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Abstract: The flow of carbons into the citric acid cycle can be readily traced by supplementation with
13C stable isotope labelled nutrients. However, the quantification of the amount of fully oxidised
nutrients to carbon dioxide is a challenging task. This contribution presents an isotope-selective,
miniaturized gas detection scheme based on indirect photoacoustic spectroscopy. The results show
that low-cost, continuous, in situ monitoring of the isotope ratio in gaseous samples is feasible.
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1. Introduction

The oxidation of high-energy carbohydrates is the dominant energy source of the vast
majority of heterotrophic organisms, including all animals. The main compound classes
donating their reduced carbon bonds are lipids, sugars, amino acids and, to a lesser extend,
nucleotides, all of which converge at the so-called citric acid cycle (TCA, also known as the
Krebs cycle), where the full oxidation to carbon dioxide (CO;) takes place. Interestingly,
the TCA cycle can also serve as a biosynthetic platform, where carbons from one class
of metabolites are shunted into the biosynthesis of another. The utilisation in energy
production or biosynthesis is a very dynamic process that integrates the metabolic needs of
the cell with the availability of nutrients and oxygen [1,2]. While the flow of carbons into
the TCA cycle can be readily traced by supplementation with '3C stable isotope-labelled
nutrients, and their detection via mass spectrometric analysis, the quantification of the
extent to which these nutrients are fully oxidised to CO, poses a significant challenge
due to its gaseous nature. Currently, this is mainly done by indirect methods such as the
detection of radioactive 4C from labelled compounds or use of a relatively expensive setup
to detect 3CO, [3]. There are currently no established methods to accurately detect and
quantify nutrient respiration via 3CO, detection in systems relevant for routine lab work
such as tissue culture.

However, photoacoustic-based, non-dispersive infrared spectroscopy (NDIR) has been
demonstrated to enable highly selective CO, sensors at a much-reduced system size due to
its better sensitivity as compared to standard NDIR system [4]. In this contribution, the
scheme is expanded to demonstrate isotope-selective detection of 12CO, and 3CO,, thus
paving the way for low-cost, in situ systems for the direct determination of the isotopic
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2. Materials and Methods

The detection scheme relies on a single, mid-infrared light emitting diode (LED) from
Hamamatsu (L15895LED) with a central wavelength of 4.2 pm illuminating a detection path
length of 5 mm and two hermetically sealed, miniaturized photoacoustic detectors that each
include a MEMS microphone (Invensense 1C5-40720) and a 500 um thick sapphire window
for optical access, which are filled at 1 bar pressure with 100% CO, using standard isotope

ratio of the carbon atom (g—g) standard and 100% 13CO,, respectively. To characterize the

system, varying concentrations of standard CO, and pure *CO, have been mixed with
synthetic air and the photoacoustic signal has been recoded.

3. Discussion

The sensor response of both system channels is shown in Figure 1 for varying CO,
concentrations using both standard carbon isotope ratio and pure *CO, as test gases.
Both channels show a response to both CO; isotope mixtures, but with a pronounced
difference in sensitivity. Since only '2CO, and 3CO, cause signals, the setup enables a
straightforward determination of §'3C, suitable for many applications that require isotope
selective gas sensing applications.

Sensor response
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Figure 1. The sensor response to varying CO, concentrations in dry synthetic air: (a) Using the
standard isotope ratio of COj, the sensitivity of the standard CO, channel is considerably higher than
for the 13CO, channel. (b) For the gas sensitive characterization, using pure 13CO, gas, the situation
is reversed.
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