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Abstract: Malignant tumors have become one of the serious public health problems in human safety
and health, among which the chest and abdomen diseases account for the largest proportion. Early
diagnosis and treatment can effectively improve the survival rate of patients. However, respiratory
motion in the chest and abdomen can lead to uncertainty in the shape, volume, and location of the
tumor, making treatment of the chest and abdomen difficult. Therefore, compensation for respiratory
motion is very important in clinical treatment. The purpose of this review was to discuss the research
and development of respiratory movement monitoring and prediction in thoracic and abdominal
surgery, as well as introduce the current research status. The integration of modern respiratory
motion compensation technology with advanced sensor detection technology, medical-image-guided
therapy, and artificial intelligence technology is discussed and analyzed. The future research direction
of intraoperative thoracic and abdominal respiratory motion compensation should be non-invasive,
non-contact, use a low dose, and involve intelligent development. The complexity of the surgical
environment, the constraints on the accuracy of existing image guidance devices, and the latency of
data transmission are all present technical challenges.

Keywords: respiratory motion; image guide; artificial intelligence; machine learning; tumor treatment

1. Introduction

Cancer is a major public health problem worldwide. In 2020, cancer accounted for
18% of all deaths and remained the second-leading cause of death after heart diseases in
the United States [1].

GLOBOCAN 2020 reports an estimated 19.3 million cancer cases and 10 million cancer
deaths worldwide. Among these total cases, the most common cancers were female breast
cancer (11.7%), lung cancer (11.4%), and prostate cancer (7.3%). The main causes of cancer
deaths were lung cancer (18%), liver cancer (8.3%), stomach cancer (7.7%), and breast
cancer (6.9%) [2]. The top four cancers are located in the chest and abdomen. GLOBOCAN
data indicate that East Asia reported the highest number of cases, 6 million (31.1% of the
total), with 3.6 million deaths (36.3%). North America reported 2.6 million cases (13.3%),
accounting for 7% of cancer deaths, while Central and South Asia reported 1.95 million
(10%) and 1.3 million (12.6%) deaths. In Europe, the reported incidence was 4.4 million, of
which 1.9 million (20%) died [2]. Early diagnosis and treatment can significantly improve
the survival rate of cancer patients. The treatment of cancer includes surgery, radiotherapy,
and chemotherapy.

However, during the treatment of thoracic and abdominal diseases, respiratory move-
ment leads to uncertainty in the shape, volume, and location of the tumor, making it
difficult to treat in the thoracic and upper abdominal regions. Breathing is the interaction of
muscle contraction and relaxation, which increases the chest volume, reduces the pressure,
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and brings air into the lungs, leading to chest, abdomen, or pelvic periodic motion (in
cm) [3]. Virtually all organs in the chest and abdomen are affected by breathing movements,
with the lungs being the most affected [4].

During external radiotherapy to targets located in the chest and abdomen, organ
deformation changes cause significant geometric treatment errors, which affect tumor
control and increase the probability of normal tissue complications [3].

In radiotherapy, to reduce damage to healthy tissues, the radiation beam needs to be
delivered accurately to the target area. For tumor movement caused by breathing in the
human body, precise radiation therapy is usually achieved by estimating the location of the
tumor to ensure that the radiation beam synchronizes with the respiratory movement of
the tumor during treatment. Breathing also has a great influence on the timing, accuracy,
and injury of a chest puncture. Therefore, the estimation and prediction of respiratory
movement plays an important role in ensuring the safety of clinical application, especially
in motion compensation.

Radiofrequency ablation (RFA) is an effective minimally invasive treatment for a
variety of solid tumor cancers, including those of the lung, breast, kidney, pancreas, and
liver. However, effective RFA for abdominal tumors relies on precise ablation needle
targeting, which can be a challenging task due to respiratory movement [5].

In thoracic and abdominal puncture surgery, a robotic puncture system (RPS) has the
advantages of accurate positioning, flexible movement, and stable operation, and various
tissue biopsy diagnosis and surgical scenarios can produce more significant therapeutic
impacts. Due to the characteristics of rapid speed, short cycle, and multi-dimensional
displacement, respiratory movement may lead to systematic deviation of the target area of
thoracoabdominal puncture and affect the therapeutic effect [6].

In angiography, rotary coronary angiography uses the C-arm angiography system to
achieve intraoperative three-dimensional imaging, which is considered to be conducive to
diagnostic evaluation and interventional guidance. Due to interference with breathing and
heart movement in the scan, rotational angiography has not been successfully established
in clinical practice for coronary surgery [7].

Extracorporeal shock wave lithotripsy (ESWL) uses an electromagnetic pulse generator
to locate stones by X-ray or ultrasound. Respiratory movement may cause X-ray irradiation
to deviate from the target area, and to ensure the accuracy of lithotripsy, intraoperative
X-ray irradiation of the patient is required. This adds to the complexity of the operation,
and the frequent use of X-rays can damage normal tissue [8].

Therefore, the management of respiratory movement is very important for clinical
treatment.

One of the most challenging tasks of the radiotherapy robot is how to accurately
illuminate a tumor in the chest or abdomen that moves under the action of breathing. In
recent years, many technical methods of active motion compensation have been studied,
such as a multi-blade collimator and Cyberknife synchronization system (Accuracy Inc.;
Sunnyvale, USA), which can automatically track through stereoscopic imaging by placing
a small number of reference markers in or near the tumor. However, tracking these
benchmarks in real time requires X-ray imaging and the normal tissue receives potentially
damaging additional radiation. To overcome this problem, a correlation model is trained,
usually using the connection between the interior and exterior of the chest and abdomen [9].

The trajectory of the tumor is strongly correlated with the respiratory movement on
the skin surface of the chest and abdomen. Through external respiratory monitoring, the
tumor location can be indirectly estimated during radiotherapy [10].

Modern external beam radiotherapy techniques for cancer treatment include three-
dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy (IMRT),
helical intensity-modulated radiotherapy (HT), and hadron therapy (HTH). Changes in
organ density due to sex and respiratory movements can affect the radiation range and may
result in overdoses to critical organs or underdoses to tumors. Therefore, compensation for
respiratory movement is crucial [11]. CyberKnife uses three external markers to capture the
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respiratory characteristics of patients, establish the correlation function between markers
and tumor location, and then estimate the tumor location. The location of the tumor and
the movement of the tumor are estimated by the markers, and the relevant models are
constructed by segmentation of the markers according to the respiratory phase, such as
exhaled and inhaled states [12].

The methods of tumor location estimation can be divided into direct estimation and
indirect estimation. In terms of the direct estimation of the tumor location, Keall et al. [13]
used gold markers implanted in tumors to estimate the tumor location based on current
and past X-ray images. Although the real-time location of tumors can be intuitively
obtained, long-term exposure to X-ray and gold marker implantation will cause harm to
human health. Because ultrasound has the advantages of being non-invasive and not using
radiation in medical applications, Huang et al. [14] proposed the application of respiratory
tumor motion tracking based on two-dimensional ultrasound images in radiotherapy. Liu
et al. [15] used the cascaded single deformant convolutional neural network (COSD-CNN)
to continuously extract and track objects in two-dimensional ultrasonic sequences. Pressing
the ultrasound probe during treatment may interfere with the patient’s breathing, and
since the method was developed for two-dimensional motion tracking, it is not effective in
three-dimensional motion tracking.

The accuracy of medical imaging technology makes image-guided surgery an im-
portant means of tumor diagnosis and treatment, that is, ultrasound (US), CT, magnetic
resonance imaging (MRI), and other medical images guide treatment operations on the
target area. Based on chest and abdominal CT images, Danielle F. Pace et al. proposed a
local adaptive regularized deformation image registration method of sliding organs based
on anisotropic diffusion [12], and Matthew J. et al. used four-dimensional cone-beam
computed tomography (4D-CBCT) data with deformable grouping registration to perform
respiratory motion compensation [16]. For MRI images, V. Hamy et al. studied the applica-
tion of dynamic MRI respiratory motion correction based on robust data decomposition
registration [17]. Using DCE-MRI, P. Wan et al. studied transmission-based liver ultrasound
compensation for irregular respiratory motion [18].

Researchers at home and abroad have conducted in-depth and extensive research on
the technique of intraoperative respiratory motion compensation and achieved fruitful re-
search results. The respiratory motion compensation technique has important clinical value
in solving the problem of inaccurate tracking of target area caused by respiratory motion
in thoracic and abdominal surgery. At present, some chest and abdominal hand robots
equipped with respiratory monitoring and prediction technology have produced commer-
cial products, but there are still problems, such as normal tissue damage and long delays.
There are still many safety hazards caused by respiration in radiotherapy, thermal ablation,
punctures, and other operations, and there are many key technical and scientific problems
that need to be solved. All parts of this paper are organized as follows: direct tracking
methods through respiratory monitoring, respiratory simulation and prediction based on
indirect models or digital phantoms, and existing research techniques for prediction of
respiratory movement through learning are introduced. The discussion part discusses and
analyzes the existing research on the above three types of methods, and finally points out
the development direction and challenges of chest and abdominal respiratory movement
monitoring and tracking.

2. Methods
2.1. Data Sources and Search Strategy

A chronological review of several reputable literature databases, namely, Science
Direct, IEEE, Springer, Nature, and Google Scholar, was conducted to identify trends in the
prediction and monitoring of respiratory motion in thoracic and abdominal therapy from
2013 onward. The keywords used to examine more classified papers were “Respiratory
compensation” and “Respiratory motion”.
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The search results were further filtered using the keywords “thoracico-abdominal”,
“tumor tracking”, “radiotherapy”, and “surgery”. A set of inclusion and exclusion criteria
was then applied to select the appropriate literature.

2.2. Inclusion and Exclusion Criteria

The following inclusion and exclusion criteria were used to screen out discrete knowl-
edge critical to the systematic review and temporal review of respiratory motion for thorax
and abdominal treatment.

Inclusion criteria:

• The paper introduced respiratory compensation and prediction in thoracic and ab-
dominal surgery, including image-guided radiotherapy, thoracocentesis, or respiratory
monitoring.

• The paper was available to the authors and was a scientific article written in English.
• The device or method considered was used to solve respiratory motion interference

during treatment.

Exclusion criteria:

• The device or method was originally intended for use on parts of the body other than
the thorax and abdomen.

• The study only evaluated system performance or clinical trials, with a lack of informa-
tion in terms of design.

A framework was developed to analyze the relatively large number of studies found
in the literature search. The aim was to extract the various techniques used in the developed
devices and present them in a logical and systematic order so that future designers can
gain knowledge of existing methods.

The literature was classified according to respiratory compensation methods, which
was divided into direct tracking, indirect model-based respiratory prediction, and indi-
rect learning-based respiratory prediction, and was subdivided according to whether the
imaging mechanism directly contacts the human body or guides the image.

Finally, the research progress of the respiratory compensation scheme in thoracic and
abdominal surgery in recent years was summarized. While the framework does not address
the specific building process of the device, its potential lies in the various building blocks
needed to design the device and the methods that have been explored.

3. Results
3.1. Direct-Tracking Methodology

The methods for directly tracking thorax and abdomen respiratory motion have made
great progress in the past 10 years, and the main research institutions include the Univer-
sity of Lübeck, University of Bourgogne Franche-Comté, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Soochow University, and Shandong University.

The accurate assessment and quantification of respiration-induced target motion and
its integration into the treatment workflow are essential for adaptive treatment techniques.
This section is divided according to whether or not the tracking technology is directly in
contact with the body [19].

The overview of tracking strategies for respiratory motion is shown in Table 1.
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Table 1. Overview of tracking strategies for respiratory motion.

Group Tracking Strategy Representative Works Characteristics

Noise sensor: noise
variance based on
RF coil

A. Andreychenko
et al. [20], J. M. Navest
et al. [21]

(1) No need for careful positioning or any additional hardware;
(2) Combined with Kalman filtering, respiratory signals can be
extracted and predicted without delay;
(3) Can measure breathing passively, independent of MR signal;
(4) Some limitations in temporal resolution and spatial resolution.

RGB-D camera
with markers

U. W and S. P. et al. [22],
Y. Yu et al. [8], M. Musa
et al. [23]

(1) The system setup is very simple, very flexible, and portable;
(2) Will not interfere with the patient‘s breathing, non-invasive
benchmark marking, shortens the treatment time, and high safety;
(3) The surface positioning accuracy is high, which can reach
the millimeter level;
(4) The performance is easily disturbed by factors such as light,
background, and occlusion;
(5) The camera needs the right position and angle.

Electromagnetic
sensor

Esther N. D. Kok
et al. [24]

(1) Real-time and accurate tumor location information and key
anatomic information can be obtained, which may reduce the
occurrence of positive resection margins and improve the
patient prognosis;
(2) High tracking accuracy for targets in vivo;
(3) Susceptible to electromagnetic interference, not suitable
for MR.

Pressure sensor
T. Addabbo et al. [25], H.
L. et al. [26], Anthony L.
et al. [5]

(1) Other invasive devices can be avoided;
(2) It has the potential to be applied in 4D dose calculation to
remove respiratory motion artifacts in positron emission
tomography (PET) or γ scintillation image reconstruction;
(3) The measurement accuracy is relatively high;
(4) Accuracy is affected by its installation location;
(5) Some patients may not be able to adapt to the pressure of
the sensor;
(6) Prolonged use may cause performance degradation
or damage.

Contact

Fiber Bragg grating
sensors

C. M. et al. [27], C. Shi
et al. [28]

(1) Comfortable and easy to wear, will not cause discomfort to
the wearer;
(2) Can be used in an MR environment;
(3) No image artifacts are generated;
(4) It has high sensitivity and enables simultaneous and
accurate measurement of respiratory and cardiac activity;
(5) Installation and maintenance are complicated;
(6) High cost compared with some other sensors;
(7) Sensitive to environmental conditions.

DC coupled CW
radar sensor C. Gu et al. [29]

(1) Non-contact and non-invasive;
(2) Can accurately measure the movement, where the
measurement accuracy can reach sub-millimeter level;
(3) It has great potential in adaptive radiotherapy;
(4) Relatively complex system;
(5) High cost compared with some other sensors.

RGB-D camera
without markers

Shi H. Lim, P. Hou
et al. [30], Andrew L.
Fielding et al. [31], L.
Zheng et al. [32]

(1) The system setting is very simple, very flexible, and portable;
(2) Will not interfere with the patient’s breathing, non-contact
and non-invasive, shortens the treatment time, and high
safety factor;
(3) The accuracy of surface positioning is higher, but may be
lower than that of a system with markers.

Non-contact

Directly
image-guided

S. Vijayan et al. [33], L. R.
et al. [34], J. S. et al. [35],
Gilles P.L. et al. [36]

(1) The system has high detection accuracy and good
applicability and can track the internal target movement in
real time;
(2) May cause unnecessary radiation to patients.



Biomimetics 2024, 9, 170 6 of 29

3.1.1. Contact Methods

Respiratory monitoring is required in many surgical settings, often with the help of
optical or infrared sensor devices.

In 2016, A. Andreychenko et al. [20] from the University Medical Center Utrecht
developed a passive breathing motion sensor based on the noise variance of the receiver
coil array. Due to respiratory motion changing the resistance of the body, the RF coil
noise variance depends on the resistance of the body, and thus, the respiratory modulation.
The depth of noise variance modulation due to breathing varies between the individual
channels of the array and depends on the position of the channel relative to the body, with
a maximum modulation restriction of 3% for monitoring normal breathing. The noise
sensor combined with MR acquisition can detect the breathing movement of each K-space
read line. In a clinical MR system, the noise in the receiving array can detect respiratory
movement. In contrast with breathing belts, noise sensors do not require careful positioning,
any additional hardware, and/or MR acquisition.

Passive monitoring of thermal noise changes in the receiving array channel shows
the respiratory movement of the underlying anatomy, i.e.; a so-called “noise navigator”.
However, due to the passive nature of noise navigators, there is an inevitable trade-off
between accuracy and temporal resolution. A time filter must be added to the noise
navigator to accurately display respiration and maintain the time resolution. For real-
time applications of noise navigators, such as prospective motion correction or motion
tracking, the added filters must be prospective. Thus, in 2018, Navest R. J. M. et al. [21]
from University Medical Center Utrecht continued to design a prospective Kalman filter
to predict breathing from the noise navigator. The breathing signal can be measured by
the noise navigator independently of MR acquisition. A strong linear relationship was
found between the anticipatory noise navigator and the quantitative 2D image navigator
for measurements, including free breathing and task breathing.

With the rapid development of image-guided surgery, intraoperative guidance may
be of great benefit in ensuring radical resection margins in cancer surgery. Kok E. N. D.
et al. [24] used the NDI Aurora V2 Electromagnetic (EM) tracking system (Northern Digital
Inc.; Waterloo, ON, Canada) to connect pre-operative image data to the intraoperative
patient settings. A tracker with an EM sensor was used to determine the patient’s position
during surgery, and a tracking sensor was placed on the tumor to adjust for the real-time
tumor movement. Through navigation software, the acquired images were registered
with preoperative diagnostic protocol CT scans, enabling real-time tumor tracking with a
median target registration accuracy of up to 3 mm.

The CyberKnife subsystem Synchrony respiratory tracking system was the first tech-
nology that can continuously synchronize beam delivery with tumor motion [37]. External
breathing movements are tracked using three optical reference markers attached to a body
vest, with small gold markers implanted near the target area to ensure a continuous corre-
spondence between internal and external movements. Varian’s Calypso prostate motion
tracking system builds internal–external motion modeling by implanting three tiny sensors
and associated wireless tracking [38]. The BrainLAB ExacTrac positioning system uses
radioactive opaque markers implanted near a center, such as a target, and is equipped
with external infrared (IR)-reflective markers [39]. Internal markers are tracked by an X-ray
positioning system, while infrared stereo cameras track external markers. The Xsight lung
tracking system is a respiratory movement tracking system for lung lesions without the
need to implant reference markers [22,40].

In 2016, Wijenayake Udaya and Park Soon-Yong et al. [22] from Kyungpook Na-
tional University used an RGB-D camera and principal component analysis (PCA) to
track and model the feasibility of external breathing movements for a specific individual.
Marker-based depth frame registration technology has also been introduced to limit the
measurement area to an anatomically consistent area during treatment. The accuracy of
the proposed method was evaluated using a breathalymeter and a laser line scanner. Four
white dot markers were used to define the measurement boundaries of the moving chest
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wall, providing a consistent area for the estimation of respiratory movement. Continuous
depth images of breathing movement were captured using an RGB-D camera. Principal
component analysis (PCA) was applied to these depth data to break down the breathing
motion into a set of motion bases corresponding to the principal component (PCs). Through
the analysis of multiple data, they found that only the first principal component could
accurately capture the breathing motion, and to evaluate the motion in the metric space, the
depth image was reconstructed using a projection coefficient while removing the noisy data
represented by a smaller PC. Using the advantages of RGB-D cameras, they proposed a new
method for tracking breathing movement that achieved a high correlation (0.99) between
the method and the laser line scanner, with an average motion error of 0.76 mm [41].

In 2020, Y. Yu et al. [8] from Shanghai Jiao Tong University proposed a respiratory
monitoring system based on Aruco, which is an open source augmented reality library for
reference marker tracking. Aruco relies on black and white markers that can be located by
image recognition codes to optimize the mark detection using digital image processing
algorithms and convolutional neural network (CNN)-based methods.

M. Musa et al. [23] at the University of Arkansas presented the design, fabrication, and
bench characteristics of a patient-fixed, respiration-compensated robotic needle insertion
platform. The position error and direction error of isolated pig liver were 1.22 ± 0.31 mm
and 1.16◦ ± 0.44◦, respectively. The ablation needle was automatically inserted into the
liver tumor during the resting phase of the respiratory cycle. The patient’s respiratory
cycle was gated using a GE D690 PET/CT scanner with Varian CT’s real-time location
management system. The real-time position management system consists of a reflector
attached to an external marker on the patient’s abdomen, which is used to reflect the
patient’s breathing pattern. An alternative breathing signal can be captured by an external
camera at a frequency of 30 Hz [42]. Even with sudden changes in breathing rate, the system
is able to track the real-time position data. Static phantom positioning experiments showed
that the position error was 1.14 ± 0.30 mm and the direction error was 0.99◦ ± 0.36◦.

Mechanical ventilation is a life-saving treatment for patients in intensive care units.
Unfortunately, mechanical ventilation itself can increase patient morbidity and mortality
due to ventilator-induced lung damage [43,44]. Therefore, pulmonary function monitor-
ing and internal respiratory system pressure assessment play a key role in reducing this
problem [44–46]. In 2019, T. Addabbo et al. [25] at the University of Siena proposed a tech-
nique for estimating pleural pressure in respiratory monitoring by combining information
from the central venous pressure (CVP) and an electrocardiogram (ECG) signal. Since
mechanically ventilated patients should have a correct central venous catheter position,
CVP filtration technology can be a useful clinical method to estimate pleural pressure,
thus avoiding the use of other invasive devices (e.g.; the characteristics of the proposed
measurement method were discussed through theoretical modeling, numerical analysis,
and experiments based on signal acquisition in intensive care units. The results confirm the
validity of the proposal.

In radiotherapy, by measuring respiratory airflow and chest movement to calculate
complex internal respiration and tumor movement, H. L. et al. [26] proposed a method for
tracking lung tumors based on a patient-specific biomechanical model that takes into ac-
count the physiology of respiratory movement to simulate true, non-repeatable movement.
The behavior of the lungs is directly driven by the simulated action of the breathing muscles,
namely, the diaphragm and intercostal muscles (thorax). The lung model is monitored
and controlled through a personalized lung pressure/volume relationship throughout the
respiratory cycle. The lung pressure and rib movement are patient-specific and obtained
by alternative measurements. The rib displacement corresponds to the transformation
from end-expiratory (EE) to end-inspiratory (EI), which is calculated using the finite helical
axis method. The lung pressure is calculated using an optimized framework based on
inverse finite element analysis by minimizing the lung volume error (the error between
the respiratory volume of the respiratory flow exchange and the simulated volume of the
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biomechanical simulation calculation). At all stages of breathing, the developed model was
able to predict lung tumor movement with a mean landmark error of 2.0 ± 1.3 mm.

Respiratory movement has an effect on Fiber Bragg grating (FBG) sensors, and several
organs (e.g.; lungs, liver, pancreas) may exert strain on the grating due to breathing-
induced movement [47], as shown in Figure 1. Smart textiles based on optical fiber sensors
have shown promising results in respiratory monitoring and magnetic resonance (MR)
environmental applications. In 2016, C. M. et al. [27] designed and fabricated a six-FBG-
based smart textile for monitoring partition volume change, global volume change, and
respiratory frequency. Four healthy volunteers were optimized for FBG positioning using a
label-based optoelectronic system (OS). The results based on chest wall movement were
analyzed by a marker motion capture system. Over time, the proposed textiles showed
excellent performance in non-invasive monitoring of zoning and global volume parameters
and were compatible with MR. Tested on two volunteers, the system neither produced any
image artifacts nor caused discomfort to the volunteers.
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Figure 1. Schematic diagram of a wearable breathing and heartbeat [28].

In 2023, C. Shi et al. [28] at Tianjin University introduced a new type of wearable
sensor based on an FBG, which has high sensitivity and can achieve accurate simultaneous
measurement of breathing and heartbeat activity, as shown in Figure 1. The sensor consists
of an elastic curved structure, a suspended silicone membrane, an optical fiber engraved
with a 3 mm length FBG sensor, and a wearable elastic belt. The sensor structure offers
significant advantages in terms of high sensitivity, excellent flexibility, and compactness,
making it suitable for wearable device design.

In boiling histotripsy treatments, Gilles P. L. et al. [36] from the University of Wash-
ington Thomas proposed a practical and economical method for the compensation of
unidirectional respiratory motion for the evaluation of BH in isolated tissues. The BH
transducer was fixed to a robotic arm and follows the movement of the skin, which is
tracked using an inline ultrasound imaging probe. In order to compensate for the system
lag and obtain more accurate compensation, an autoregressive motion prediction model
was implemented. A BH pulse gating was also implemented to ensure positioning accuracy.
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The evaluation of in vitro BH therapy was achieved using tissue samples that simulated
respiratory movements. The results show that during the course of treatment, the value
of the target positioning error was reduced by 89%, while the treatment time increased
by no more than 1%. Anthony L. et al. [5] at the Georgia Institute of Technology intro-
duced the design, manufacture, modeling, and bench characteristic testing of a CT-guided
parallel robot, and proposed a new breathing motion compensation protocol (RMCP) for
the accurate positioning of robot-assisted abdominal RFA needles, as shown in Figure 2.
The robot consists of a Stewart platform and a friction-driven drum insertion module that
uses a custom-designed breath-sensing pad for motion gating, eliminating the need for
continuous CT motion gating. The breathing pad is a molded silicone pressure-sensing
device that uses silicone molds to make rubber, ensuring patient comfort when the robot
is placed on the patient. The breathing sensing pad unit is connected to the pressure
sensor through a pneumatic tube, and when breathing occurs, the abdomen expands and a
breathing-related deformation occurs in the pressure unit. This deformation results in an
increase in pressure within the unit, resulting in an RMCP. Strain energy models are used
to predict the needle insertion force required to effectively penetrate the skin. The mean
error of these models was 0.49 ± 0.28 N.
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Figure 2. Schematic diagram of breathing sensor pad for abdominal radiofrequency ablation robot:
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3.1.2. Non-Contact Methods

Tumor tracking allows for continuous radiation dose delivery by dynamically adjust-
ing the radiation beam so that it follows real-time tumor movement. For either technique
to be effective, precise measurements of breathing signals are needed. The traditional
methods of respiration measurement have problems of invasiveness and low accuracy.
Benchmark-based measurements require an invasive implantation procedure with serious
risks for patients [48]. External respiratory substitutes can be measured using infrared
reflection markers, spirometers, or pressure bands to infer internal tumor locations based
on point measurements or numerical indicators that provide respiration [49]. These devices
must be in close contact with patients to work, often causing discomfort [29].

C. Gu et al. [29] from Texas Tech University put forward a kind of DC-coupling
continuous wave radar sensor, which is used to provide a non-contact measurement
that does not hinder breathing. The radar sensor uses a DC-coupled adaptive tuning
architecture, including RF coarse tuning and baseband fine tuning, to accurately measure
motion and always operate at maximum dynamic range. The accuracy of the respiration
measurement of the proposed radar sensor was evaluated experimentally by using physical
models, human subjects, and mobile platforms in a radiotherapy environment. The results
show that it is feasible to use the radar sensor to measure respiration when the radiation
beam is opened, and the measurement accuracy reached the sub-millimeter level.

A structured light system is an optical measurement method with the advantages of
being non-contact, allowing full-field measurement, and having a high spatio-temporal
resolution. Shi H. Lim et al. [30] at the Universiti Kebangsaan Malaysia used Microsoft’s
Xbox KinectTM to track breathing movements in 2014. The consistency of the respiratory
movement was analyzed through the recorded 3D movement data. A graphical user
interface (GUI) was developed to display statistical information about respiratory signals
and data.

In 2018, P. Hou et al. [50] at Soochow University proposed a method to establish
a correlation model between a tumor and a chest and abdomen surface model based
on a three-dimensional point cloud, which more fully reflects the correlation between
three-dimensional surface information and tumor movement. A preliminary study was
conducted on body surface modeling, establishing the correlation model between the tumor
and the chest and abdomen surface modeling, and comparing the effects of two modeling
methods, namely, point cloud data modeling and external marker modeling, which verified
the feasibility of using point cloud data modeling instead of external marker modeling.

In 2020, Andrew L. Fielding et al. [31] investigated the applicability and performance
of the Intel RealSenseTM D415 depth camera as a tool for measuring respiratory movements
on the body’s surface. The accuracy of the camera depth data was characterized by the
measurement distance, which ranged from a stationary surface to 1.2 m. The delay of the
camera system was also measured. For stationary measurements, the average standard
deviation of the depth data was less than 0.2 mm for the shortest distance between the
camera and the surface at 400 mm, and 3 mm for distances of 1200 mm. Although the data
were noisy, the camera was able to measure deformable breathing motion models with
variable surface motion amplitudes between 1.5 and 2.5 mm. The RealSenseTM system
measured a delay of 68.6 milliseconds ± 9.6 milliseconds. The results show that the
D415 RealSenseTM depth camera was capable of measuring the external breathing type
movement of irregular surfaces. M. Liu et al. [51] evaluated the accuracy of a 3D surface
imaging system (Sentinel) in breast cancer patients receiving BCS. The results show that
optical surface imaging could be accurately applied in the localization of breast cancer
patients without the need for unnecessary imaging doses.

Based on the optical system, L. Zheng et al. [32] at the South China University of
Technology proposed a control strategy for a puncture robot to compensate for tissue
deformation under clinical breathing and a respiratory tracking and compensation system
(RFRS) that autonomously analyzes breathing movement signals, plans an optimized path,
and controls the robot to follow the target. Through the real-time analysis of the breathing
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movement, the movement of the robot arm consists of tracking compensation related to the
breathing movement and insertion into the target.

The optical tracking system (OTS) and the robotic arm are responsible for respiratory
motion detection and compensation, respectively. The control strategy is divided into two
parts: tracking according to the breathing movement and entering the planned target area.
During insertion, the robot drives the surgical instrument to the target position. Otherwise,
it switches to tracking breathing movements.

The online target positioning model (OTLM) is designed to limit the overlap of surgical
tools with planned targets and improve the accuracy, safety, flexibility, and agility of the
puncture process [32].

An intraoperative image guide can be used to ensure accurate tracking of the tumor in
the operation. Most of these systems use 4D X-ray computed tomography (CT) or magnetic
resonance imaging (MRI) techniques to extract respiratory motion.

In 2014, S. Vijayan et al. [33] evaluated the accuracy of motion tracking based on
the deformable registration of 4D ultrasound images. A non-rigid registration algorithm
designed to estimate motion from dynamic imaging data is used. The method registers the
entire 4D image data series in a group-optimized manner, avoiding bias against a specific
selected reference point in time. The estimated error of liver motion by this registration
method was 1 mm (75% quantile across all datasets), which was 1.4 mm lower than the
inter-observer variability. When the time resolution was reduced by a factor of eight, the
registration error increased to 2.8 mm.

In 2015, L. R. et al. [34] also proposed a method for tracking deformable anatomical
targets in 3D ultrasound imaging, estimating the deformation caused by the physiological
motion of the patient. The displacement of the moving structure is estimated by an
intensity-based method combined with a physical model, which has the advantage of being
insensitive to image noise.

In 2016, J. S. et al. [35] at Stanford University introduced a robotic 4D ultrasound
(US) imaging system capable of concurrent radiotherapy beam delivery and estimated the
proportion of robotic US image guidance that can be used in stereotactic ablative body
radiotherapy (SABR) to the liver without interfering with clinically used VMAT beam
configurations. The image-guiding hardware includes a 4D ultrasound machine, an optical
tracking system to measure the ultrasound probe attitude, and a custom-designed robot to
obtain a hands-free ultrasound volume. By simulating the US propagation using planned
CT, the placement of robot US hardware is guided by presenting a target visibility map on
the CT surface. The results showed that for PTV targets, the robot US guide could image
without mechanical interference 80 percent of the time and was guided without beam
interference 60 percent of the time. For smaller GTV targets, these percentages were 95%
and 85%, respectively.

Several approaches have emerged to achieve respiratory movement tracking that do
not require invasive surgery or patient contact.

3.2. Respiratory Prediction Method Based on Indirect Model

Great progress has been made in lung cancer radiotherapy technologies, such as
respiratory gating [52,53], breath-holding/control [54,55], and real-time tumor tracking [56].
Although significant advances have been made in the field of radiotherapy in recent
years, especially in four-dimensional (4D) imaging, there is an increased risk of treatment
complexity and uncertainty in the management of motion. Therefore, it is important to
have an appropriate evaluation model. Different forms of motion phantograms have been
developed and used to study 4D imaging and 4D radiation dose delivery. These phantoms
can be broadly divided into three categories: physical phantoms [57,58], physiological
phantoms [59,60], and digital phantoms [61–64]. Physical phantoms are usually made up of
mechanical and electrical components that simulate tumors and body anatomy. Examples
include the dynamic Chest Phantom from CIRS (CIRS Inc.; Norfork, VA, USA) and the
breath-gated platform from Standard Imaging Inc.; Middleton, WI, USA. A mechanical
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phantom has a high manufacturing cost, is not realistic enough, and there is a big gap
with the real situation. Physiological apparitions are implanted in natural specimens,
such as pig lungs, to simulate breathing movements close to the conditions in the body,
which can be controlled by a water pump to expand or contract the lungs. Physiological
phantoms can measure anatomical parameters, but here the movement-monitoring data of
animals is not directly applicable to humans. Physical and physiological phantoms fail to
take into account patient anatomy and respiratory biomechanics, and therefore, provide
less-than-ideal guidelines for actual treatment.

A digital phantom, which is a computer-based simulation of real human breathing
that provides a virtual model of anatomy and physiology, has begun to be used to develop
and test imaging and therapeutic technologies. Using accurate computer models of the
physical imaging process, imaging data can be generated to accurately simulate a real
patient. In treatment planning or image guidance, a digital phantom can compensate
for image motion to improve the image quality [65] and evaluate treatment strategies by
simulating the therapeutic effects of free breathing [66–68].

Respiration prediction can transform the time series prediction problem. The tradi-
tional respiratory prediction method is based on historical data to predict the future of
sequence data.

Based on image-guided methods, model-based respiration prediction is achieved
through the registration of sliding organ deformation images, such as using biomechanics
or local adaptive regularization based on anisotropic diffusion [12,69].

Since the respiratory prediction method based on an indirect model is to build a model
through the correspondence between historical guidance data and predicted sequence
data, this section is divided into X-ray images (including CT, CBCT, and PET), MRI images,
ultrasound images, and four other aspects according to the types of guidance data.

3.2.1. X-ray Imaging

The overview of indirect model respiration prediction based on X-ray images is shown
in Figure 3.

CT fluoroscopy (CTF) is a highly efficient imaging technique used to guide percuta-
neous pulmonary interventional procedures, such as biopsy and ablation, that provides
near-real-time feedback on the patient’s anatomy, enabling physicians to make adjustments
as they push the needle toward the target lesion. In 2013, P. Su et al. [70] proposed a fast
CT-CTF deformable registration algorithm to achieve 3D guidance by deforming the CT
image before aspiration into the intraoperative CTF image. In this algorithm, the deforma-
tion of the transverse plane is modeled using 2D B-Spline, and the deformation along the
z-direction is normalized by smoothness constraints. The respiratory motion compensa-
tion (MC) framework is combined to achieve accurate registration. Electromagnetic (EM)
tracking provides 3D image guidance during breath-holding.

J. Cai et al. [68] from Duke University developed a computer program to facilitate the
characterization and implementation of XCAT phantoms in 4D radiotherapy applications.
For an XCAT phantom with a pixel size of 2 mm, the overall mean (±standard deviation)
difference in motion amplitude between the input trajectory and the measured trajectory
was 1.19 (±0.79) mm. The 4D-CT and 4D-CBCT images based on XCAT Phantom were
validated for normal breathing patterns. P. Fischer et al. [71] proposed a new method
for extracting respiratory signals from X-ray fluoroscopic images based on unsupervised
learning. The perspective images have different and smaller fields of view, C-arm angles,
and AECs. This method uses a patch-based approach to extract multiple breathing signals
from each image. Respiratory signal extraction uses two unsupervised learning methods,
namely, kernel-PCA-based reduction and clustering, where the proposed signals of all
patches are clustered to find respiratory information, and the information of all patches
is combined to tolerate outliers. The use of respiratory models is beneficial to radiation
protection and reduces the dose of radiation. Combined with the movement information
required for treatment, the dose delivery is monitored through the patient’s respiratory
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cycle. P. E. Leni et al. [72] proposed a method based on artificial neural networks (ANNs)
to simulate the real breathing movement of the lungs and develop a 4D numerical chest
phantom with customizable breathing.
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Figure 3. Overview of indirect model respiration prediction based on X-ray images: (a) rapid CT
and CT fluoroscopy registration for image-guided pulmonary intervention based on respiratory
motion compensation; (b) unsupervised learning robust respiratory signal estimation from X-ray
fluoroscopy; (c) respiratory correction 4D reconstruction of gated myocardial perfusion based on
SPECT; (d) model reconstruction of non-rigid continuous breathing motion compensation list based
on PET; (e) the regularization key points based on CT correspond to the estimation of lung mass
motion with intensive deformation registration; (f) based on CT, this can be customized to account for
breathing for the development of 4D numerical chest film; (g) respiratory motion compensation was
driven by 4D-CBCT data with grouped deformable registration; (h) prediction of lung motion from
4DCT images using Bayesian registration and trajectory modeling; (i) combined with lung density
changes to improve PET/CT respiratory motion compensation.

In 2017, W. Q. et al. [73] investigated a 4D reconstruction method used to reduce the
effects of respiratory movement in SPECT images of the heart. In this method, heart-gated
image sequences are reconstructed according to the reference breathing amplitude box in
the breathing cycle. The inherent challenge of high imaging noise is overcome by counting
data acquired throughout the breathing cycle. To eliminate intra-cycle and intra-weekly
motion during dynamic imaging, C. Chan et al. [74] at Yale University performed a non-
rigid breathing motion correction for each event of static and dynamic PET data, and we
developed a solution. The continuous deformation field of each voxel is estimated using
non-rigid INTEX (NR-INTEX) with a time resolution that matches the external respiration
tracking. Non-rigid motion correction was carried out according to the deformation system
matrix by non-rigid MOLAR (NR-MOLAR). For a wide range of respiratory movements, J.
R. et al. [75] proposed a novel registration algorithm for lung CT scanning by integrating
sparse key-point correspondence into a dense continuous optimization framework. This
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method is mainly divided into two steps: robust sparse corresponding field calculation for
a moderate number of key points and continuous optimization deformable registration
based on the strength-driven integration of key point correspondence and volume change
constraints. The detection of key-point correspondences is robust to large deformations
through joint optimization over a large number of potential discrete displacements, while
the dense continuous registration achieves subvoxel alignment through smooth transfor-
mations. Curvature regularization and volume change control mechanisms are used to
prevent the folding of the deformed mesh.

In 2018, M. J. Riblett et al. [16] combined group deformation image registration and
motion compensation image reconstruction algorithms to improve the image quality of 4D-
CBCT under clinically relevant image acquisition conditions. Group registration is a method
of registering all time frames of a 4D image to a common reference frame, which minimizes
the impact of any single time point on the global smoothness or accuracy of the deformable
model. The 4D cone-beam CT (4D-CBCT)-reconstructed images are registered to iteratively
calculated average-frame or fixed-frame reference images to model breathing movements.
The resulting 4D transform is used to deform the projection data during Feldkamp–Davis–
Kress (FDK) backprojection operations to create motion compensation reconstructions.

M. Li et al. [76] proposed a new method for Bayesian registration and trajectory model-
ing based on film four-dimensional computed tomography (4DCT) images. Specifically, the
method uses CT images captured at the end of inspirations as source images and CT images
captured at other stages as moving images. The source image is then aligned with each
moving phase image, and the displacement field is generated using a Bayesian registration
method. Then, by connecting discrete phase displacement fields, a lung motion trajectory
model based on continuous time-dependent displacement fields is established. The results
show that the method can accurately predict any point in the lung at any given time.

Then, X. Bao et al. [77] proposed a Bayesian-based PCA statistical model whose esti-
mated accuracy follows the probability distribution associated with the model parameters.
Combined with Bayesian probability reasoning, the prior probability was estimated by the
preoperative statistical model, and the likelihood ratio was constructed according to the
similarity between the intraoperative abdominal surface and the preoperative CT surface.
Therefore, the posterior probability of the current internal respiratory motion vector field
can be obtained. By maximizing the posterior probability, the best PCA statistical model
parameters can be obtained, and then an estimate of the internal respiration motion with
the greatest posterior probability can be obtained. The mean error of the model motion
estimation was 0.57 ± 0.06 mm when using single-period CT data and 1.52 ± 0.41 mm
when using dual-period CT data.

In 2019, to restore the ideal deformation field between chest images containing sliding
and smooth motion patterns, L. Gong et al. [78] proposed a regularization term called
locally adaptive total P-variation (LaTpV) and embedded it into a parametric registration
framework to accurately restore lung motion. LaTpV adaptively balances the smoothness
and discontinuity of the displacement field, is suitable for sliding motion correction, and
has potential clinical application in the adjustment of radiotherapy schedule.

In 2020, E.C. Emond et al. [79] proposed an experimental framework for combined
PET/CT image reconstruction and motion estimation, in which PET images and motion
are estimated directly from raw data. The change in volume is estimated by using the
“Jacobian determinant” to calculate the deformation field, the problem of density changes
during respiration can be taken into account, and the image registration that maintains
quality can be directly applied to the joint estimation of PET active images and motion.

3.2.2. MRI

Respiratory motion correction in dynamic contrast-enhanced magnetic resonance
imaging (DCE-MRI) is challenging because rapid intensity changes can affect common
(intension-based) registration algorithms. In 2014, V. Hamy et al. [17] introduced a novel
registration technique based on robust principal component analysis (RPCA) to decompose
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a given time series into low-rank and sparse components. RPCA combined with residual
complexity minimization registration algorithm can accurately register a DCE time series
for various organs and different respiratory protocols. Because of the clear isolation of
a sparse term, RPCA should be more flexible and robust than conventional principal
component analysis and may contribute to DCE-MRI registration. The algorithm reduces
the error in organizing time–intensity curves by 15–62%.

In order to improve the accuracy of interventional catheter guidance in cardiac surgery
and solve the problem where accuracy is limited by respiratory movement, R. Xu et al. [19]
proposed to establish a respiratory movement model that compensates for errors under the
guidance of magnetic resonance imaging (MRI) in 2015. The 2D real-time free-breathing
images were collected to characterize the breathing movement, and then the previous 3D
images were registered with the real-time images in the anatomically relevant frame of
reference (FOR) of the spindle to establish a smooth movement model. Combined with
real-time imaging data, it provides high temporal resolution and can simulate respiratory
motion more accurately. Experimental results show that this method can generate a more
accurate estimation model of respiratory movement and ensure safer operation.

Bailiang Chen et al. [80] designed a digital motion sensor compatible with MR, with
the accelerometer as the main component. The sensor can model and predict breathing
movements to implement free-breathing MR imaging strategies. In motion modeling and
prediction, a linear regression method is used to extract the motion model applied to predict
the displacement field calculated from the new physiological data obtained during the scan.
The verification step is completed by calculating the predicted movementfield by comparing
the sports field with the scanned images. The sensor for the breathing movement during
MR imaging problems provides alternative sensor solutions, and patients may improve the
convenience of installation.

In 2016, based on multi-scale Monte Carlo simulations, Y. Zhang et al. [81] developed
an organ-to-cell level method for estimating the radiobiological effects of clinical radio-
therapy. At the cellular level, cumulative damage is calculated using a spectrum-based
accumulation algorithm and a predefined cell damage database, which can be used to
evaluate individualized radiobiological effects in radiation therapy.

In 2017, P. F. et al. [82] proposed a system composed of three-dimensional motion
models created by real-time magnetic resonance imaging for cardiac and respiratory motion
compensation. The cardiac information derived from the ECG and the respiratory informa-
tion extracted from the image are taken into account, multiple sagittal slices are stacked
into a consistent three-dimensional volume, and the temporal smoothness of the stack
is enhanced through the energy minimization formula. In addition, deformable 3D/3D
registration is used to estimate motion from the magnetic resonance volume. The motion
model itself is a linear direct correspondence model that uses the same alternative signal
as the slice stack. Regarding the X-ray perspective, only the alternative signals need to be
extracted to apply the motion model and display the overlay layer in real time.

In 2019, using robust principal component analysis (RPCA) and non-rigid image
registration, C. M. Scannell et al. [83] proposed a fully automatic imaging method to achieve
motion compensation of free-breathing perfusion MRI image sequences. RPCA allows for
the dynamic contrast enhancement in myocardial perfusion CMR image sequences to be
separated from baseline signals, and the deformation field used to eliminate respiratory
motion can also be calculated in the absence of local contrast enhancement. In addition, the
group registration method eliminates the difficulty of selecting reference frames.

In 2020, the combination of MRI scanners and linear accelerators enabled radiation
therapy planning of internal organ movements estimated from MRI data. During radiation
therapy, optimal MR guidance requires a delay of 200 to 500 milliseconds in MR-based 3D
motion estimation. To address the problem of estimating organs in real time from MRI
data, Niek R. F. et al. [84] proposed MR-MOTUS, which is a framework for estimating
non-rigid three-dimensional motion from minimum K-space data. The framework consists
of two main components: (i) a signal model that explicitly relates the K-space signal of a
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deformed object to a non-rigid sports field and a reference image, and (ii) model-based
direct reconstruction of non-rigid sports fields from K-space data. By referring to the
high spatial correlation between the image and the motion of the internal volume, the
sports field is represented as a low-dimensional space, which can be reconstructed from
the minimum K-space data. MR-MOTUS can reconstruct non-rigid three-dimensional
respiratory movements in vivo from 63-fold retrospective undersampled K-space data.
A real-time low-rank MR-MOTUS method can perform non-rigid 3D breathing motion
estimation within a 170-millisecond delay, including acquisition and reconstruction.

With the demand for an ultra-high magnetic field (UHF), S. Dietrich et al. [85] from the
Physikalisch-Technische Bundesanstalt (PTB) studied a 3D relative B1

+ mapping sequence
based on radial phase coded (RPE) K-space trajectories at 7 T. The method is based on a
fast, low-power relative B1

+ mapping and radial phase coding (RPE) acquisition method
that allows for the retrospective grouping of respiratory motion states. The results of
B1

+ mapping between dynamic measurement and static reference acquisition were in
good agreement.

3.2.3. Ultrasound Imaging

The overview of indirect model respiration prediction based on MRI and ultrasound
images is shown in Figure 4.

Ultrasound is an inexpensive, flexible, real-time imaging method with high temporal
and spatial resolution (sub-millimeter spatial resolution in the plane along the beam direc-
tion). The high penetration of ultrasound in soft tissue during treatment can replace motion
tracking by sensors. The first attempt at ultrasound-based motion tracking was to detect
periodic and small-amplitude rigid motion using continuous one-dimensional ultrasonic
echoes parallel to the direction of the main axis of motion. However, the local motion of
the organs in the chest and abdomen is three-dimensional, and one-dimensional projec-
tion alone is not enough. Therefore, some studies looked at using both two-dimensional
ultrasound and magnetic resonance imaging. Tretbar et al. [86] used a biplanar ultrasonic
imaging transducer to broaden the field of view by allowing for a large angle of light beam
steering. In recent years, there has been increasing interest in motion-tracking dynamic
imaging due to its ability to capture the 3D deformation of the target. A 4D ultrasound
can also be used to generate patient-specific models as preparation for intervention [87,88].
Unlike MR and CT, 4D ultrasound can be used for real-time motion tracking for local
ablation therapy [33].

Ultrasound imaging, as a safe and radiation-free navigation protocol, is increasingly
used in various surgeries. J. Zhang et al. [89] proposed an adaptive ultrasound scanning
system (SAUSS) to image the human spine, automatically scanning the human back and
displaying the spine structure in real time. Robotic 4D ultrasound (US) imaging systems
capable of simultaneous radiotherapy beam delivery were described [35].

Using contrast invariant feature descriptors, I. Y. Ha et al. [90] proposed a method
suitable for imaging modes with real-time capabilities (such as MR-Linac scanners and
3D-US). The method combines GPU-accelerated image-based real-time tracking of sparse
distributed feature points with a dense patient-specific motion model, as well as sparse-to-
dense interpolation and regularization in a unified optimization framework. The results
show that the method can more realistically simulate physiological breathing movements,
achieving highly accurate movement prediction using MRI (about 1 mm) and US (about
2 mm).
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Figure 4. Overview of indirect model respiration prediction based on MRI and ultrasound images:
(a) dynamic MRI respiratory motion correction based on robust data decomposition registration;
(b) MRI-guided correction of intracardiac interventions based on respiratory motion model; (c) novel
MR-compatible sensor for respiratory motion modeling and correction; (d) free-breathing myocardial
perfusion MRI data of non-rigid motion compensation; (e) human 3D free-breathing multi-channel
absolute B1+ mapping at 7 T; (f) based on the model of sparse to dense image registration in the MRI
images to guide intervention respiratory motion estimation in real time; (g) transmission-based liver
ultrasound compensation for irregular respiratory motion; (h) respiratory motion compensation of a
robotic arm based on ultrasound images during extracorporeal boiling section of abdominal tissue.

In 2020, in order to solve the problem of liver movement irregularity, P. Wan et al. [18]
proposed a method for liver CEUS analysis of respiratory compensation based on move-
ment estimation (RCME). This method uses the framework of optimal transport (OT) to
clearly model the continuous change in the spatial distribution of tissue in the B-mode
sequence, captures the expansion/contraction of local tissue by mapping, and realizes
tissue matching and displacement estimation. Then, using the multi-subspace structure
of the sequential motion matrix, the sparse subspace clustering (SSC) is used to identify
CEUS subsequences corresponding to reference points to recover TIC.

In boiling histotripsy treatments, Gilles P. L. et al. [36] used a robotic arm to compensate
for the active one-way breathing motion and an inline ultrasonic imaging probe to follow
the movement of the skin to achieve an autoregressive motion prediction model in 2021.
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3.2.4. Others

In addition to traditional medical image data, in order to better study the mapping
relationship between body surface respiratory movement and the target region in vivo,
many research teams have carried out research on movement models based on structured
light or infrared images.

In 2015, Z. Liang et al. [91] from Rensselaer Polytechnic Institute proposed a preopera-
tive 4D shape derived from patient-specific breathing patterns to drive intraoperative range
imaging (RI)-based real-time respiratory movement analysis. The information is encoded
in a surface motion model that obtains 3D body surface data at different breathing states
through non-rigid registration, and the patient’s current body surface obtained through
multi-view RI registration. The information is encoded in a surface motion model that
obtains 3D body surface data at different breathing states through non-rigid registration,
and the patient’s current body surface is obtained through multi-view RI registration.
During surgery, the motion model is registered to the patient via multi-view magnetic reso-
nance imaging. Then, control is registered on the body surface. The framework supports
the reconstruction of the dense body surface displacement field caused by respiration to
generate custom respiratory substitutes.

In 2020, based on the work of chest and abdomen surface dynamic voxel modeling, S.
Yu et al. [92] from Soochow University proposed a respiration movement characterization
method based on chest and abdomen voxel modeling. The 3D modeling of the surface
during chest and abdominal breathing was achieved using point cloud data from the depth
camera. A dimensionality reduction algorithm was used to extract respiratory features
from the voxel model, and a correlation model of tumor movement was established.

In 2021, to ensure that the correlation between external features extracted by skin
surface movement and tumor movement varies in different regions, J. Wang et al. [93]
proposed a method based on selecting moving surface areas with a high Pearson correlation
coefficient with tumor movement. The surface region was divided into several regions,
and an improved correlation model based on minimum cost function was proposed, taking
into account the multi-dimensional structure of basic motion features. The experimental
results show that the average and absolute errors of this model were smaller than those of
the model using surface mark motion.

In 2022, to solve the dilemma between real-time and accurate estimation, Y. Shi
et al. [94] combined holographic AR with digital twin technology to track dynamic surgical
scenes through internal motion prediction and provide three-dimensional navigation of
heterogeneous target areas, compensating for the time costs caused by external/internal
correlation models and data transmission.

3.3. Respiratory Prediction Method Based on Indirect Learning

Using respiratory motion prediction to overcome system delay can improve accuracy,
and thus, many studies proposed learning-based respiratory motion prediction methods
to improve the prediction accuracy of respiratory motion. Seregni et al. [95] proposed
a neural network model for phantom testing to demonstrate the feasibility of real-time
tumor tracking based on external respiratory signals. With the continuous development
of deep learning, learning-based respiratory motion can be predicted by filters (such as
linear filters and Kalman filters) and neural networks. This section is mainly divided into
regression-based methods, Kalman filters, and neural networks [96]. The overview of
learning-based respiratory prediction methods is shown in Figure 5.
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3.3.1. Regression-Based Methods

Regression-based methods mainly include linear regression models, multi-scale wavelet
autoregression, an autoregressive integrated moving average (ARIMA) model, support
vector regression (SVR), and the least squares method [97].

In recent years, several techniques were proposed to predict respiratory movement.
This includes local circular motion (LCM), kernel density estimation (KDE), and support
vector regression (SVRpred) [98]. Most of the prediction techniques were compared and
analyzed by relevant studies. Among them, LCM-EKF shows better estimation ability and
lower computational complexity, while the performance of LCM-EKF tends to have larger
prediction lengths (e.g.; 400 ms) and irregularities in the subjects’ breathing patterns [99].
To overcome the delay of radiation machines in treating lung tumors, S. Tatinati et al. [99]
introduced a hybrid method based on a least squares support vector machine (LSSVM)
for predicting respiratory movement. The method utilizes the comparative advantages
of various methods, namely, local circular motion (LCM), extended Kalman filter (EKF),
autoregressive moving average (ARMA) model, and attenuation memory Kalman filter
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(FMKF). The results show that the method improved the prediction accuracy by about 10%
in a prediction time of 460 milliseconds compared with existing methods in 2014.

In 2018, N. K. Y. et al. [100] developed a stage oscillator model that predicts the location
of lung tumors based on previous data of lung tumors, current breathing waveforms, and
heartbeat measurements. The results show that the RMS error of the estimated tumor
location provided by the model was 1.5 mm when simulated offline.

To verify the effectiveness of linear regression in predicting internal organ deforma-
tion or tumor movement in 2D dynamic magnetic resonance imaging (cine-MR), Y. Li
et al. [101] proposed an online gated signal prediction scheme that can improve the ac-
curacy of MRI-guided radiotherapy for liver and lung cancer in 2023. This method uses
a binary gated signal prediction algorithm to predict the cross time of the tumor trajec-
tory relative to the target threshold. The results show that the amplitude errors of this
method were significantly reduced compared with those of an RNN in the cases of 0.6 s
and 0.4 s predictions.

Blood vessels constantly move/deform due to respiratory movements and are not
visible in X-ray images unless injected with contrast agents. K. Yang et al. [102] proposed a
vascular respiratory motion compensation algorithm (MRC) based on optical flow, which
compensates for vascular respiratory motion by inferring the correlation between invisible
blood vessels and visible non-blood vessels. In robot-assisted image-guided intervention,
the method can predict 2D vascular road maps in real-time X-ray images. After the injection
of a contrast agent, the vascular respiration motion compensation was performed based
on a sparse Lucas–Kanade feature tracker. The MRC model is trained to learn correlations
between vascular and non-vascular movements, predicts invisible blood vessels using the
visible tissue and MRC model, and is refined with a Gauss-based outlier filter. The method
could achieve vascular respiration motion compensation in 0.032 s with an average error of
1.086 mm.

3.3.2. Kalman Filters

The prediction of respiratory motion based on a Kalman filter is the optimal estimation
of system state based on observation data. Previous studies constructed filters, such as a
Kalman filter or extended Kalman filter [97].

In 2018, R. L. Smith et al. [103] formulated the estimation of respiratory motion under
the hidden Markov model (HMM), constructing a Kalman filter using the motions extracted
from dynamic images of a single respiratory cycle and their associated observed signals.
The EM algorithm is combined to find maximum likelihood estimates of HMM parameters
on a per cycle basis given a set of observations or external alternative signals. The method
also uses PCA on external alternative signals and parametric internal motions, respectively,
thus providing a basis for projecting them onto two different low-dimensional manifolds.
The expectation maximization Kalman filter performs parameter estimation and adaptively
adjusts the respiration estimation of irregular motion. This method has three advantages:
(1) motion estimation can be performed even when the patient’s breathing pattern is
different from that observed during training; (2) changes in model noise and observed
or external alternative signal noise are taken into account; and (3) the degree of fit of the
underlying model can be parameterized to determine the confidence of the accuracy of the
correction method.

For dynamic motion estimation of continuous phases, in 2020, P. Xue et al. [104]
proposed a lung respiratory motion estimation method (LRME-4DCT) based on fast Kalman
filtering and 4DCT image registration. Each phase was registered using isoPTV and
HOMRF registration methods, and the registration results were used as the observation
and prediction vectors of the constructed motion estimation model, respectively. In order to
solve the high computational requirements of 4DCT image sequences, LRME-4DCT adopts
a multi-level processing strategy to predict the breathing motion state from three directions.
Compared with traditional estimation methods based on paired image registration, the
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LRME-4DCT method can estimate physiological respiratory movement more accurately
and quicker.

M. Frueh et al. [105] introduced a framework for landmark detection and tracking and
proposed an adaptive patient-specific respiratory movement model for parameter estima-
tion by an expectation-maximization Kalman filter. The method introduces a generalization
capability that allows for adaptive adjustments in the presence of irregular motion, enabling
the model to consider a wider range of motion changes. This method is based on the least
labeled data for real-time landmark detection with self-supervised training. Unlike the
self-supervised method that relies on the similarity measure of image blocks, this method
is embedded from the local to global position, which enables computationally efficient
prediction. The usefulness of the method was demonstrated by using it for automatic
real-time liver lesion tracking in time-resolved abdominal magnetic resonance imaging
(MRI) and for real-time automated liver tracking on magnetic resonance linear accelerator
(MR-LINAC) data and routine chest X-rays.

Neural Networks
The latest progress in machine learning technology has improved the quality of medi-

cal images and promoted the in-depth research of artificial intelligence (AI) in the field of
medical image analysis. Based on a branch of artificial intelligence, deep learning has been
successfully applied to problems such as image classification or segmentation, including
tumor detection and segmentation on medical images. In respiration prediction, ANN,
RNN, LSTM, and other network architectures are also used to predict the motion trajectory.

In 2015, I. Bukovsky et al. [70] used a classical linear model, a perceptron model, and
a class of higher-order neural network models to investigate the real-time prediction of a
3D time series of lung tumor movements. The results show that the prediction accuracy of
1 mm 3D MAE in the prediction range of 1 s is much shorter than the actual processing
time.

In 2017, W. Sun et al. [106] used adaptive augmentation and multi-layer perceptron
neural networks (ADMLP-NNs) to predict respiratory signals. An ADMLP-NN consists of
multiple artificial neural networks (ANNs) that are used as weaker predictors to combine
into a stronger predictor. The breathing signal is first smoothed using the Savitzky–Golay
finite impulse response smoothing filter (S-G filter). For 500 milliseconds of prediction,
the average correlation coefficient was improved from 0.83 (MLP-NN method) to 0.89
(ADMLP-NN method). Compared with the case with the MLP-NN, the RMS error (in
relative units) of the 500 ms prediction was reduced by an average of 27.9% using the
ADMLP-NN.

In 2018, J. Kai and F. Fujii et al. [107] from Yamaguchi University proposed a model
that uses recurrent neural networks (RNNs) to predict three-dimensional tumor movement.
Compared with traditional neural networks, an RNN has the abilities of persistence and
memory, which are suitable for modeling discrete-time dynamic systems. Because the
motion is three-dimensional, three recurrent neural networks are used to predict the motion
trajectories of x-, y-, and z-axes. The root-mean-square error (RMSE) of the predicted
trajectory was less than 1 mm within 1 s of the prediction time.

Regarding rotational angiography, M. Unberath et al. [7] investigated two a priori
respiratory motion estimation methods based on polar-line consistency condition (ECC)
optimization and task-based autofocus metric (AFM) for the estimation of coronary artery
respiratory motion in rotating coronary angiography. When ECC- and AFM-based compen-
sation were applied, the vascular clarity was improved by 6.08 ± 4.46% and 14.70 ± 8.80%,
respectively. Using CAVAREV data, the ECC and AFM methods improved 27.6 ± 7.5%
and 97.0 ± 17.7%, respectively. Both of these motion estimation strategies are purely image
based and are able to accurately estimate the displacement of the coronary arteries due
to breathing.

One-way LSTM preserves only past information, while bidirectional LSTM preserves
past cell passes and state information from the future, and performs better for sequential
problems [108]. The research team at the Shenzhen Institutes of Advanced Technology
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proposed a seven-layer bidirectional short-duration memory network (Deep Bi-LSTM)
and a deep neural network with an output layer for predicting breathing movements in
about 400 milliseconds. The results show that the prediction accuracy of Deep Bi-LSTM
was about five times better than that of the traditional autoregressive integral moving
average (ARIMA) model, and about three times better than the adaptive lift and multi-layer
perceptron neural network (ADMPL-NN) with a delay of 400 ms [109].

In addition, in order to solve the problem where LSTM networks take a long time
to update and may not be able to update the prediction model within a single X-ray
acquisition cycle, S. Yu et al. [97] proposed a fast prediction model based on a Bi-gated
cycle unit (Bi-GRU). A GRU is a simplified version of an LSTM with simple structure and
no loss of basic feature information of data series in the prediction process. This method
can reduce the average update time of the network model by 30%.

In 2021, L. V. R. et al. [110] proposed a population-based generation network to solve
the problem of predicting the position of a three-dimensional target from a two-dimensional
image-based alternative during radiation therapy, enabling treatment target tracking using
images acquired in real time. Due to the powerful generalization ability of neural networks,
the model does not need to establish correspondence between subjects and can be quickly
deployed in just 8 milliseconds of inference time. The training model is represented by a
three-dimensional low dimensional manifold with non-rigid deformation. The predictive
power of the model can correct errors in target placement that may occur due to system
delays when using only the baseline volume of the patient’s anatomy. In addition, the
method does not require supervisory information, such as ground-truth registration sites,
organ segmentation, or anatomical markers.

In 2022, M. Tan et al. [111] proposed a long- and short-term transformer (LSTformer)
for accurate prediction of real-time breathing under long windows. The method uses
lightweight transformer encoder (LTE) to simulate the semi-periodic time dependence of
breathing signals to meet real-time requirements. In addition, the long-term information
enhancement (LIE) module in the method can enhance the long-term memory of latent
variables encoded by a lightweight transformer to solve the performance degradation
problem in long window prediction. The method also proposes an application-oriented
data enhancement strategy (AOA), which solves the problem where existing public data
sets cannot fully cover practical application scenarios and demonstrates the diversity of
public data sets collected by optical trackers. The depth camera collects new data on the
simulator to train the model, thereby improving the generalization ability of the model.

T. Peng et al. [112] captured the consistent movement of tumors in fluoroscopic images
through a neural-network-based model that is trained using generative adversarial methods.
The network adopts coarse-to-fine architecture design and introduces a convolutional long
short-term memory (LSTM) module to consider the temporal correlation between different
frames of perspective images. The model was trained and tested using a digital X-CAT
phantom. To fully evaluate the accuracy of the model, phantoms of different scales, tumor
locations, sizes, and breathing amplitudes were generated. The results showed that the
mean IOU and Dice coefficients were 0.93 ± 0.04 and 0.96 ± 0.02, respectively; the mean
tumor AD was 4.34% ± 4.04%; and the mean COMD in the upper and lower (SI) and left
and right (LR) directions were 0.16 and 0.07 cm, respectively. To investigate the effect of
motion amplitude on tracking accuracy, phantoms with fixed body and tumor sizes but
different breathing amplitudes were generated, and the results showed that the mean IOU
and Dice coefficients reached 0.98 and 0.99, respectively, with a mean tumor difference of
0.17%. In the SI and LR directions, the average COMDs were 0.03 and 0.01 cm, respectively.

In 2023, L. V. R. et al. [113] proposed an attention-based time prediction network that
treats features extracted from input images as markers of prediction tasks. The network ar-
chitecture consists of three modules: feature coding and decoding, conditional transformer
network, and parallel prior-based latent modeling. This method can simultaneously learn
to map the dense deformation between image pairs and extrapolate through time by using
a set of learnable queries to predict potential representations of future deformations, condi-
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tioned on prior knowledge. Compared with the condition-based 4D transformer motion
model, the error of this model was reduced by 63%, with an average error of 1.5 ± 1.1 mm.

Based on the idea of dense connected convolutional networks (DenseNet), M. Bengs
et al. [91] proposed an efficient 4D architecture that can process long-term 4D ultrasound
sequences in real time. According to the parameter efficiency and feature propagation
intensity of DenseNet, 3D mode is used for the spatial processing of volume ultrasonic
data. The method uses ConvGRUs recurrent neural network processing time for 2D
image sequences. Considering the different scales and shapes of the target sites following
respiratory movement during radiotherapy, this method analyzes the spatio-temporal
characteristics of different scales for the movement during radiotherapy and proposes the
spatio-temporal circulation at different feature levels.

4. Discussion

In the face of the increasing number of tumors and the high mortality rate of cancer
around the world, the study of intraoperative respiratory movement monitoring and
prediction in the chest and abdomen will become a relatively advanced and hot field for
further exploration in the next few decades. Currently commercially available respiratory
movement compensation methods for therapeutic target areas remain a key and difficult
issue in this field. According to the summary of this paper, respiratory monitoring and
compensation methods still have a lot of room for improvement and improvement in
future research:

(1). Respiratory movement tracking without markers:

By means of optical and radar monitoring combined with Linchuan medical theory,
a non-invasive and non-contact respiratory movement tracking system for the chest and
abdomen was realized. The redundant radiation dose was reduced when guided by CT
images during the tracking process, and the probability of radiation causing damage or
lesions to normal tissues or organs was also reduced.

(2). Guidance technology combined with ultrasonic imaging:

Ultrasound is an inexpensive, flexible, real-time, and radiation-free imaging method
with high temporal and spatial resolution, i.e.; submillimeter spatial resolution in the plane
along the direction of the beam. Using the high penetration of ultrasound in soft tissue,
movement can be tracked without the use of sensors during treatment. However, since the
external ultrasonic imaging probe cannot send a beam parallel to the axis of respiratory
motion, the local organ motion is space-dependent, and using only one-dimensional projec-
tion is not enough. Digital phantoms can also be constructed with 4D ultrasound using
a biplanar ultrasonic imaging transducer that allows for the beam to be turned at a large
angle, giving the organ a wider field of view at depth. Unlike MR and CT, 4D ultrasound
can be used not only for real-time motion tracking but also for local ablation therapy. Future
studies should explore the applicability of ultrasound imaging for breathing tracking.

(3). Combined deep learning and respiration prediction model construction:

The respiration prediction based on the prior collection of sequential images cannot
accurately predict the respiration movement that is not included in the existing sequential
images. Through deep learning technology, the steps related to image registration and
feature point detection can be reduced, and breathing tracking can be fully automated,
reducing the workload of researchers. However, for image-based neural network prediction
models, the computer configuration requirements are high, and having a large number
of models also means a long delay. Direct input of the collected raw data may cause data
redundancy and increase the burden of the model. The rapid and effective prediction
of deep learning models can be achieved through dimensionality reduction, principal
component analysis, and other technologies.

To address the difficult tradeoffs between safety, real time, and accuracy in clinical
applications, we identified three future directions. These directions are of great significance
for improving respiratory motion compensation in existing chest and abdominal treatments.
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5. Conclusions

The purpose of this review was to systematically review the application of respiratory
movement monitoring and prediction in the diagnosis and treatment of the chest and
abdomen. According to the different compensation methods, the recent development
status of medical imaging combined with sensors (such as optical and acoustic sensors)
or deep neural network in respiratory movement tracking is briefly summarized through
three aspects. It is hoped that this will be helpful to researchers in this field. This review
summarizes the techniques in this paper in a systematic manner. Specifically, we provide
an overview of chest and abdominal respiratory movements and compensation in recent
years of treatment in the reviewed literature. Finally, we discuss the future development of
monitoring and prediction methods for chest and abdominal respiration. The respiratory
monitoring and compensation methods need to be further improved in future studies. First
of all, the non-invasive and non-contact tracking of the chest and abdomen was realized
through the unmarked respiratory movement tracking system, combined with optical and
radar monitoring and clinical medical theory, which reduces the radiation dose guided by
CT images and reduces the risk of radiation damage. Second, combined with the guidance
technology of ultrasound image, the tracking of soft tissue movement was realized by using
the high penetration of ultrasound. In particular, the field of vision in depth is expanded
by constructing a four-dimensional ultrasonic digital model, which provides the possibility
for real-time motion tracking and local treatment. Finally, combined with deep learning
technology and the construction of a respiratory prediction model, breathing tracking can
be automated, reducing the work burden of researchers. However, it should be noted
that the image-based neural network prediction model may have problems, such as high
computer configuration requirements and a long delay. The prediction efficiency of the
model can be optimized by a dimensionality reduction, principal component analysis, and
other techniques. Although research articles mentioned a variety of methods, some articles
explain the comprehensiveness and feasibility of these methods and room for improvement.
To be specific, most of the studies related to unmarked respiration tracking method were
only in the experimental stage, lacking details of application in actual clinical environment.
In the future, this method can be verified in clinical practice to carry out specific studies.
Future studies should explore further applications and refinements of these methods to
improve the efficacy and safety of respiratory motion compensation in therapeutic target
areas. This article will help researchers to understand the recent progress of respiratory
monitoring and prediction in the chest and abdomen.
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