik—(translation) carbonate mudstone and outcrop of clastic
sedimentary rock; Ref-5: singkapan batuan sedimen klastik dengan bidang perlapisan yang
tidak tegas dan batulumpur karbonatan—(translation) outcrop of clastic sedimentary rock
with indistinct bedding planes and carbonate mudstone.



J. Imaging 2022, 8, 294 12 of 18

J. Imaging 2022, 8, x FOR PEER REVIEW 12 of 18 
 

batugamping pasiran berwarna kelabu cerah—(translation) brick red/brown sandy lime-

stone on top of light gray sandy limestone; Ref-4: Batugamping bersisipan serpih dan ba-

tugamping pasiran berwarna kelabu cerah—(translation) limestone with shale inserts and 

light gray sandy limestone. Ref-5: Batugamping bersisipan serpih dan batugamping 

pasiran berwarna kelabu cerah cenderung menyerpih—(translation) limestone with shale 

inserts and light gray sandy limestone tends to shale. 

 

Figure 8. Examples of generated captions for geological captioning, translation into English. B@N is 

the BLEU score. (a) Sedimentary rock image; (b) limestone image on a different surface. 

4. Discussion 

There are several discussions to be presented. The objective was to find the best cap-

tions by obtaining a high BLEU score. We followed the proposed method as a strategy for 

observing the object in the background [60]. The experiments proved to have different 

outcomes. A change in the layers can cause various outcomes, such as in the resulting 

caption, training parameters, and time. An event in the convolution process and size fil-

tering can result in different feature maps. The number of channels the CNN has influ-

ences the feature maps’ colors, shapes, and sizes. We set a significant number of channels, 

which provided opportunities for various gradations of colors. On rock images, observing 

the color is necessary to distinguish the content of the rocks; even if the rocks have a sim-

ilar color, the content is probably different [53].  

VGG16 successfully identified the object and predicted the classification [63,64,65]. 

Meanwhile, our models successfully classified the rock object within an efficient time, 

Figure 8. Examples of generated captions for geological captioning, translation into English. B@N is
the BLEU score. (a) Sedimentary rock image; (b) limestone image on a different surface.

In Figure 8b, we compared five geologist captions by referring to the ground truth:
Ref-1: batugamping dengan sisipan serpih—(translation) limestone with shale insert; Ref-2:
batugamping pasiran berwarna merah bata/kecoklatan—(translation) brick red/brown
sandy limestone; Ref-3: batugamping pasiran berwarna merah bata/kecoklatan menindih
batugamping pasiran berwarna kelabu cerah—(translation) brick red/brown sandy lime-
stone on top of light gray sandy limestone; Ref-4: Batugamping bersisipan serpih dan
batugamping pasiran berwarna kelabu cerah—(translation) limestone with shale inserts
and light gray sandy limestone. Ref-5: Batugamping bersisipan serpih dan batugamping
pasiran berwarna kelabu cerah cenderung menyerpih—(translation) limestone with shale
inserts and light gray sandy limestone tends to shale.

4. Discussion

There are several discussions to be presented. The objective was to find the best
captions by obtaining a high BLEU score. We followed the proposed method as a strategy
for observing the object in the background [60]. The experiments proved to have different
outcomes. A change in the layers can cause various outcomes, such as in the resulting cap-
tion, training parameters, and time. An event in the convolution process and size filtering
can result in different feature maps. The number of channels the CNN has influences the
feature maps’ colors, shapes, and sizes. We set a significant number of channels, which
provided opportunities for various gradations of colors. On rock images, observing the
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color is necessary to distinguish the content of the rocks; even if the rocks have a similar
color, the content is probably different [53].

VGG16 successfully identified the object and predicted the classification [63–65]. Mean-
while, our models successfully classified the rock object within an efficient time, particularly
CNN-B and CNN-D [66]. Table 1 shows that VGG16 is suitable for our rock images, but the
model has a longer processing time compared to the CNN-B and CNN-D models.

Table 3 compares the accuracy and loss of the models. The results showed that VGG16
achieved the best accuracy and that several layers and structure processes applied to the
CNN were robust in differentiating color.

Table 3. Comparison of the accuracy and loss between our models and the baseline.

Evaluation CNN-A CNN-B CNN-C CNN-D VGG16

Accuracy 0.9137 0.9148 0.9178 0.9206 0.9228

Loss 0.1763 0.1764 0.1638 0.1457 0.1464

The theoretical concept of VGG16 tries to extract the image from deeper layers and
provide outcomes with various features [65]. In image recognition, the detection of similar
features is an essential task to achieve the best accuracy. In our problem domain, if the
image features concatenate with text features, then many pairwise mistakes can occur and
cause the wrong predicted word. Many feature map differences cannot guarantee that the
captions will be optimized. The spread of various colors causes a bias when the object
area pairs with the sentence. The effect that many features create causes probable bias in
predicting words. We used a limited object in our domain, which is why the results of
pairwise testing a sequence of image descriptors and feature vector text is important.

LSTM, as a word generator, was chosen as the language model because of its ability to
separate outcomes into three gates. The LSTM generates words based on previous words
by relating to the corpus and selecting the best probability word from many produced
words. The previous word makes the LSTM machine more powerful in predicting the
next word [67]. This study found error captions for the VGG16+word2vec+LSTM model
when predicting a word. Simonyan models have successfully generated a word when the
object is a person, an animal, a car, etc. [57]. In contrast, the models experience an error in
predicting a word when the object appears in the background.

The likelihood function log P(wt|w1:t−1, I; θ) is important for making a true predicted
word when generating a word. Re-engineering of the log-likelihood function will result in
different captions. We acquired a loss value of 0 ≤ ∑I,SεX ∑

|s|
t=1 log P(wt|w1:t−1, I; θ)≤ 0.1358.

This means that the function was successful in maximizing the detection of images and
predicting the words by minimizing the residual loss values [68].

Figure 9 shows an error caption and compares VGG16 + Word2Vec + LSTM to our
models [69]. This study successfully presented an error result from the baseline. It proves
that many CNN layers do not always acquire the best outcome; indeed, the result is
sometimes a mistake. The image in Figure 9 is of sandstone. Nevertheless, the baseline
presented a mistake caption of chert. Many parameters produced the feature that caused
VGG16 difficulty to pairwise between the word and the feature maps. Geological rock
images always show a variety of color within the rocks and color differentiation is necessary
to separately identify the rocks.
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Some images could not be adequately classified by VGG16, thus, resulting in a low
BLEU score. However, it is understandable to assume that VGG16 is accurate because it has
a deeper layer than our models. The impact of this is that many feature maps eventually
become biased when rephrasing image feature extraction and word embedding. It is
known that image feature extraction becomes decisive regarding feature identification. The
number of CNN layers can convey the success of feature extraction and many receptive
field channels supply more space for feature assortments [70,71]. It can help to recognize
objects to a certain degree in an image. Meanwhile, the pooling layer also helps the feature
map values to avoid overfitting.

This study shows a need to recognize and analyze the image relating to captions by
using image preprocessing, such as reducing image size. In the caption, it is necessary
to pay attention to the text marks when reading. Sometimes, captions use the “-” sign to
make adjectives or derivatives of rock types. In text preprocessing, the text is cleaned by
removing the stop word, sign, number, and symbols. Figure 3 shows the word vectorizing
using Word2Vec as a feature text. The difference between one hot vector and word2vec lies
in the matrix values. One hot vector consists of a 0 or 1 value and has a length the same as
the defined word length [28,31]. On the other hand, word2vec creates a decimal value with
the defined length and dimensions [25,69].

Regarding the process, the annotation of the rocks was accompanied by their proper-
ties, such as carbonate mudstone and clay sandstone [72]. The classification and interpreta-
tion of images created a caption based on feature maps and the text feature. This scheme is
an essential part of captioning because this research’s target was a caption similar to the
geologist’s description [53].

5. Conclusions

Our models outperform the architecture of the baseline model. A CNN (32,5) with
a 5 × 5 filter and 32 channels produced a meaningful caption. The metric of the model
was directed more toward the precision of the caption than accuracy. The accuracy is
just needed to measure the image classification and how similar the factual feature map
extraction compares with the actual feature maps. The experiments proved that shallow
layers effectively solved our domain problem. Our proposed CNN-A, CNN-B, CNN-C,
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and CNN-D models used BLEU score methods for the N-gram. The BLEU scores achieved
for B@1 were 0.5515, 0.6463, 0.7012, 0.7620, and 0.5620, respectively. B@2 showed scores
of 0.6048, 0.6507, 0.7083, 0.8756, and 0.6578, respectively. B@3 had scores of 0.6414, 0.6892,
0.7312, 0.8861, and 0.7307, respectively. Finally, B@4 showed scores of 0.6526, 0.6504, 0.7345,
0.8250, and 0.7537, respectively. The CNN-D architecture encouraged our model to produce
a high B@4 score of 0.8250 but it had a time deficiency. The BLEU score measurement was
dependent on precision and word embedding. The combination of the CNN and Word2vec
embedding increased the speed and produced precision words. Construction of the caption
using the beam search supported the creation of proper sentences for the caption. There
are several considerations for building the architectures, such as the optimum number of
layers, the precise ReLu function, a suitable SoftMax function, and an ADAM optimizer
tuned to acquire good results. On the other hand, the accuracy score is used to measure
how precisely the image detection matches the image references. The metrics used for
measuring the success of image detection are similar for captioning.

Relating to the results, we discovered several challenges for future research. This
study did not just find layers, filters, strides, and pooling methods but also proposed
language generators. Language models, such as structured language and paraphrasing
models, are important subjects of research. Assembling captioning based on geological
sentence arrangement, geological sentence representations, and assembling words by
geological sentence tagging is a challenging topic. In all captioning models, the target is
word precision, which is an indicator of success when generating a caption, with a high
BLEU score or other language metric.
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