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Abstract: In the last fifteen years, several groups have investigated metal injection moulding (MIM)
of NdFeB powder to produce isotropic or anisotropic rare earth magnets of greater geometric com-
plexity than that achieved by the conventional pressing and sintering approach. However, due
to the powder’s high affinity for oxygen and carbon uptake, sufficient remanence and coercivity
remains difficult. This article presents a novel approach to producing NdFeB magnets from recycled
material using Powder Extrusion Moulding (PEM) in a continuous process. The process route uses
powder obtained from recycling rare earth magnets through Hydrogen Processing of Magnetic Scrap
(HPMS). This article presents the results of tailored powder processing, the production of mouldable
feedstock based on a special binder system, and moulding with PEM to produce green and sintered
parts. The magnetic properties and microstructures of debinded and sintered samples are presented
and discussed, focusing on the influence of filling ratio and challenging processing conditions on
interstitial content as well as density and magnetic properties.

Keywords: powder extrusion moulding (PEM); metal injection moulding (MIM); production of
NdFeB permanent magnets; recycling of EOL-magnets

1. Introduction

Considering the annual demand for electrical appliances, electric cars, and even wind
turbines, rare earths such as neodymium or dysprosium are key industrial materials in
Europe and worldwide. The mobility sector, in particular, is expected to see a sharp
increase in demand. The shift from internal combustion engines to electric drives has
created considerable demand for Nd-Fe-B magnets. Given that 95% of today’s electric cars
use Rare Earth Permanent Magnets (REPMs), demand will increase from 5000 t/year in
2019 to 70,000 t/year in 2030. Demand for wind turbines is also expected to increase five to
six times by 2030 [1]. Every year, 16,000 tonnes of rare earth magnets are exported from
China to Europe, accounting for around 98% of the European market [2]; thus, Europe
heavily depends on China. In addition, rare earth magnet mining damages the environment
and causes disease due to groundwater contamination [2].

To overcome these challenges, the EU-funded SUSMAGRPO project is attempting to
locate, sort, and produce new permanent magnets from end-of-life magnets [3].

This article introduces a novel technique for manufacturing NdFeB permanent mag-
nets using powder extrusion moulding (PEM). As the demand for these magnets is expected
to increase in the next few years, the PEM process is a potential manufacturing method.
Producing permanent magnets in large quantities with a finished final contour is possible
with this process. This process eliminates the need for time-consuming post-processing of
sintered parts, such as grinding.
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NdFeB magnets can be differentiated according to their production type. A distinction
can be made between (a) sintered magnets, (b) bonded magnets, and (c) MIM (Metal
Injection Moulding) magnets [4,5]. Sintered magnets are produced by the classical powder
metallurgy process. The powder is poured into a mould while a magnetic field is applied,
causing the magnetic particles to align in their preferred magnetocrystalline direction (c-axis),
parallel to the field lines. Pressing maintains the magnetic orientation of the particles. The
next stage involves sintering the components in a vacuum or inert gas environment [6,7].
Sintered magnets are typically formed into blocks and require machining through various
cutting processes, such as wire cutting or surface grinding, to achieve their final shape.
By contrast, MIM or PEM magnets require almost no post-processing, as the final shape
is produced directly. During sintering, the magnetic particles lose their orientation as the
Curie temperature of NdFeB is exceeded. NdFeB’s Curie temperature ranges from 310 ◦C to
400 ◦C, depending on its composition. To reorient the magnetic domains after sintering, the
sintered part is remagnetised using an external magnetic field [7]. Sintered NdFeB magnets
have the highest energy products than other types of magnets [8].

Unlike sintered magnets, polymer-bonded magnets require a polymer binder system.
The magnetic powder is mixed with the binder in a mixer or extruder. However, the correct
powder/binder ratio must be considered. Reducing the binder amount can positively affect
magnetic properties but negatively affect mechanical properties. Polymer-bonded magnets
can be produced by injection moulding, extrusion, compression moulding, or additive
manufacturing [4,9,10]. Another method of manufacturing NdFeB permanent magnets is
the MIM process. This process combines the advantages of sintered and polymer-bonded
magnets and is suitable for the mass production of components with complex and precise
geometries [11]. For MIM magnets’ magnetic properties to perform as well as sintered
magnets, the binder must be removed from the green parts. Once the binder has been
removed, the components are sintered in a furnace to create a metallic structure [4].

The objective of this study was to create a procedure for manufacturing NdFeB-based
isotropic permanent magnets using the Powder Extrusion Moulding (PEM) technique.
The main difference between MIM and PEM processes is the different shapes of parts.
Compared with MIM, the starting material in the PEM process is pressed continuously
and slowly through an uncooled nozzle, producing a continuous strand with precise
cross-sectional dimensions. Both processes have four steps, as seen in Figure 1.

Firstly, the feedstock is compounded into a blend of finely ground powder and a binder
system consisting of polymers. The binder coats the powder and ensures good flowability
of the feedstock. Typically, a binder system comprises three components: the main binder,
the backbone binder, and the additives. The main binder ensures that the melted feedstock
has good flow properties and holds the green part together. The backbone binder ensures
that the brown part remains cohesive after eliminating the main binder. Additives facilitate
wetting of the metal powder by the binder and prevent agglomeration [6,12].
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One of the challenges of MIM/PEM is to identify an appropriate powder-to-binder
proportion. High binder content can cause segregation or excessive shrinkage, while high
powder content can increase viscosity and cause incomplete cavity filling. Powder content
typically ranges between 50 vol% and 60 vol% by volume. Powder content below 50 vol%
reduces the probability of creating a densely sintered component [12,13]. Compounding
the feedstock homogeneously for further production is important, as previously described.
Depending on the application, tumblers are used for mixing, and kneaders or twin-screw
extruders are used for materials with high shear input [13,14].

In the MIM process, the binder is melted, allowing the feedstock to be injected with
high pressure into a cooled cavity using an injection moulding machine and enabling the
creation of intricate geometries. The MIM process is generally well-explained in the litera-
ture [6,11,12], particularly for NdFeB permanent magnet production [15–17]. The result is
the so-called green part. As per research conducted by Gonzalez-Gutierrez et al. [18] and
Sotomayor et al. [19], the PEM process combines powder metallurgy and polymer extrusion.
In the PEM process, the binder is also melted in the extruder. However, unlike MIM, the
feedstock is continuously and slowly pressed through an uncooled nozzle to produce an
endless strand with precise cross-sectional dimensions. Sotomayor et al. [19] conducted
an experiment producing thin 430 L stainless steel tubes with PEM. They investigated the
impact of torque on homogeneity during mixing and filling, which increased torque until it
stabilised shortly thereafter. When the torque reached a steady point, the feedstock was
deemed homogeneously mixed. Furthermore, the team noted that a raised powder load
leads to increased torque. In their study examining profile production from tool steel via
extrusion, Gonzalez-Gutierrez et al. [18] evaluated the dimensional stability of extruded
profiles with different filling degrees. The feedstock consisted of particles ranging from
10 to 45 microns, which were blended in a twin-screw extruder and then granulated. The
profiles were extruded using a single-screw extruder and cooled with air at the die before
being withdrawn at a uniform speed of 100 mm/s. Their study findings showed that pro-
files with 60 vol% filler contents displayed the best dimensional stability. The researchers
also described the effects of excessively high haul-off speeds on extrudate thickness. If the
speed was too high, the extrudates thinned out, as demonstrated by samples extruded with
50 vol% and 60 vol% powders. It can be inferred that profiles with 60 vol% powder filling
exhibit better dimensional stability than profiles with 50 vol% and 55 vol% powder fillings.

Once the components have been shaped, the binder has fulfilled its purpose and
must be eliminated. Usually, a binder system consists of a main binder and a backbone
binder; in these cases, a multi-stage debinding process is applied. In the first step, the
main binder is removed. Depending on the binder, it can be removed thermally with a
solvent or catalytically. Typically, the main binder is removed with a solvent or catalytically.
These processes remove the main binder from the outside inwards, creating an open-
pored structure held together only by the backbone binder, from which the main binder
is removed. The disadvantage of thermally debinding the main binder is that the binder
evaporates without a clear exit route, leading to cracks in the component as the temperature
rises. To avoid this, a very low heat rate is selected, which can make the debinding process
very time-consuming. The backbone binder is thermally removed from the sintering
furnace prior to sintering. Debinding parameters such as heat rate, debinding time, and
temperature are adapted to the part. Debinded parts are called brown parts [20].

The final processing step is sintering. In a thermal treatment (typically about 80% of
the material’s melt temperature), the brown part is transformed into a dense, mechanically
loadable, solid part. Due to their high surface energy, the particles fuse together through
diffusion and cratering processes. The gas atmosphere, temperature, and heating/cooling
rates for sintering NdFeB must be adjusted according to furnace equipment and material
composition. Davies et al. provide a detailed description of the sintering behaviour
of NdFeB [21]. They carried out sintering tests on green parts of Nd16Fe76B8 magnets
produced by isostatic pressing. The samples were sintered at temperatures between 600 ◦C
and 1100 ◦C. They showed that a temperature of 655 ◦C caused the material density to
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increase because the Nd-rich grain boundary phase started to melt. At a temperature of
1100 ◦C, the density increased to 98% of the theoretical maximum. In ideal cases, MIM
parts with a theoretical density of 99.5% can be produced [13].

A prerequisite for producing anisotropic NdFeB magnets is the avoidance of impurities
such as oxygen and carbon. Since the highly reactive Nd-rich phase strongly tends to absorb
oxygen, the production process is carried out almost entirely in an argon atmosphere.
Initially, the primary binder is eliminated with a solvent. Subsequently, the component
is merely held together by the backbone, which undergoes thermal decomposition in the
sintering furnace. Burkhardt et al. [22] showed that removing the backbone binder during
thermal debinding is a critical step in the process chain, as the Nd-rich phase must be
prevented from being contaminated with carbon. If the Nd-rich phase reacts with carbon,
it forms Nd carbides, which precipitate α-iron due to loss of stoichiometry and degraded
magnetic properties [23]. As Nd hydrides are more stable than Nd carbides, the hydrated
powder is assumed to be more stable to carbon impurities than the dehydrated powder. If
the oxygen and/or carbon content is too high, liquid phase sintering is inhibited and the
sinter density is reduced. Minowa et al. [24] showed that carbon impurities have an even
more deleterious effect on magnet coercivity than oxygen. They also [24] determined that
oxygen and carbon values increase with each manufacturing step. Kim et al. [25] found
that magnet coercivity decreased significantly with high oxygen values. For these reasons,
process control during powder preparation, extrusion, thermal debinding, and sintering is
crucial for components with good magnetic properties.

2. Experimental

Figure 2 shows the process for producing recycled permanent magnets with PEM
through micrographs.
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2.1. Materials

The raw material used was an end-of-life (EOL) wind turbine magnet. The chemical
composition is provided in Table 1.

Table 1. Chemical composition of the starting magnet provided in wt%, ICP-OES.

Fe Nd B Dy Pr Cr Ni Si Ce Rare Earth

64.78 27.60 0.99 4.17 0.10 0.01 0.01 0.20 0.0129 31.90

The magnetic values and density of the starting anisotropic magnet are provided in
Table 2.

Table 2. Magnetic values and density of the starting anisotropic magnet.

HcJ [kA/m] Br [mT] Density [g/cm3]

1400 1330 7.45

Figure 3 shows the microstructure of the starting material in an SEM image. The bright
areas indicate the Nd-rich phase (A), the dark areas indicate the hard magnetic phase (B),
and the black areas are pores (C).
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2.1.1. Powder Preparation

There are several methods of recycling REPM. Recycling through hydrometallurgical
or pyrometallurgical processes requires significant amounts of energy, water, or chem-
icals [26]. The HPMS process developed by the University of Birmingham [26] is an
eco-friendly and energy-efficient alternative [26,27]. It involves exposing the end-of-life
(EOL) magnet to hydrogen in a reactor, which causes the Nd-rich grain boundary phase to
hydrogenate and expand. The embrittlement of the grain boundary phase and the expan-
sion of the hard-magnetic phase due to interstitial hydride formation force the grains apart,
causing the structure to disintegrate. This process results in a friable, hydrogenated powder
consisting of Nd2Fe14BHx and NdH~2.7 phases, as shown in Figure 2b [28]. The resulting
coarse HPMS powder is unsuitable for extrusion as it lacks adequate flow properties. In
addition, Zakotnik et al. [29] noted that finely ground powder allows better densification
during sintering. Two methods have been established to finely mill HPMS powder: jet
milling and ball milling [28,30,31].
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In this work, hydrogen was repeatedly added during the HPMS process to keep the
pressure constant at 3 bar. This process was repeated until the pressure dropped no further.
A Nano 500 MM mixer mill from Retsch GmbH (Haan, Germany) was used to grind the
coarse HPMS powder. The powder was ground in three cycles of 10 min at a frequency
of 35 Hz. The particle size distribution of the ground powder was measured using a
Mastersizer 3000 particle size analyser from Malvern Panalytical GmbH (Nuremberg,
Germany), as shown in Table 3.

Table 3. Particle size distribution of ball milled powder.

Distribution Powder Size

Dv(10) 2.97 µm
Dv(50) 7.68 µm
Dv(90) 16.1 µm

2.1.2. Binder System

Hartwig et al. [17] showed that binder systems for NdFeB magnet production based
on polyoxymethylene (POM) are unsuitable for injection moulding as the raw material
quickly decomposes at moulding temperature. Therefore, Burkhardt et al. [22] developed a
binder system based on a powder/thermoplastic blend and additives. The binder system
consists of a main and backbone binder, as shown in Figure 2d. The main binder coats the
NdFeB particles and protects against oxidation so that the fine powder can be processed
in the PEM process. In addition, the main binder ensures good feedstock flowability. The
backbone binder ensures that the open-pored part does not collapse after solvent debinding,
as seen in Figure 2e [13]. Stearic acid is used as an additive so that the particles are more
effectively wetted by the polymer. In this study, we used a binder system that provided
good flow properties for shaping and cohesion of the brown part, as well as protecting the
highly reactive Nd-rich phase.

2.2. Compounding and Extrusion Process

The process of creating NdFeB feedstock for PEM is illustrated in Figure 4.
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Figure 4. Process for the preparation of NdFeB feedstock.

In the first step of feedstock production, the finely ground powder is coated with the
main binder in an argon atmosphere in a glove box. The main binder is dissolved in an
organic solvent and mixed with the powder. The resulting mixture is then vacuum-dried
for 24 h. The dried feedstock is subsequently crushed into granules in a mortar, ready for
further processing in the extruder. Burkhardt et al. [22] noted that the porosity of MIM
magnets manufactured from recycled material without the addition of NdH~2.7 is higher
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than recycled MIM magnets with the addition of 2 wt% NdH~2.7. The reason for this is that
the oxygen content of recycled NdFeB material typically contains 0.4–0.6 wt%, which is
significantly higher than ordinary starting materials at 0.03–0.04 wt%. Mottram et al. [32]
showed that the addition of NdH~2.7 to the alloy improves coercivity field strength. If too
much NdH~2.7 is added, the remanence is reduced; therefore, extrusion tests were carried
out with 1 wt% NdH~2.7 and 3 wt% NdH~2.7. NdH~2.7 powder was added to the HPMS
powder prior to the coating step. In the feedstock composition, the addition of NdH~2.7
was subtracted from the milled HPMS material. Moreover, 1 g of NdH~2.7 is added to 99 g
of HPMS powder for a feedstock of 100 g powder content and 1 wt% NdH~2.7 addition.

In this experiment, different feedstock variants and extrusion parameters were investi-
gated, as shown in Tables 4 and 5. The powder and feedstock for all variants were prepared
as described above.

(a) Addition of NdH~2.7

• Feedstock A: 1 wt% NdH~2.7 addition;
• Feedstock B: 3 wt% NdH~2.7 addition;
• Feedstock C: 3 wt% NdH~2.7 addition, non-degassed powder.

As described previously, a feedstock was produced with the addition of 1 wt% and
3 wt% NdH~2.7 to investigate any alterations to magnetic values, microstructure, or oxygen
values resulting from different NdH~2.7 concentrations.

(b) Degassing of the powder HPMS powder

As described in Section 1, conducting experiments with non-degassed and degassed
powder is advisable since Nd hydrides have greater stability against carbon impurities dur-
ing thermal debinding than Nd carbides. Thus, the HPMS powder utilised for feedstocks
A and B undergoes a 2 h degassing process at 500 ◦C within a CarboLite Gero tube furnace
in a vacuum.

(c) Powder loading

Samples with 50 vol% and 60 vol% powder loading were extruded. In addition, the
behaviour of modified powder loading on the dimensional stability and density of the
components was investigated.

(d) Screw speed

Screw speed effects on the feedstock mixture were analysed. The three variants of
raw material were processed both at a screw speed of 7 rpm and at a faster screw speed of
15 rpm. The haul-off speed was adapted to the screw speed.

Table 4. Feedstock variants.

Feedstock
Powder
Loading
[vol%]

NdH2.7 Add.
[wt%]

Screw Speed
[rpm]

Powder
Degassed

A1 60 1 7 Yes
A2 60 1 15 Yes
A3 50 1 7 Yes
A4 50 1 15 Yes
B1 60 3 7 Yes
B2 60 3 15 Yes
B3 50 3 7 Yes
B4 50 3 15 Yes
C1 60 3 7 No
C2 60 3 15 No
C3 50 3 7 No
C4 50 3 15 No
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Table 5. Extrusion parameters.

Extrusion Parameters Values

Temperature Zone 1 [◦C] 80
Temperature Zone 2 [◦C] 150
Temperature Zone 3 [◦C] 155
Temperature Zone 4 [◦C] 155
Temperature Zone 5 [◦C] 155
Temperature Zone 6 [◦C] 160
Screw speed fast [rpm] 15

Haul-off speed fast [m/min] 0.2
Screw speed slow [rpm] 7

Haul-off speed slow [m/min] 0.1

In the second compounding process, the coated powder was blended with the back-
bone binder in the extruder. For these trials, a co-rotating twin-screw extruder KETSE 12/36
from Brabender GmbH & Co. KG (Duisburg, Germany) with two gravimetric metering
units was used. Co-rotating twin-screw extruder technology provides excellent compound-
ing properties and homogeneous compounding of the feedstock. The molten binder and
powder were transferred from one screw to the other, resulting in a very homogeneous
mixture [33]. The screw configuration involved conveying elements to transport the melt
to the nozzle and kneading elements to compound the material. The screws were 12 mm
in diameter and 450 mm in length. The schematic extrusion process is shown in Figure 5.
After feeders (1) and (2) fed the material into the extruder (3), the polymers were melted
and homogeneously mixed with the powder by the two co-rotating screws.

J. Manuf. Mater. Process. 2024, 8, x FOR PEER REVIEW 9 of 20 
 

 

homogeneous mixture [33]. The screw configuration involved conveying elements to 
transport the melt to the nozzle and kneading elements to compound the material. The 
screws were 12 mm in diameter and 450 mm in length. The schematic extrusion process 
is shown in Figure 5. After feeders (1) and (2) fed the material into the extruder (3), the 
polymers were melted and homogeneously mixed with the powder by the two co-rotating 
screws. 

 
Figure 5. Schematic extrusion process. 

The screws transport the material to the extrusion nozzle (4), where the melted feed-
stock is forced through. The extrusion die has a bread-shaped opening to produce strands 
of this geometry, as shown in Figure 6a. This shape was chosen because bread-shaped 
magnets are preferred for electric rotor arrangements. 

 
Figure 6. (a) Bread-shaped cross section, (b) cut green part and sintered part, (c) extruded strand 
green part. 

Figure 6b shows a comparison between the green and sintered parts, with the sin-
tered part exhibiting approximately 20% shrinkage. Additionally, Figure 6c shows a plan 
view of the extruded green part. 

The haul-off belt (5) continuously pulls the strand out of the die at a pre-set speed. 
To prevent oxidation of the raw material and the extruded strand, the entire compounding 
and extrusion process was carried out in an argon atmosphere with an argon-flushed 
glove box. The barrel in which the screws rotated was divided into six heating zones. The 
extrusion parameters used for the tests are shown in Table 5. 

Figure 5. Schematic extrusion process.

The screws transport the material to the extrusion nozzle (4), where the melted feed-
stock is forced through. The extrusion die has a bread-shaped opening to produce strands
of this geometry, as shown in Figure 6a. This shape was chosen because bread-shaped
magnets are preferred for electric rotor arrangements.

Figure 6b shows a comparison between the green and sintered parts, with the sintered
part exhibiting approximately 20% shrinkage. Additionally, Figure 6c shows a plan view of
the extruded green part.

The haul-off belt (5) continuously pulls the strand out of the die at a pre-set speed. To
prevent oxidation of the raw material and the extruded strand, the entire compounding and
extrusion process was carried out in an argon atmosphere with an argon-flushed glove box.
The barrel in which the screws rotated was divided into six heating zones. The extrusion
parameters used for the tests are shown in Table 5.
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Figure 6. (a) Bread-shaped cross section, (b) cut green part and sintered part, (c) extruded strand
green part.

The correct dosing of the coated powder and the backbone binder is crucial to homo-
geneous green part production. The nominal output parameters of the feeders must be
matched to the extruder screw and take-off belt speeds. The profile’s stability depends on
the haul-off speed. If the take-off speed is too high, the strand will become thinner; if the
haul-off speed is too low, the melt will swell after leaving the die.

The extrusion die is shown in more detail in Figure 7a,b. The compound feedstock is
forced under pressure through a bread-shaped die (3) to form a continuous strand. As seen
in Figure 7a, the extrusion die must be fed through an inlet (4) in the glove box, implying
that the melt must travel a long distance from the extruder (5) to the die. Therefore, an
additional heating element (2) is required in front of the extrusion die. The extrusion die is
fixed to the heated zone with a retaining ring and heated in this way.
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2.3. Debinding and Sintering

The samples in this study were debinded and sintered by SUSMAGPRO project
partner MIMplus Technologies GmbH & Co.KG in Ispringen, Germany.

3. Results and Discussion
3.1. Dimension Stability of the Extruded Green Parts

Feedstocks A, B, and C were extruded at different parameters. The deviations from
the cross-sectional geometry of the green part were measured over a length of 500 mm at
10 measuring points. The reference width is 8.4 mm, and the reference height is 3.6 mm.
Figure 8 shows the measuring points of feedstock A with different parameters.
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Figure 8. Dimensions stability of feedstock A.

In the variants extruded at 15 rpm (A2, A4), the melt sagged after leaving the die,
resulting in a thinning of the width and an increase in the height of the part. This effect was
minimised by increasing the haul-off speed from 0.15 m/min to 0.2 m/min. Extruded at a
slower screw speed, extrudates A1 and A3 exhibited constant values over the entire length.
Sample A achieved the most constant dimensional stability with 60 vol% powder loading.
Feedstock B showed constant dimensional stability for all parameters. The feedstock with
slow screw speed and 60 vol% powder loading showed only a small change in cross-section.
These cross-sectional changes are shown in Figure 9.
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The distribution of feedstock C is similar to feedstock A, as shown in Figure 10. By
adjusting the haul-off speed, an approximation to the reference dimensions was achieved.
Again, the 7 rpm variants were more geometrically stable over 500 mm.
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Figure 10. Dimensions stability of feedstock C.

Powder loading does not appear to affect the stability of the geometry. For feedstocks
A and C, the 50 vol% and 60 vol% variants have the same sag after exiting the nozzle at
15 rpm. At slower speeds, the 50 vol% and 60 vol% strands also showed similar values. The
three selected feedstock variables showed no differences in extrusion strand dimensional
stability. These results were expected as the feedstock variants only differ in the amount of
NdH~2.7 added and whether they are non-degassed or degassed.

3.2. Carbon and Oxygen Content of Sintered Parts

Oxygen values were measured using the hot gas extraction method. Carbon levels
were measured at Pforzheim University using a CS744 carbon analyser from Leco Instru-
mente GmbH (Mönchengladbach, Germany). The measurements are shown in Figure 11.
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For feedstock A, samples with 50 vol% powder loading have a slightly higher carbon
value than samples with 60 vol%. Samples A.1 and A.3 have about 0.11 wt% carbon and
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samples A.2 and A.4 have about 0.1 wt% carbon. For feedstock B, the two samples with
50 vol% powder loading show different values. Sample B.1 has a carbon content of 0.11 wt%
and sample B.2 has a carbon content of 0.127 wt%. Samples with 60 vol% powder loading
have 0.135 wt% carbon. Feedstock C also shows differences at 50 vol% powder loading.
Sample C.3 with 0.143 wt% has a significantly higher carbon content than sample C1 with
0.126 wt%. Sample C.4 has the best carbon value of all samples at 0.10 wt%. Carbon values
are just at the limit for good coercivity values, averaging over 0.11 wt%, as according to
Lopes et al. [23], a drop in coercivity occurs between 0.095 wt% and 0.15 wt%.

The oxygen content of samples A.1–A.4 is about 0.8 wt%. Sample set B shows a greater
variation in oxygen content. Samples B.2 (0.85 wt%) and B.4 (0.95 wt%) have a higher
oxygen content than samples B.1 and B.3 with 0.75 wt% each. Feedstock C oxygen content is
about 0.8 wt% for all four samples, similar to feedstock A. Oxygen values with an average of
0.8 wt% are within the limit defined by Minowa et al. [24] and Kim et al. [25], indicating that
the process can produce magnets with high BH(max) values. As there were no oxygen values
obtainable from the original magnet, this study relied on literature values from magnets
produced through the MIM technique with recycled material. Kukla et al. [15] produced
samples from recycled NdFeB material using the MIM process and achieved oxygen values
of 0.72 wt%, indicating an approximate increase of 0.04 wt% in the production process. The
oxygen value of output material by Burkhardt et al. [22] was 0.4–0.6 wt%.

These values indicate that slight oxygen uptake occurs during the applied process, as
summarised in Figure 12. The produced samples showed good coercivity values, except
samples A.3 and A.4 (Table 6). Since no traces of α-iron were found in the samples’
microstructure, it can be assumed that the oxygen values were acceptable.
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3.3. Magnetic Characterisation of the Sintered Parts

The sintered parts were magnetised after sintering using a K-series pulse magnetiser
from Magnet Physik Dr. Steingroever GmbH (Cologne, Germany). The magnet was pulsed
once and set to the highest value, 2000 V. The magnetic properties were measured with
the Hystograph HG200 from Dr. Brockhaus Messtechnik GmbH & Co. KG (Lüdenscheid,
Germany). Density was measured using the Archimedean principle. The measurement
results are provided in Table 6. Sample B.4 was excluded from the measurements as its low
density of 6.06 g/cm3 did not allow feasible magnetic properties measurement.

Samples A.3 and A.4 (with 1 wt% NdH~2.7 addition) exhibited the lowest coercivity
iHC of about 1000 kA/m. The coercivity iHC of samples B and C (with 3 wt% NdH~2.7
added) was between 1300 kA/m and 1500 kA/m. There was a correlation between magnetic
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properties and the amount of NdH~2.7 added. On average, lower values of the coercivity
iHC were measured at 1 wt% NdH~2.7 addition than at 3 wt% NdH~2.7 addition. NdH~2.7
additions did not affect the Br remanence measurement due to the low overall remanence
of the unaligned samples.

Table 6. Magnetic values and density.

Sample Hc (kA/m) Br (mT) Density [g/cm3]

A.1 1123 511 7.21
A.2 1270 531 7.28
A.3 956 555 7.20
A.4 1053 539 7.21
B.1 1429 531 7.23
B.2 1353 547 7.23
B.3 1137 534 7.15
B.4 - - 6.06
C.1 1344 496 7.20
C.2 1237 516 7.22
C.3 1301 500 7.22
C.4 1506 478 7.15

The degassed powder showed slightly lower Br remanence values than the degassed
powder, indicating that all hydrogen was removed during the final sintering step and that
the hydrated powder may have had a lower oxygen uptake. However, this observation
must be confirmed with systematic O measurements during all processing steps.

There was no difference in the magnetic properties of the three feedstock variants,
neither with the 50 vol% or 60 vol% powder fillings. The density was also balanced for
all samples, except for sample B.4. The powder filling did not influence the geometry
during extrusion. With a remanence ranging from 500 mT to 555 mT, the samples exhibited
the standard properties of isotropic NdFeB magnets. Compared to the reference values
of isotropic MIM magnets produced from recycled material, the magnetic properties of
magnets produced with PEM were similar. Kukla et al. [15] produced MIM magnets with
570 mT remanence. Similarly, Burkhardt et al. [22] produced isotropic MIM magnets with
remanence values ranging from 560 mT to 580 mT.

3.4. Microstructure of the Sintered Parts

SEM images were captured with a Flex SEM 1000 of Hitachi High-Tech GmbH (Krefeld,
Germany) at Pforzheim University.

Figures 13–15 show the microstructure of samples A.2, B.1, and C.4 in the centre and
left edge zones of the section. These samples exhibit the best magnetic properties of the
respective feedstock materials and were further investigated. The micrographs of the other
samples are shown in Appendix A. The samples show a fine-grained microstructure with a
uniform distribution of hard-magnetic Nd2Fe14B and Nd-rich phases.

The microstructure of sample A.1 showed only a few small pores of about 5 µm,
resulting in a fairly good density of 7.28 g/m3. It should be noted that some of the visible
pores were the effects of sample preparation, as oxidised NdH~2.7 can detach from the
magnet surface during polishing. Sample B.1 had significantly more pores than sample
A.2. The pores in sample B.1 were about 50 µm in size and were evenly distributed in the
cross-section of the sample. The pores in sample C.4 were significantly larger and deeper
than samples A.2 and B.1. The microstructure in Figure 15 reveals a pore of approximately
200 µm in length. Although the pores are larger, they are less distributed than in sample
B.1 and still result in reduced density compared to the other samples. According to the
micrographs, both screw speeds resulted in well-homogenised starting materials, uniformly
distributed Nd-rich phases, and good density values. All micrographs show that the typical
microstructure of sintered NdFeB magnets produced by the MIM process is comparable
to that of conventional sintered NdFeB-type magnets [15,22]. The average density of the
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samples was 7.2 g/cm3, which is lower than the 7.45 g/cm3 of the original magnet; however,
the developed PEM process still produced promising magnetisation values.
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magnet; however, the developed PEM process still produced promising magnetisation 
values. 

4. Summary/Further Work 
The objective of this study was to demonstrate the feasibility of producing NdFeB 

permanent magnets using the PEM process. Extrusion tests were carried out using differ-
ent process parameters and material variants. This study investigated the extrusion con-
ditions required to produce a strand of stable geometry and microstructure. The results 
showed that screw speeds of 7 rpm produced consistently more stable cross-sections over 
a length of 500 mm compared to a faster screw speed of 15 rpm. The strands showed al-
most no difference in geometric stability at powder fillings of 50 vol% and 60 vol%. 

Oxygen and carbon values are crucial to NdFeB permanent magnet production. The 
measured carbon and oxygen values were in an acceptable range, as the samples showed 
no signs of α-iron in the micrographs. The measured magnetic properties were also com-
parable with the literature, as described in Chapter 3, “Carbon and Oxygen content of the 
sintered parts”. 

Overall, samples containing 3 wt% NdH~2.7 exhibited the best magnetic properties. 
The next steps include systematic measurement of O, H, and C values in each pro-

duction step and implementing an alignment tool to create anisotropic permanent mag-
nets. 
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4. Summary/Further Work

The objective of this study was to demonstrate the feasibility of producing NdFeB
permanent magnets using the PEM process. Extrusion tests were carried out using different
process parameters and material variants. This study investigated the extrusion conditions
required to produce a strand of stable geometry and microstructure. The results showed
that screw speeds of 7 rpm produced consistently more stable cross-sections over a length
of 500 mm compared to a faster screw speed of 15 rpm. The strands showed almost no
difference in geometric stability at powder fillings of 50 vol% and 60 vol%.

Oxygen and carbon values are crucial to NdFeB permanent magnet production. The
measured carbon and oxygen values were in an acceptable range, as the samples showed
no signs of α-iron in the micrographs. The measured magnetic properties were also
comparable with the literature, as described in Section 3, “Carbon and Oxygen content of
the sintered parts”.

Overall, samples containing 3 wt% NdH~2.7 exhibited the best magnetic properties.
The next steps include systematic measurement of O, H, and C values in each produc-

tion step and implementing an alignment tool to create anisotropic permanent magnets.
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