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Abstract: This article focuses the event-triggered adaptive finite-time control scheme for the states
constrained fractional-order nonlinear systems (FONSs) under uncertain parameters and external
disturbances. The backstepping scheme is employed to construct the finite-time controller via a series
of barrier Lyapunov function (BLF) to solve that all the state constraints are not violated. Different
from the trigger condition with fixed value, the event-triggered strategy is applied to overcome the
communication burden of controller caused by the limited communication resources. By utilizing
fractional-order Lyapunov analysis, all variables in the resulted system are proven to be bounded, and
the tracking error converges to the small neighborhood around origin in finite time and without the
Zeno behavior. Finally, the effectiveness of the proposed control scheme is verified by the simulation
analysis of a bus power system.

Keywords: fractional-order systems; state constraints; barrier Lyapunov functions; event-triggered;
finite-time

1. Introduction

Fractional-order nonlinear systems (FONSs) established by fractional calculus can present
the physical systems accurately for lots of different areas such as infectious diseases [1,2],
image processing [3,4], secret communication [5,6], circuit [7,8], vehicle engineering [9,10], etc.
Furthermore, many controller design problem for FONSs have been researched, in which
the adaptive technique as a very powerful tool have been investigated by combining with
backstepping mechanism to deal with the uncertainties in FONSs [11-25].

All above mentioned achievements ignore the state constraints. In plentiful physical
systems, it is generally widespread that the system states can change within a specified
range, and the control system may become unstable when the system states violate these
constraints. Therefore, it is practical significance to control FONSs with state constraints.
To tackle the state constraints issue for FONSs, the barrier Lyapunov function (BLF) as the
predominant approach by applying error constraint is used to limit the state [26-29]. The
authors in [28] design the adaptive controller for the FONSs under tate constraints, and the
states remain in the bounds by introducing the BLF. In [29], an adaptive dynamic surface
control scheme by using asymmetric BLF is proposed for FONSs with states constraints
and input nonlinearity to achieve the tracking performance.

In fact, the above literature can theoretically guarantee the infinite-time stability of
the control system, namely, the control system obtain the desired performance only when
the time tends to infinity. In order to complete faster transient performance and better
disturbance rejection ability by using the finite-time control, many contributions in this field
have been reported for both integer-order nonlinear systems [30-32] and FONSs [22,33-38].
In [22], a finite-time adaptive neural controller is developed for a class of the FONSs, and
the errors converge to zero in finite time. The author in [33] develops fractional order
finite-time output feedback controllers for nonlinear interconnected systems to ensure
the finite time stability. A sliding mode controller is developed for FONSs to ensure all
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variables arrive at a domain within the fixed time in [34]. The author in [35] presentes
the fractional-order fuzzy controller with finite-time performance for tumor systems with
finite-time stability. In [36], an adaptive neural finite-time controller for the FONSs under
unknown dynamics is proposed to obtain finite-time convergence. The authors in [37]
develop the finite-time adaptive controller for uncertain FONSs by using the command
filter. For a class of FONSs with faults, the authors in [38] present a fuzzy adaptive dynamic
sliding mode controller. However, the communication with time-trigger method may lead
to the waste of resource coming from the huge data transmission.

Event-triggered control (ETC) can reduce the limited computation resources and
communication, which is only triggered when the condition is met. In [39], the ETC
strategy for the FONSs is designED to ensure the stability and reduce computational
burden. In [40], the distributed ETC for multiagent fractional-order systems is designed to
sSolve the problem of limited communication resources. For the FONS with unmodeled
dynamic in [41], the neural adaptive ETC is presented to reduce computational burden. For
the integrator FONS under disturbances and unknown dynamic in [42], an adaptive ETC
method is proposed to reduce the amount of computation required for transmission. In [43],
an adaptive fuzzy ETC scheme is developed for FONS under uncertainty to reduce the
transmission of the control signal. In [44], an adaptive fuzzy hybrid ETC for the uncertain
time-delay FONS under actuator fault is proposed to improve the efficiency of computing
resource. To our best knowledge, there is a lack of research on the finite-time adaptive
event-triggered controller of the FONSs with full-state constraints and uncertain parameters
bringing forward the challenge.

Based on above discussion, this article will design a finite-time event-triggered adap-
tive controller for full-states constrained FONSs with uncertain parameters and external
disturbances by combining backstepping technique and event-triggered scheme. The
significance and contributions are as follows:

(1) Compared with full-state constraints results in [28,29] without finite time performance,
the finite-time event-triggered adaptive controller is exploited by combing BLFs and
backstepping technology, and the finite-time convergence of the close-loop signals
can be guaranteed. Compared with the finite-time controller in [36-38], it is further
resolved that the state constraints are not violated.

(2) Different from the conventional periodic controllers in [28,29,36-38], an event trig-
gered adaptive controller is proposed and the stability is proved by using finite-time
fractional-order Lyapunov criterion, in which the control signals are updated only
via the event-triggering mechanism largely reducing the consumption of network
resources and communication burden.

2. Problem Descriptions

Consider the following strict-feedback FONS with uncertain parameters and exter-
nal disturbances:

D%x; = f] (xl) + g1 (xl)xz + 91f(p1(x1) +d; (t)
D*xy = fo(xp) + g2(x2)x3 + 65 p2(x2) + da(t)

: 1)
D%xyq = fn—l(&nfl) + 8n—1 (xy-1)Xn + Gz_ﬂon_l (x,_1) +du_1(t)
D%xp = fu(x) + gn (%)t + 05 @ (x) + dn(t)
y=x1
wherex; = (x1 X ... X )Tng(jzl,Z,...,n—l)andx:( X Xy ... X )TER"

denote the state vectors, y € R denotes the output, u denoted controller input, d;(t) is the
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external disturbance, and f;(-) and g;(-) denote known smooth functions. « is the system
fractional order. the Caputo fractional derivative of z(t) is denoted as [45,46]:

1 t
“z(t :7/ t— )"0 (nydre 2
tg() r(n_“)-t(]( ) () ()
where I'(a) = fooo et ldtn—1l<a<nneZt. Dy is defined as D*, when tg = 0.
Control objective: (1) output y can track the signal y,(f) in finite time; (2) all the states
are within the bounds of the constraints; and (3) Zeno behavior is avoided to occur.

Assumption 1. For Vk., > 0, there are positive Ay, A1, and Ay, s.t. |y, ()] < Ag < key,
|D*y, ()| < Ay, and |D?*y, ()| < A,.

The desired signal y,(t) is the known bounded signal in real application. Then, according
to the maximum value of |y, ()|, [D*y,(t)| and |D?*y,(t)|, the bounds Ay, A; and A can
be obtained.

Assumption 2. There are unknown constants gimin a4 ¢imax, S-£ 0 < imin < i (%1)] < gimax-
Without loss of generality, 0 < gjmin < £i(%;) < imax-

Assumption 3. d;(t) is bounded, and |d;(t)| < d; with d; > 0.

Lemma 1. In [47,48]. Let z(t) € R", Q = QT > 0, then D* (2 (+)Qz(t)) < 2zT(t)QD*(z(t))
holds for ¥t > ty.

Lemma 2. In [49]. Let Z;(-), Z5(-) € R. Assume that Zy(Zy) is convex (i.e., 0*Z1(Z5) /0Z5 > 0),
then, D*Z1(Z,) < 9Z1(Zy) /9Z; - D*Z, holds for V't > 0.

Lemma 3. In [50]: For ¥qq, g2 and Vs1,s2,53 > 0, it is hold that:

51
S1+ 5o

So 5
53|q1|51+52 + msg, 5 |q2|51+52 (3)

g1 g2] <

Lemma 4. In [51,52]. When §(t) satisfy |(t)| < k,, for Vk, > 0, we obtain

k2 72
1 bo < c(t)

4
"Eom S B - @

Lemma 5. In [53]: Suppose h(t) € C1((0,+c0],R), c € (0,1], and d € [1,00), then
pen(p) = LT DT =)y ey ©)

T(1+d—c)

3. Finite-Time Adaptive Controller with State Constraints

In this section, a finite-time ETC adaptive method will be developed for the systems (1)
combined with the backstepping technology. The event-triggered actual controller, virtual
controller and adaptive parameter estimation will be structured by the choice of BLF, for
which the detailed design process is presented as follows.

Step 1: Define x1 = y — y,(t), from system (1) the Caputo fractional derivative of x1 is

D*x1 = fi(x1) + g1(x1) (X2 + 01) + 01 @1 (x1) + d1(t) — D"y (t) (6)
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Denote 6, = 6; — 6;, where §; is the estimate parameter of 6;. Consider the BLF
candidate function as )
1.k 1 5
Vi=zIn 01 (7)

2 klzj1 — X% 2’)/1
where k= ke, — Ag and 71 > 0 is a design parameter. k, > 0 and its definition will be

given later.
According to Lemmas 1 and 2, the derivative of V; is

1 s
D*Vy = M Dy — — D,
by Xl g4

X1 AT 1 57 aph X1
= 01 ¢1(x1) — —0; | D01 — 15— ¢1(x1) (8)
kil X% 1 T 1 k2 _ %

S (fi(x1) + g1(x1) (x2 + 01) +d1(t) — Dy, (t))
xi

The Young’s inequality can be applied to obtain

k2 2 5di(t) < #‘f‘ Said; )
! 2a (kbl _Xl)

where a7 > 0.
Substituting (9) into (8), yields

1 15 5 xi
DV < gl( ) XZ + 7a2d_2 o 79T D), — x
k2 X2 2T 17 M3 _X%Gﬂl( 1)

(10)
1 p _x
k2 e 0T p1(x1) + f1(x1) + g1(x1) 01 — Dy, (t) + 202 (kil _ X%) )

The virtual control signal ¢; and parameter estimation D*d; are designed as follows

1 _ bl)CZP !

—— fi(x1) — 0T 1 (x1) — Z(kz)ﬁxz) LDy |
Al

Xi_lxzq’l(xl) — 16 (12)

where p € (0,1),b; > 0and ¢; > 0.
Substituting (11) and (12) into (10), D*V; is presented as

2
81(x1)X1X2 bixi Gl ATA
D"V, < G o+ d+ 016, (13)
! (khl 77(1)

Step 2: The Caputo fractional derivative of x,=x, — ¢ yields

D*x2 = fo(xp) + g2(x2) (X3 + 02) + 02 pa(x5) + da(t) — D*Y; (14)
The Lyapunov candidate function is selected as

1, K 1 s
~1In 2 4+ _— §lo 15
27K, -G 0

Vo=V +
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where ka > 0and vy, > 0.
From (14) and (15), the derivative of V; is
o % 1 AT Hap X2
D"V, = D"Vqy — —0,D"0, + k2 92 (pz(xz)
N T2 2 (16)
e (fea(n) F fol2) + 82(52)(xa + 82) + da(6) — DY, )
b, — X2
Using the Young's inequality, yields
X3 )
kz yhat) < — gt SBE (17)
2 2a (kb2 Xz)
where a; > 0 is a design parameter.
Substituting (17) into (16), yields
DD‘VZ < D“Vl + %ﬂ%dg 24)2(.’)(2)
X AT (18)
itz | 0292(x2) + fa(x2) +82(x2) (x5 + 02) — D1 + W
2 2
The virtual controller 8, and the parameter estimation D*d, are designed as
2 2
1 box? R Xa g1(x)x (K, —x3
b = o2 | 7o p1 — f2(x2) — 63 92 (x5) — ﬁ + D" — 2 ( 22 ) (19)
= (kb2 — x2> 2”2( by Xz) ( b Xl)
D6, = 72%% (x3) — 620 (20)
b, — X2
where by > 0 and ¢y > 0 are the design parameters.
According to (19) and (20), (18) can be rewritten as
a ® X2 bzxéﬁ g1(x1)x1x2 272 (;2 ATA
D V2 <D V1 + ﬁgZ(lz)X:’, - ' 5 ” + zﬂzd 9292
SR ) )
- - bz 2 1 (21)
bixy’ boxy A
<-T s g gzkglﬁngfs 2+ fyl 0701 + 5 L +f’7y—29§92
2 2 2 2 - 2
(& -x3)" (& -x) b T X2
Step i(i = 3,4,...,n — 1): Define x; = x; — 9;_1, and we can obtain
D*xi = fi(x;) + 8i(x;) (Xi1 + ;) + 6] 9i(x;) +di(t) — D*0; 4 (22)
Consider the Lyapunov candidate function as
1. K 1 1
where k, >0, 7; > 0, and ; = 6; — 6;.
Accordmg to (22) and (23), the derivative of V; is
XiXi Lares o G Xi
DaV D‘XV 1+ gl(kz ) i é+1 _ i‘QiTDlXGi + O;F(Pi(li)kz _z 5
— X Vi b; Xi (24)

ky

i

tet s (fz<,z> +8i(x)8 + 6T i) + di() — D8, 1 )
1
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Using the Young's inequality, yields
Xi X7 1on
2 _dei(t) < " ‘ Ry +5aid; (25)
b; i Zai (kbi _Xi)
where a; > 0.
Substituting (25) into (24), yields
2
DDCV < DBCV + gl( )XiXi+1 + Xi + aZd’Z
k2 2 Pl
Xl 2alz (k%, - Xl )
+ kz . (ﬂ( )+ 8i(x)d; + 0 pi(x) — D*0i1) (26)
AT AT _Xi
Construct the virtual control ¢; and the parameter estimation D%f; as
2p-1 1 (x; (k2 —x?
1 b; iX ~ Xi 8i 1(1171)7(1 1\ *p; Xi
l9i = g(x) ) L ) o1 _fl(ll) - o;rq)l(ll) T—i_Daﬂl 1~ k2 _X<2 ) (27)
1T\ _ -
l (kbi - Xi) ( ) b Mirl
D%; = i i) — 616, (28)
k2 —x?
where b; > 0 and ¢; > 0.
Then, the D*V; can be rewritten as
.
b‘X‘P (x) v
DUV; < D' - T gﬁ;)flj;“
CEOM
i—1(Xi 1))(1 1Xi 22 Gi 3T
— + d; + 9' 0; 29
k2 _ Xl 1 2 l 1 e ( )
: by’ S 1 (x)xix
] T 2 '2 i 1+1
Z s Z 6; 6 + Z 2% e
- ( ) k X2
= X] ] 1
Step n: The Caputo fractional derivative of x, = x, — ¢, is given as
D*xn = &n(x)u + fu(x) + 01 @ (x) + d(t) — D*0y 1 (30)
Consider the Lyapunov candidate function as
1 kp 1 s
=Vyq1+=In—2r— 4+ _—4& 1
Vo=V, 1+2 nkin_X%+27”9n9n (31)
where 7, > 0,k, > 0,and 6, = 6, — 0,.
The derivative of V,, is
1 R
D"V, = DV,_ e X GTgu(x) — —61D%,
i T (32)

t2 X_"Xz (fn( )+ gn () + 0 @ (x) + dn(t) — Dwn,l)
by n
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From the Young's inequality it is true that

Xndn(t) < X
2 _ .2 =
K, — X 242 (k%,, - )(%)

1
5 + Ea%d_% (33)

where a,, > 0.
The controller u with event-triggered mechanism and the parameter estimation D*6,
are constructed as follows

u(t) = O(t), Vt € [t i) (34)
trer = inf{t € RI|Y(£)] > AT|u(t)] + A5} (35)

_ Ax
O(t) = —(1+ A}) | O tanh 7?’7‘” 5 + A} tanh 722)‘” 5 (36)

K+ (kbn - )(n) K+ (kbn - )(n)
XA Xn )
D*0, = 'ynkziz(pn(x) — Gnbn (37)
by — X
where
251 A Sn-1(%y—1)xn-1(k} — x7

= L | Bl e T (x) — — K peg, ST LA (4, ~xi) (38)

(x) p-1 n? 2(12 _ 42 K= X2

8n (kin _ X%) 242 (kbn - xn) by Xn—1

and ¢, > 0, ¢y > 0and «* > 0. t(k € Z") is the update time. Y(t) = ©(t) — u(t) is the
sampling error, A} € (0,1),A5 > A% /1 — A} and A} > 0 are known parameters.

From Y(t) = ©O(t) — u(t) and (35), we have O(t) = (14 AjA1(t))u(t) + A5A2(t),
where |A1(t)| < 1and |Ay(¢)| < 1. Then

() ~ A3ha (1)

t =
0= A (39)
Substitute (33)—(37) and (39) into (32), yields
D*Vy = D'V,_1 + 5 A" — 8 (x) — LT,
kbn —Xn Yn
+ 2 X_nxz (fn(X) + gn(x)u + éE(Pn(x) +dn(t) — Daﬂnfl)
b, — An
— Dﬂlv 1 _|_ X”g” (x) ®(t) _ X?’lgfl (X) AE/\Z(t)
" K —x21+AM() B -3 1+AA() (40)
Xn AT « Xn
+ fu(x) +0,0n(x) = D01+ —F—
K x5 " T a2 (8, —3)
1on Xn AT L SN
+ Eandn + k%n — X% 971 q)n(x) - ﬁenDaen

Theorem 1. Considering the FONSs (1) under Assumptions 1-3, suppose that initial constraint
xi(0) € O, = {xi||xi(0)| < k¢, } is satisfied, by designing the event-triggered actual controller (34),
with virtual controllers (11), (19), (27), the parameter estimation (12), (20), (28) and (37), it confirms
that: (1) all the signals are bounded and Zeno behavior is avoided; (2) the tracking signal can be well
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tracked and the state variables x(t) keep within the set Oy, in finite-time T; and (3) for Yt > T, error
X; satisfies x; € Qy,,1=1,2,...,n, where

Qy, {x1||xk|<kb V1 o2/ ”P}

T(Z2\rQ—a)T(a+1) [ , M & . (41)
- (12?9r<%*’> (10 (sta))

i

€(0,1)
Proof. Due to [A1(t)| <1, |A2(t)| <1, we obtain

OM)xn  _ Ot)xn
THAA(E) — 1T+A
MAa(t) ’ A
T+ A A(E) ~ 1= A5

(42)

Using Assumption 2 and substituting (38)—(34) and (42) into (40), one can get

2p-1 Sn-1(Xn1)Xn-1(k2 — x5
DV, <DVn1+kX e nk - (b" )
X” (kin _Xn> b1 7)("—1

A% A3
+ (@) | — 25 tanh [ — nd LTI e —
Ky, = Xn (e —x3)) K, —xi w (k2 ~x3)

X‘rlg‘rl( ) /\2A2( ) —gn ( )19 Xn
3 —X%1+?\*A() " -1
1" 2 2 AT P
~a5d — —6,D"
+ Zan n k%n _ X% 971 (Pn( ) Tn Gn 9" (43)
<DV 4 Xn B anZP 1 8n— 1(x— 1)Xn 1(](%ﬂ _X%l>
TR -G 2 T K, X
<kbn - Xn> bn—l n—1
1 ~ - A
+0.557K* g (x) + ~a>d> + 5 An 5 0 pn(x) — —01 D%,
2 kbn — Xn Yn

"
<-) L 5+ 2 gleTe + Z ST + 057K g ma
i=1 (kbi — Xi)

According to parameter estimation error ; = 6; — 6;, it holds

614, (44)

Then, one can obtain

5 GiATA S Gi T = Gi AT
Z >6;6; < Z o800, — ) o6 0; (45)
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From (45) and (43) can be rewritten as

2p —1
by " Si grg v din
DYWaS =) 5= )5 B0t ) 55
= (kz _ lz)p T
1
+2 Gi 9T9 2 5 1251“12+0557K &nmax (46)
n X‘ ’ i 1 AT A
< 7 i 4 —0:0. | +A
(k2 Xz) =R
where 5
(7': i {zpbugui =12, }
47
- ‘71;1 + Z gl 9 0, + Z 2 a?d? + 0.557" g max 4

i=1 i=

n U
According to Lemma 3, choose g1 = 1,92 = ¥ #9;9

s3 = p1-7, then one can obtain

076, (48)

n 2 p nooq P
D*V, < ——| -0 ~—6/6;] +M 49
& ( 2(K, 12 )) U<; 27i > @)

where M = A+ 5 (1 —p)s3
According to Lemma 4, one can obtain

DYV, < —gV 4+ M (50)

For Vo € (0,1), (50) is rewritten as D%V, < —o@V} — (1 —@)VEi+M. If V,, >
1
0

M/(@(1-19)))?,

we obtain
D"V, < —c@V¥ (51)

1

—5 P
LetV = an  then D*VT% < —g@VT7. From Lemma 5, we obtain

pryTE — NP VT (1) DYV (52)
1"(2;‘3 — zx)
=5
Then
2-p _
D'V < -5 rz(l__p a) (53)
r(ﬁ r2-a)

] ) (%t «
VP — ViR (0) < —o@ gl a) f (54)
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1
From (54) and V;, > (M/(d(1 —9)))?, the finite time T can be designed as follow:

=0 —a)T(a 5 ’ %
o

1

=i

Then, we obtain V,, < (M/(7(1 — @))) . Using the definition of V,,, it holds

k2

1 , 1
Elnﬁ < (M/(@(1 - @)))? (56)
b; i
This implies that
x| < kg, \/ 1— e 2M/ -0 v > T (57)

It can be found that tracking error converges to (), in finite time T.
2

1 k ~
From V, < (M/(5(1—®)))?, the boundedness of In * as well as f; can be ob-

1

bi
tained, which means that |x; | satisfies |x;| < k, . Due to x; = x1 + y,(t) with the bounded-
ness of x1 and y,(¢), it holds that state x1 is bounded. From (11), the virtual controller & is
a function of x; and él. Then, 9, is also bounded with the supremum 8; of ¢;. Based on
the definition of x» = xp — ¢, it holds that ¢; and x; are bounded. In the same way, the
boundedness of x;(i =3,...,n),8;(j = 2,...,n — 1) and controller u can be obtained.

In order to avoid Zeno behavior, it requires to prove that there is a constant t* > 0
such that for k € Z*, t;, 1 — t; > t*. Based on the sampling error Y(t) = ©O(t) — u(t), it
holds D*|Y(t)| = sign(Y(t))D*Y(t) < |D*O(t)|. From the definition of ®(t) in (36), it
holds that 3 > 0 such that |[D*®(t)| < . According to Y(t;) = 0 and tlim Y(t) = A3,

—et1
one gets ty1 — tp > A3 / { = t*, which means that the Zeno behavior is avoided to occur.
Due to x; = x1 + y,(t) with |y,(t)] < Ap from Assumption 1, we get |x1]| < [x1]| +
lyr(t)| < kp, + Ao. Define ky,, = k¢, — Ap, one can obtain |x;| < k¢,. From x, = x2 + ¢, it holds
|x2| < |x2| + |1 < kp, + B1. Define k;,, = ke, — B4, one can have |x| < kc,. Similarly, one can
get |x;| <k, i=3,...,n. Thus, all x(t) do not transgress the set ), in finite-time T. [

4. Simulation

In this section, the validity of the devised finite time constraint ETC strategy will be
illustrated by a single-machine-infinite bus power system presented as [54]:

D*x1=0.1x7 + xp 4+ 0.03 sin(#)
D*xp= —0.02x2 + 0.1 cos(x7) + 0.2

—sin(x7) + u + 0.2593 sin(t)
y=x1

(58)

where x; and x; are the system states, y is the output of systems, u is the controller
input, «=0.85, f1(x1) =0, fa(x) = —0.02x,+0.2 — sin(x1), ¢1(x1) = x1, P2(x) = cos(x7),
61 =0, =0.1,and g1 (x1) = g2(x) = 1. d1(t) = 0.03sin(¢) and dp(¢) = 0.2593 sin(¢) are the
external disturbances. The virtual control laws are constructed as
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The adaptive laws are given as

D%, = Vlkzx%xzﬁol(xl) — 610

n X1

b, X2

Design the following event-triggered strategy

O(t) = —(1+ A7) [ 0, tanh [ — 2222

i* (ki2 — x%)
u(t) = O(t), vt € [t tiy)
tepr = inf{t € R|[Y(t)| > Af[u(t)] + A3}

— filx1) =61 p1(x1)

g1(x1)x1 (kiz - X%)

7224’2(952) — 20>

K* (k%2 - X%)

(59)

(60)

(61)

The design parameters in (59)—(61) are chosen as a7y = 0.065,a, = 0.1, = 1.1,
by =16,k =21,p=05,7 =05,7 =1, g1 = 0.001, g = 0.08, A} = 0.0001,A; = 0.5and
A} = 0.6001. The initial conditions are selected as x1(0) = x2(0) = 0 and 6;(0) = §,(0) = 0.
The desired signal is y,(t) = 0.8 sin(t), and the constraints are presented as k., =1 and k., =1.3.

Figures 1 and 2 show the trajectories of the reference signal, system output and system
state. It is obvious that all system states maintain the given constraints by using the proposed
finite-time ETC scheme. The event-triggered actuator control input u is described in Figure 3.
Figure 4 presents the trajectories of parameters estimation. It can be found that the parameter
estimation 92 is not smooth causing the compensation of nonlinear uncertainty to fluctuate,
which is the main reason that the state trajectory of x, is not smooth in Figure 2. The sequence
of steps of event-triggered sampling and the number of accumulated events are shown in
Figure 5 and Figure 6, respectively. One can obtain that the stability and good tracking

performance can be both guaranteed with the reduced communication burden.

Time(sec)

Figure 1. System output y and tracking signal y,(f).
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Figure 5. The interval of the triggered transmission.
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Figure 6. The number of the accumulated events.

5. Conclusions

An finite-time adaptive ETC scheme for FONSs with full-state constraints, uncertain
parameters and external disturbances has been presented. By using the backstepping
technology and a series of BLFs, the finite-time adaptive controller and parameter estimator
are constructed. The dynamic event-triggered strategy is employed to overcome the limited
communication resources. On the basis of the fractional-order Lyapunov analysis, all
variables are bounded without the Zeno behavior and the tracking error converges to
a small neighborhood around zero in finite time. The provided simulation results have
further demonstrated the validity of the proposed control strategy. In the future, the
controller design and stability analysis for nonlinear switching fractional order system
controllers will be researched.
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