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Abstract: Photocatalysis is considered as simple, green, and the best strategy for elimination of
hazardous organic contaminants from wastewater. Herein, new broad spectrum photocatalysts
based on pure and Sm-doped CuO/ZnO/CuMn2O4 ternary composites were simply prepared
by co-precipitation approach. The X-ray diffraction results proved the formation of a composite
structure. The transmission electron microscope (TEM) images displayed that most particles have a
spherical shape with average mean sizes within 26–29 nm. The optical properties of both samples
signified that the addition of Sm ions significantly improves the harvesting of the visible light
spectrum of CuO/ZnO/CuMn2O4 ternary composites. The photocatalytic study confirmed that
97% of norfloxacin and 96% of methyl green pollutants were photo-degraded in the presence of the
Sm-doped CuO/ZnO/CuMn2O4 catalyst after 50 and 40 min, respectively. The total organic carbon
analysis revealed the high mineralization efficiency of the Sm-doped CuO/ZnO/CuMn2O4 catalyst to
convert the norfloxacin and methyl green to carbon dioxide and water molecules. During three cycles,
this catalyst presented a high removal efficiency for norfloxacin and methyl green contaminants. As a
dielectric energy storage material, the Sm-doped CuO/ZnO/CuMn2O4 ternary composite has large
dielectric constant values, mainly at low frequencies, with low dielectric loss compared to a pure
CuO/ZnO/CuMn2O4 composite.

Keywords: ternary composite; rare-earth; broad spectrum photocatalyst; antibiotics and dyes; electrical
conductivity and dielectric properties

1. Introduction

For a healthy and safe environment, efficient treatment of dissolved organic com-
pounds such as dyes, antibiotics, fungicides, insecticides, and herbicides has gained great
attention in current scientific research [1–3]. Polluted water is one of the most important en-
vironmental problems; wherein numerous poisonous and continual organic contaminants
pose a high threat to living organisms [4,5]. Antibiotics are important drugs for human and
animals which are widely reported in water resources as pharmaceutical contaminants [6].
It was reported that the consumption of antibiotics ranges from 100,000 to 200,000 tons
annually [6]. Norfloxacin (C16H18FN3O3) compound is one of the first third generation
fluoroquinolone antibiotics that has been broadly used to damage the broad-spectrum of
Gram negative and some Gram positive bacteria [7–9]. But, a major part of the norfloxacin
antibiotic nurtured to save poultry is excreted without breakdown, spread in soil enhanced
by animal manure, and finally enters water resources, causing harmful effects to human
and aquatic organisms in water. Additionally, norfloxacin can also cause damage to human
kidneys, as well as delay the formation of bones in minors, affecting normal development,
and most countries have cautioned minors from taking it [7–11].
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Organic dyes such as Congo red, methylene blue, and methyl green are another family
of industrial compounds which are frequently be present in wastewater [12,13]. Every year,
nearly 7 × 107 tons of industrial dyes are used, and many of these compounds contain harm-
ful chemicals that are hazardous for the environment and human health [14,15]. Most of the
synthesized organic dyes are very stable under heat and light effects; therefore, they are not
ecofriendly and non-biodegradable [16,17]. Methyl green (MG) is a triphenylmethane-type
cationic dye, broadly used in the textile industry, medicine, and biology [18,19]. It is highly
hazardous and the existence of methyl green in the water resources is a great worry owing
to its potential poisonousness to the aquatic system and all organisms [18,19]. In view of
that, it is very important to use an efficient method to effectively remove organic pollutants
such as norfloxacin and methyl green from wastewater. Considering this, photocatalysis
is a green, simple, low cost and effective methodology that illuminates great benefits for
the elimination of organic contaminants from wastewater [20,21]. Based on coupling be-
tween different oxides in ternary composites, a new strategy has emerged to improve the
photoresponse and increase the harvesting of visible light spectrum, as well as support
the separation of the charge carriers which trigger photocatalytic efficiency [22–24]. Ali
et al. [25] studied the photocatalytic properties of BiOBr/ZnO/WO3 ternary nanocompos-
ites for degradation of phenol. The authors found that this composite has a degradation
efficiency of 90% for 50 mg/L phenol under visible-light illumination for 300 min. A ternary
ZnO/Fe3O4/g-C3N4 composite synthesized using the hydrothermal method exhibited
removal efficiencies of 97.87, 98.05, and 83.35% for methyl orange, alizarin yellow R, and
orange G dyes in 150 min of visible light irradiation [26]. Liu et al. [27] reported that
the In2O3/ZnO@Ag nanowire ternary composite has a visible light photodegradation
efficiency of 92% for 4-nitrophenol in 240 min and 93% for methyl orange in 90 min.

The n-type ZnO and the p-type CuO semiconductors are well-known and strong candi-
dates for photocatalysts for wastewater treatment [28,29]. In the same context, CuMn2O4, as
a manganese-based ternary metal oxide, has shown potential photocatalytic characteristics
for the removal of organic pollutants in wastewater [30,31]. In view of the above details, in
this study, new ternary composites composed of pure and Sm-doped CuO/ZnO/CuMn2O4
were synthesized for efficient treatment of norfloxacin (antibiotic) and methyl green (dye)
as examples of stable organic pollutants. The addition of an Sm dopant aims to reinforce
the absorption of light energy and support the separation of the charge carriers. The
synthesized ternary composites were characterized by different techniques and the photo-
catalytic activities were measured under free and natural sunlight energy. Furthermore, the
electrical and dielectric performance of the samples were investigated and discussed. The
obtained data confirmed that 98% of norfloxacin and 96% of methyl green were removed
from contaminated water during 40–60 min for Sm-doped CuO/ZnO/CuMn2O4. Fur-
thermore, Sm-doped CuO/ZnO/CuMn2O4 ternary composite has shown giant dielectric
constant values, mainly at low frequencies, with low dielectric loss compared to a pure
CuO/ZnO/CuMn2O4 composite.

2. Synthesis, Characterization, and Measurements

Pure and Sm-doped CuO/ZnO/CuMn2O4 ternary composites were prepared by using
a co-precipitation approach. Firstly, CuO/CuMn2O4 powder was synthesized by dissolving
9.6 g Cu(NO3)2·3H2O (Sigma Aldrich, St. Louis, MO, USA) and 4.9 g Mn(CH3CO2)2·4H2O
(Sigma Aldrich) into 200 mL deionized water with continuous stirring for 30 min. NH4OH
solution was added drop by drop until pH was equal to 7.3 to form the precipitate. The
obtained precipitate was deeply washed with deionized water until removing any dis-
solved impurities. Then, the acquired precipitate was dried and calcined at 650 ◦C to
form CuO/CuMn2O4 binary composite with ratio of CuO to CuMn2O4 equal to 75:25%,
respectively. After that, 1.35 g of Zn(CH3CO2)2·2H2O (Sigma Aldrich) was dissolved into
100 mL deionized water followed by addition of 2 g of the obtained CuO/CuMn2O4 bi-
nary composite with constant stirring for 45 min. Later, NH4OH solution was added to
precipitate the Zn ions in hydroxide form under continuous stirring. The obtained powder
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was calcined at 500 ◦C to form CuO/ZnO/CuMn2O4 ternary composite. For Sm-doped
CuO/ZnO/CuMn2O4 sample, 0.195 g Sm(NO3)3 substance was added during the synthesis
of CuO/CuMn2O4 and 0.02 g was added to Zn(CH3CO2)2·2H2O solution followed by using
the same steps for pure CuO/ZnO/CuMn2O4 sample. Figure 1 shows a schematic diagram
for the synthesis method for CuO/ZnO/CuMn2O4 ternary composite. The synthesized
powders were analyzed by different techniques using X-ray diffraction device (Bruker D8
Advance, λ = 1.5406 Å), transmission electron microscope (JEOL JEM-2100, Tokyo, Japan),
scanning electron microscope (JSM-IT200, Tokyo, Japan), Brunauer–Emmett–Teller (BET)
surface area (NOVA 3200, Davie, FL, USA), and UV–visible diffuse reflectance spectroscopy
(Shimadzu UV-2050, Tokyo, Japan). The relations between frequency and dielectric or ac
electrical conductivity of pure and Sm-doped CuO/ZnO/CuMn2O4 ternary composites
were measured in pellet form (thickness = 2.5 mm and radius = 0.45 cm) at room tem-
perature based on LCR device (Hioki 3532-50, Ha Noi City, Vietnam). The photocatalytic
activity of pure and Sm-doped CuO/ZnO/CuMn2O4 ternary composites were established
for elimination of norfloxacin and methyl green with concentration 15 mg/L as known
examples for dissolved organic waste. The added catalyst dose to 100 mL solution of
pollutant is 0.05 g. The mixed solution of the catalyst and dissolved pollutant was stirred
under dark conditions and following that, irradiated by ordinary solar light energy. The
average solar radiation was measured to be ~780 ± 10 W/m2 (August, 12–2 pm). The vari-
ation of pollutant concentration was observed by measuring the absorbance (norfloxacin
λmax = 278 nm and methyl green λmax = 633 nm) of the solution at different times.
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Figure 1. Schematic diagram of the synthesis method for CuO/ZnO/CuMn2O4 ternary composite.

3. Results and Discussion
3.1. XRD Investigation

The X-ray diffraction (XRD) technique is used to analyze the crystalline structures of
synthesized powders. Figure 2 displays the XRD results of pure and Sm-doped CuO/ZnO/
CuMn2O4 tri-composites. The X-ray diffraction pattern of the pure CuO/ZnO/CuMn2O4
tri-composite revealed various peaks with different relative intensities. In Figure 2, the
peaks at 2-theta values of 32.55◦, 35.54◦, 38.72◦, 48.65◦, 53.51◦, 58.12◦, 61.45◦, 65.99◦, 67.8◦,
72.2◦, and 75.94◦ were related to (110) (11-1), (111), (20-2), (020), (202), (11-3), (022), (220),
(311), and (22-2) crystallographic planes of CuO with monoclinic phase in agreement with
JCPDS (# 48-1548, space group: C2/c). Additionally, the pattern also displayed another
series of XRD peaks at 2θ = 31.76◦, 34.38◦, 36.19◦, 47.46◦, 56.51◦, 62.70◦, 67.8◦, and 68.99◦,
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recognized for (100), (002), (101), (102), (110), (103), (112), and (201) crystallographic planes
of the zinc oxide phase with hexagonal structure (JCPDS. # 36-1451, space group: p63mc).
The XRD peaks that appeared at 2-theta values of 18.74◦, 30.31◦, 35.54◦, 43.8◦, 57.72◦, and
62.7◦ coincide with the crystallographic planes of (111), (220), (311), (400), (511), and (440)
for cubic CuMn2O4 spinel oxide in agreement with JCPDS (# 74-1921 space group: Fd-3m).
The Sm-doped CuO/ZnO/CuMn2O4 tri-composite has a similar XRD pattern to the pure
one, which proves the same composite structure formation, Figure 2. The broadening
of the X-ray diffraction peaks was improved after Sm ions doping which supports the
reduction in the crystallite size. The Scherer formula, as represented in Equation (1), was
used to compute the average crystallite size of pure and Sm-doped CuO/ZnO/CuMn2O4
tri-composites through using the three main peaks of each phase [32]:

D = Kλ/β cos θ (1)
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Figure 2. X-ray diffraction patterns of pure and “Sm-doped” CuO/ZnO/CuMn2O4 ternary composites.

In this formula, the θ, β, λ, K and D symbols are the Bragg angle, peak broadening
at half the maximum (FWHM), wavelength of the used X-ray (1.5406 Å), dimensionless
shape factor, and average crystallite size, respectively. For the pure composite, the D value
was computed to be 29, 26, and 39 nm for CuO, ZnO, and CuMn2O4 phases, respectively.
The average crystallite size of these constituents decreased to 23, 24, and 25 nm after Sm
ions doping, respectively. The lattice constants of CuO, ZnO, and CuMn2O4 phases were
computed by Rietveld refinement analysis based on Maud software (version 3.16.1.288)
as tabulated in Table 1. As observed in Table 1, the lattice constants of CuO, ZnO, and
CuMn2O4 were increased after doping by Sm ions. These expansions can be related to the
substitution of Cu2+ (0.73 Å), Zn2+ (0.74 Å) and Mn3+ (0.58 Å) cations by Sm3+ (0.958 Å)
ions of larger ionic radius.
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Table 1. Calculated lattice constants (a, b, c) and unit cell volume (V) of CuO, ZnO and CuMn2O4

phases for both ternary composites.

Samples Phase a (Å) b (Å) c (Å) V (Å3)

CuO/ZnO/CuMn2O4

CuO 4.696 3.426 5.135 81.51
ZnO 3.254 3.254 5.219 47.89

CuMn2O4 8.343 8.343 8.343 580.8

Sm-CuO/ZnO/CuMn2O4

CuO 4.702 3.428 5.140 81.69
ZnO 3.262 3.262 5.224 48.14

CuMn2O4 8.350 8.350 8.350 582.2

3.2. Optical Properties: UV–Visible Diffuse Reflectance

Figure 3 depicts the UV–visible diffuse reflectance spectra of pure and Sm-doped
CuO/ZnO/CuMn2O4 tri-composites. As shown in Figure 3, the reflectance spectra of both
composites display three reduction regions of intensity (%), which related to the individual
absorption edge of each phase including CuO, ZnO, and CuMn2O4 structures. It can be
seen that these absorption edges were moved to a low energy direction after doping by Sm
ions. This behavior signifies that the Sm-doped CuO/ZnO/CuMn2O4 tri-composite has a
more harvesting of visible light spectrum compared to pure sample. As reported for metal
oxides, perovskites, and composites materials, the formula of Tauc method can be used to
compute the band gap energy of pure and Sm-doped CuO/ZnO/CuMn2O4 samples as
shown in Equation (2) [33,34]:

α = A
(
hυ− Eg

)n/hυ (2)
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In this formula, hν, n, Eg, A, and α are the energy of wavelength, constant, band gap
energy, independent constant, and absorption coefficient, respectively. The Kubelka–Munk
(K-M) formula is used to transform the reflectance spectra to absorption according to
Equation (3) [33,34]:

F(R) =
(1 − R)2

2R
=

α

S
(3)

where, S, R and F(R) symbols are the scattering coefficient, reflectance, and the Kubelka–
Munk function, respectively. As represented in Figure 4, the [F(R) hν]2 was plotted opposed
to energy of wavelength (hν) and the lengthening of the descending parts of the curves
produce the exact band gap energies of pure and Sm-doped CuO/ZnO/CuMn2O4 samples.
Three band gap energies were found for the pure CuO/ZnO/CuMn2O4 composite with
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values of 1.45, 3.29, and 1.85 eV, which match with the energy gaps of ZnO, CuMn2O4, and
CuO phases, respectively [35–37]. The doping by Sm ions induced red shifts of the band
gap energies of ZnO, CuMn2O4, and CuO phases to 2.79, 1.66, and 1.43 eV, respectively.
The insertion of Sm ions leads to broad absorption of visible light spectrum particularly for
ZnO phase. The noticed decreases in the band gap energies support the replacement of Sm
ions for Zn, Cu, or Mn sites into the CuO/ZnO/CuMn2O4 composite. This lessening in the
band gap energies may be attributed to the transfer of the electrons between Sm 4f level
and the conduction or valence band of ZnO, CuO, or CuMn2O4 [38]. Therefore, the doped
composite could be a promising composition for photocatalytic applications, as it boosts
the harvesting of visible light spectrum.
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3.3. Morphology and Surface Area

The scanning electron microscope (SEM) micrographs of pure and Sm-doped CuO/
ZnO/CuMn2O4 tri-composites are depicted in Figure 5. The images of both powders reveal
the formation of semi-symmetrical spherical grains with finer structure in the case of the
Sm-doped composite. Both samples have homogenous surface distribution with a certain
degree of agglomeration. Figure 6 demonstrates the transmission electron microscope
(TEM) images with corresponding particle size distribution histograms of the pure and
Sm-doped CuO/ZnO/CuMn2O4 tri-composites. The TEM images display that the majority
of the particles have a spherical shape with average mean size of 29 and 26 nm for the
pure and Sm-doped CuO/ZnO/CuMn2O4 tri-composites, respectively. As presented in
Figure 7, the compositional analysis based on energy dispersive X-ray technique confirms
the presence of only Cu, Zn, Mn, and O elements in the pure CuO/ZnO/CuMn2O4 tri-
composite. The EDX pattern of the doped composite reveals the existence of Cu, Zn,
Mn, Sm, and O elements with measured wt% of Sm dopant equal to 2.23, which nearly
match with the added value (3 wt%). No noticeable peaks related to any impure elements
were detected, confirming the purity of the synthesized composites. Figure 8 depicts the
nitrogen adsorption/desorption curves of the pure and Sm-doped CuO/ZnO/CuMn2O4
tri-composites, the plots inset in Figure 8 represent the pore size distribution. The pure
CuO/ZnO/CuMn2O4 tri-composite has shown a BET surface area of 3.11 m2/g with total
pore volume and pore size of 0.11 cm3 g1 and 7.8 nm, respectively. The BET surface area of
the CuO/ZnO/CuMn2O4 tri-composite was improved to 4.24 m2/g after addition of Sm
ions with measured total pore volume and pore size of 0.17 cm3/g and 10 nm, respectively.
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Figure 7. EDX patterns of pure and Sm-doped CuO/ZnO/CuMn2O4 tri-composites.
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Figure 8. BET surface area of pure and Sm-doped CuO/ZnO/CuMn2O4 tri-composites, with inset
pore size distribution.
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3.4. Treatment of Dissolved Organic Waste

Figure 9 shows the time dependent UV–visible absorbance curve of 15 mg/L nor-
floxacin solution under dark stirring, and after exposure to solar light energy in the
presence of pure and Sm-doped CuO/ZnO/CuMn2O4 tri-composites. The measured
change in the UV–visible absorbance curve of norfloxacin solution reveals that the pure
CuO/ZnO/CuMn2O4 catalyst has an adsorption capacity of 9% after 20 min of dark stir-
ring. After exposed to solar light energy the absorbance curve of norfloxacin was decreased,
with computed photodegradation efficiency of 67% after 50 min. In the case of the Sm-
doped CuO/ZnO/CuMn2O4 tri-composite, the variation in the UV–visible absorbance
of norfloxacin demonstrated that the adsorption capacity was 16% after 20 min of dark
stirring while the degradation activity significantly increased to 97% after 50 min of solar
illumination. The presence of Sm ions as a dopant activates the photodegradation process of
the CuO/ZnO/CuMn2O4 tri-composite. The dependence of Ct/C0 on the irradiation time
of the pure and Sm-doped CuO/ZnO/CuMn2O4 tri-composites is illustrated in Figure 10a.
The plotted curves show that the Ct/C0 strongly and continuously decreases with increas-
ing time of irradiation for the Sm-doped CuO/ZnO/CuMn2O4 catalyst. Furthermore, the
kinetic performance and the apparent rate constant for the photocatalytic degradation of
norfloxacin was quantitatively evaluated through fitting the obtained experimental values
to the pseudo first-order rate equation [39]:

Ln
(

C0

Ct

)
= kt (4)
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Figure 9. Time-dependent UV–visible absorption spectra of norfloxacin solution for (a) CuO/
ZnO/CuMn2O4 and (b) Sm-doped CuO/ZnO/CuMn2O4 ternary composites.
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Figure 10. (a) Ct/C0 with time plots and (b) variation of ln(C0/Ct) with time to find the apparent
rate constant for the degradation of norfloxacin antibiotic in the existence of pure and Sm-doped
CuO/ZnO/CuMn2O4 ternary composites.

In this formulation, C0 and Ct represent the concentration of the norfloxacin at time
(t) = zero and at different irradiation times (min), respectively, while k signifies the apparent
rate constant (min−1) of the photodegradation reaction. Figure 10b shows the linear
fitting relationship between ln(C0/Ct) and the time (min) for both catalysts. Remarkably,
the photodegradation apparent rate constant (k) of the Sm-doped CuO/ZnO/CuMn2O4
catalyst (0.053 min−1) is significantly higher than that of the pure CuO/ZnO/CuMn2O4
tri-composite (0.021 min−1).

Figure 11a,b displays the time dependent UV–visible absorbance spectra of 15 mg/L
methyl green solution under dark stirring for 20 min and after exposure to solar energy
for 40 min in the presence of pure and Sm-doped CuO/ZnO/CuMn2O4 tri-composites,
respectively. The estimated change in the absorbance indicated that the adsorption and
photodegradation values of the pure CuO/ZnO/CuMn2O4 catalyst towards methyl green
dye were 8% and 70%, respectively. Interestingly, the Sm-doped CuO/ZnO/CuMn2O4
catalyst exhibits an adsorption value of 14% with a total degradation efficiency of 96% in
40 min towards 15 mg/L methyl green solution. As shown in Figure 11c, the change in
Ct/C0 with time reveals the fast removal of the dye for Sm-doped CuO/ZnO/CuMn2O4
compared to the pure catalyst. The kinetic study of the photodegradation reaction points out
that the pure CuO/ZnO/CuMn2O4 catalyst has an apparent rate constant of 0.027 min−1

(R2 = 0.97), whereas the Sm-doped CuO/ZnO/CuMn2O4 possesses an apparent rate
constant of 0.067 min−1 (R2 = 0.95), shown in Figure 11d. The remarkable degradation
efficiency of the Sm-doped CuO/ZnO/CuMn2O4 ternary composite can be related to the
synergetic effect of some factors. Optically, the Sm-doped CuO/ZnO/CuMn2O4 ternary
composite shows higher harvesting for visible light energy compared to the pure composite,
owing to the decreases in the band gap energies. The SEM and TEM images illustrated
that the addition of Sm ions produces finer particles with a small nano-size. The BET
surface area analysis proved that the Sm-doped CuO/ZnO/CuMn2O4 sample has a higher
surface area when compared to pure powder, which consequently increases the active



J. Compos. Sci. 2024, 8, 152 11 of 19

surface sites for degradation of the organic molecules. Furthermore, Sm3+ ions can act as
electron trapping states which hinder the recombination of the charge carriers (electron–
hole pair) [40,41]. The reduced Sm2+ state may transfer the trapped electron to the oxygen
molecule, leading to superoxide (˙O2

−) formation. The remaining uncombined hole (h+)
interacts with a water (H2O) molecule to form the hydroxyl (·OH) radical. Both radicals
are very important in degrading the organic molecules.
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and (b) Sm-doped CuO/ZnO/CuMn2O4 catalysts, (c) Ct/C0 with time, and (d) variation of ln (C0/Ct)
with time for both samples.

To examine the reactive species existing during the photocatalytic reaction using the
Sm-doped CuO/ZnO/CuMn2O4 catalyst, the photocatalysis of norfloxacin and methyl
green pollutants were investigated in the occurrence of reactive scavengers. The main reac-
tive species produced by the Sm-doped CuO/ZnO/CuMn2O4 catalyst are considered to be
hydroxyl radicals (·OH), superoxide (˙O2

−) radicals, electron (e−), and hole (h+) which can
be scavenged by isopropyl alcohol (IPA), ascorbic acid (AsA), ethylenediaminetetraacetic
acid (EDTA) and silver nitrate (AgNO3), respectively. Figure 12a displays the reactive
species scavenging photo-activity during the photodegradation reaction of norfloxacin and
methyl green pollutants over the Sm-doped CuO/ZnO/CuMn2O4 catalyst. Upon the addi-
tion of the different scavengers to the photodegradation reaction, notable reductions in the
norfloxacin and methyl green degradation were detected. Principally, the photodegradation
efficiency of norfloxacin decreased from 97% to 46% by the addition of isopropyl alcohol,
followed by 55% with the introduction of ascorbic acid. In addition, the isopropyl alcohol
and ascorbic acid reduce the photocatalytic activity towards methyl green dye from 96%
to 61 and 48%, respectively. These measured values indicate that the hydroxyl (·OH) and
superoxide (˙O2

−) radicals play principle roles in the degradation of norfloxacin and methyl
green pollutants. For a better understanding of the photodegradation mechanism, the total
organic carbon (TOC) analysis was carried out to estimate the mineralization efficiency of
norfloxacin and methyl green pollutants to CO2 and H2O in the presence of the Sm-doped
CuO/ZnO/CuMn2O4 catalyst, as illustrated in Figures 12b and 12c, respectively. Mostly,
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the mineralization of norfloxacin and methyl green pollutants happens in two steps. The
primary step includes the ring opening of norfloxacin and methyl green molecules, which
is followed by the successive oxidation of the produced fragments. Therefore, the mineral-
ization process is expected to take more time than the decolorization process of norfloxacin
and methyl green molecules in the presence of the Sm-doped CuO/ZnO/CuMn2O4 photo-
catalyst. The TOC results revealed that the mineralization percentages of both pollutants
increased with time to reach 89 and 91% after 70 and 56 min, respectively.
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The stability of the catalyst after several uses is an essential factor for the actual photo-
catalytic applications. Figure 13a,b shows the obtained results for the photodegradation
reaction of the Sm-doped CuO/ZnO/CuMn2O4 photocatalyst for three cycles against
norfloxacin and methyl green pollutants, respectively. The measured reusability efficiency
indicated that the Sm-doped CuO/ZnO/CuMn2O4 photocatalyst has a photodegrada-
tion value of 97, 90, and 84% for the norfloxacin compound while for methyl green, the
activity was estimated to be 96, 91, and 87% during the three cycles, respectively. The
integration factors point out that the Sm-doped CuO/ZnO/CuMn2O4 ternary composite
is a promising photocatalyst for the removal of organic pollutants with high mineraliza-
tion efficiency and stability. The obtained results for the photodegradation properties of
Sm-doped CuO/ZnO/CuMn2O4 photocatalyst were compared with previously published
studies as reported in Table 2. The comparison reflects the high efficiency of the Sm-doped
CuO/ZnO/CuMn2O4 photocatalyst towards organic pollutants degradation. As shown in
Figure 14, the complete mechanistic picture of the photodegradation reaction of norfloxacin
and methyl green molecules in the presence of the Sm-doped CuO/ZnO/CuMn2O4 pho-
tocatalyst under sunlight radiation can be explained based on scavenger tests and total
organic carbon analysis. When Sm-doped CuO/ZnO/CuMn2O4 particles are exposed to
solar light energy, electron-excitation happens, leading to the production of an electron–hole
pair (e−-h+) as photoexcited charge carriers. The charge separation takes place between
the different components through transfer of the electron from the p-type CuO to n-type
ZnO or CuMn2O4, while the holes transfer in the opposite direction. Then, the h+ and e−

interact with the water (H2O) and oxygen (O2) molecules to form ·OH and ˙O2
− radicals,
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respectively [42,43]. Both OH and ˙O2
− radicals attack the norfloxacin and methyl green

molecules and mineralize them as shown below:

Sm-doped CuO/ZnO/CuMn2O4 + sunlight energy → e−CB + h+
VB

Sm3+ + e− → Sm2+

Sm2+ + O2 → Sm3+ + ˙O2
−

h+
VB + H2O → ·OH + H+

e− + O2 → ˙O2
−

h+ + OH− → ·OH
(·OH/˙O2

−) + Norfloxacin and methyl green molecules → CO2+H2O
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removal of norfloxacin and methyl green dye.

3.5. Analysis of Ac Electrical Conductivity and Dielectric Properties

Figure 15a–c show the impact of changes in the applied frequency on the ac electrical
conductivity, dielectric constant, and dielectric loss of pure and Sm-doped CuO/ZnO/
CuMn2O4 tri-composites. As shown in Figure 15a, the trend of the ac electrical conductivity
displays an increasing performance with growth in the applied frequency, particularly at
higher frequencies, owing to the migration improvement of the charge carriers (electrons).
At lower and middle frequencies (102–104 Hz), it can be seen that the improvement of the
electrical conductivity is weak, and after that, it becomes very sharp at appropriately higher
frequencies, especially for the Sm-doped CuO/ZnO/CuMn2O4 sample. As the frequency
increases, the ac electrical conductivity of pure and Sm-doped CuO/ZnO/CuMn2O4
tri-composites becomes more frequency dependent. The applied frequency where the
dispersion takes place is recognized as the hopping or critical frequency. It can be observed
that the hopping or critical frequency moved towards a low frequency direction, owing to
Sm ions doping into the CuO/ZnO/CuMn2O4 composite. This change in the electrical con-
ductivity from the region of frequency-independent to the region of frequency-dependent
emphasizes the electrical conductivity relaxation phenomenon [52,53]. The incorporation
of Sm ions greatly enhances the ac electrical conductivity of the pure CuO/ZnO/CuMn2O4
ternary composite, especially at high frequencies. The performance may be attributed to
the rise in the hopping process of charges between Sm3+ and Sm3+, which dominated over
the charge carriers’ blocking influence [51–54]. The optical characteristics indicated that
the band gap energy of the composite components was reduced after insertion of Sm ions.
In terms of Maxwell–Wagner interfacial theory [52], the regular growth of the ac electrical
conductivity with the applied frequency can be understood. The grain boundaries, or the
interfaces between grains, induce a potential barrier which restricts the movement of the
charge carriers, resembling particles in a box [52]. The insignificant increases in the electri-
cal conductivity at the low frequency domain can be related to the limited amount of charge
carriers that can cross over this potential barrier, leading to weak ac electrical conductivity.
Once the applied frequency is increased, the charge carriers acquire appropriate energy to
move over the potential barrier, which was reflected in the quick improvements of the ac
electrical conductivity at a higher frequency field.
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Figure 15b depicts the relationship between the dielectric constant (relative per-
mittivity) and the applied frequency at room temperature for the pure and Sm-doped
CuO/ZnO/CuMn2O4 ternary composites. The dielectric constant values of the pure
CuO/ZnO/CuMn2O4 tri-composite was decreased significantly with increasing the fre-
quency up to 104 Hz. Above this frequency, the dielectric constant changed slowly or nearly
remained constant. The performance of the dielectric constant after addition of Sm ions
was greatly boosted. The values of the dielectric constant increased and became more stable
at a lower frequency compared to the pure sample. At low and middle frequencies, the
dielectric constant slowly decreased, and at higher frequency, the drop was high. Table 3
compares the dielectric constant values of the pure and Sm-doped CuO/ZnO/CuMn2O4
ternary composites at several frequencies. The reported results indicate that the Sm-doped
CuO/ZnO/CuMn2O4 sample has colossal relative permittivity values (>103) at many
frequencies. Generally, such behavior of the dielectric dispersion in metal oxides or com-
posites structures can be illuminated in the interpretation of Maxwell–Wagner interfacial
theory, which is in agreement with Koops phenomenological philosophy [52,55]. In this
explanation, the grains are highly conductive and become disjointed by grain boundaries,
which are very poorly conductive. As a result, under an applied electric field, the charge
carriers (electrons) are being collected or accumulated at the weak conducting grain bound-
aries or interfaces [52,55]. At the lower frequencies, the collection or the accumulation
of the charge carriers at the high resistance grain boundaries includes a big polarizabil-
ity, yielding a large polarization which is measured as a high dielectric constant value.
Figure 15c displays the dependence of the dielectric loss on the applied frequency for pure
and Sm-doped CuO/ZnO/CuMn2O4 ternary composites. These curves illustrate a high
dielectric loss value for lower frequencies, and after that, it reduces to nearly stable values
for higher frequencies. Interestingly, it can be seen that the incorporation of Sm ions into
the CuO/ZnO/CuMn2O4 tri-composite reduces the dielectric loss which is a beneficial
performance for energy storage applications. The observed high values of the dielectric loss
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at low frequency can be related to impurities, defects in crystal lattice, and the adsorbed
moisture in the tri-composite samples [52]. The drop in dielectric loss with the rise in the
applied frequency can be understood based on domain wall resonance. Actually, at low
frequencies, an extra energy is required for the motion of the charge carriers (electrons),
owing to the high resistance of the grain boundary (interface), while the motion of the
charge carriers requires less energy at higher frequencies due to the low resistance.

Table 3. Compare the dielectric constant values of pure and Sm-doped CuO/ZnO/CuMn2O4 ternary
composites at several frequencies from 50 to 10,000 Hz.

Samples 50 Hz 100 250 500 1000 3000 5000 8000 10,000

CuO/ZnO/CuMn2O4 22,448 9756 4383 2532 1507 749 556 390 332

Sm-CuO/ZnO/CuMn2O4 47,845 39,254 30,214 24,562 17,211 11,726 10,709 9197 8579

4. Conclusions

In this work, pure and Sm-doped CuO/ZnO/CuMn2O4 ternary composites were suc-
cessfully synthesized using the co-precipitation approach. The influence of Sm dopant on
the optical, dielectric, electrical, and photocatalytic properties of the CuO/ZnO/CuMn2O4
ternary composite was studied and discussed. The XRD patterns verified the presence
of CuO, ZnO, and CuMn2O4 constituents in the composite structure. The SEM and TEM
images of the pure and Sm-doped CuO/ZnO/CuMn2O4 powder show the formation of
homogenous spherical particles with a small size within 26–29 nm. The optical absorp-
tion analysis demonstrates that Sm doping of the CuO/ZnO/CuMn2O4 tri-composite
greatly reinforces the harvesting of visible light energy compared to pure sample. The
photocatalytic measurements for the removal of organic waste revealed that the Sm-doped
CuO/ZnO/CuMn2O4 catalyst has photodegradation efficiencies of 97% for norfloxacin
and 96% for methyl green. The reusability experiments confirmed the good stability of
the Sm-doped CuO/ZnO/CuMn2O4 catalyst, along with a high mineralization efficiency
to convert norfloxacin and methyl green molecules to carbon dioxide and water. For
energy storage, Sm-doped CuO/ZnO/CuMn2O4 pellets exhibited a giant dielectric con-
stant, principally at low frequency, with low dielectric loss values compared to the pure
CuO/ZnO/CuMn2O4 sample.
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