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Abstract: Direct, indirect and synthetic estimators have a long history in official statistics. While
model-based or model-assisted approaches have become very popular, direct and indirect estimators
remain the predominant standard and are therefore important tools in practice. This is mainly due to
their simplicity, including low data requirements, assumptions and straightforward inference. With
the increasing use of domain estimates in policy, the demands on these tools have also increased.
Today, they are frequently used for comparative statistics. This requires appropriate tools for simulta-
neous inference. We study devices for constructing simultaneous confidence intervals and show that
simple tools like the Bonferroni correction can easily fail. In contrast, uniform inference based on
max-type statistics in combination with bootstrap methods, appropriate for finite populations, work
reasonably well. We illustrate our methods with frequently applied estimators of totals and means.

Keywords: domain estimation; simultaneous confidence intervals; uniform inference; comparative
statistics

1. Introduction

Nowadays, domain estimation is well recognised as an important sub-field in official
statistics and survey methodology. The UN’s aspiration to leave nobody behind in its
sustainable development goals has further boosted the interest in domain estimation,
where “domains” may refer to any specified cluster or sub-population that could be of
political or social interest. Governmental offices use those methods for the reallocation
of resources and public programs [1]. Depending on the data availability, one may resort
either to direct, indirect, model-assisted or even model-based methods to estimate or
predict the parameters of interest; see the books [2,3]. Model-assisted or -based estimators
are only interesting when appropriate auxiliary information is available. However, they
rely on other data requirements, complex assumptions and methods, and, in the case of
model misspecification, adverse effects on further inference can become substantial [4]. In
contrast, design-based estimators are quite simple, work with weaker assumptions, do not
necessarily need auxiliary information and can be assumed nearly design-unbiased [5,6].
The lack of auxiliary information—especially on the unit level—is a major problem in many
cases and countries. Further problems arise when methods are not adapted to the inclusion
of sampling weights. Even for model-based methodology, direct estimates are essential to
start building and validating the models [1]. In sum, direct and indirect estimators remain
useful tools in official statistics.

With the growing number of methods for estimating domain parameters, their use for
decision making is growing too, quite frequently for comparative statistics over domains
or even over small areas; c.f. [7]. Different authors like those of [8] critically observed that
the topic of ensemble properties has been largely overlooked. Certainly, if one only wants
to compare two domains, then a t-test is one of the obvious options, but often practitioners
compare more than two domains simultaneously. Multiple comparison is a rather broad
field in statistics [9]; in this article, we concentrate on simultaneous confidence intervals
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(SCIs) due to their easy interpretation and convenient handling. In a parametric unbiased
context, this is an equivalent problem to simultaneous testing, though in practice those
tests are often applied sequentially, which allows for more sophisticated modifications to
control the family-wise error rate [10]. Recently, refs. [11,12] introduced different tools for
simultaneous inference in the model-based small area estimation context, i.e., for estimators
based on linear and generalized linear mixed models. For design-based estimators, we
could not find any similar study; this paper is a contribution to fill this gap.

Some questions arise: Can we not simply apply the Bonferroni or the S̆idák methods?
One may also question if such an inference is practicable since for an increasing number of
domains those intervals become very large. We will see that the first question (regarding
the Bonferroni method) must be answered negatively, whereas the second is more involved.
We believe that it is not too strong of a counterargument, as in practice one could conduct
such comparisons on subsets of all domains. In contrast, conducting multiple comparison
with tools made for individual analyses is definitely inappropriate. Even for a small
set of domains, too-simple methods fail in delivering an appropriate joint coverage of
the estimators.

Note that the considered problem is not related to the one faced in small area estimation
based on mixed effects models, c.f. [13,14], regarding conditional versus unconditional
inference. Both emphasise the problem that the typically reported coverage probabilities
refer to the average over space and/or time without conditioning on the domains. When
one repeatedly constructs some confidence intervals for the same set of domains, these
can have 100% coverage for several domains and zero coverage for others. We do not
face this problem because we only consider conditionally unbiased direct, indirect and
synthetic estimators. This is just another advantage of the here-considered methods. The
practical problem we refer to is equivalent to that of demanding uniform inference over a
set of domains.

We first define SCIs and propose three practical methods for constructing them. After-
wards, we revisit the direct and indirect estimators for linear domain parameters, namely,
totals and averages. Section 4 compares these methods when applied to those estimators.
This is conducted for both simple and complex sampling designs and weights. Section 5
illustrates the use and performance of our methods using a data example in which we
estimate total tax incomes for different domains in Belgium. Section 6 concludes this
paper. More details on estimators, notation and simulations are deferred to our Supple-
mentary Materials.

2. Simultaneous Confidence Intervals for Domains

For domain parameters θd, d = 1, . . . , D, a simultaneous confidence interval I1−α at a
fixed error level 0 < α < 1 forms a rectangular region that covers the set of parameters θd
for all d of some finite collection D of D domains, with a probability of at least 1 − α, i.e.,

P
(
I1−α ∋ θd, ∀d ∈ D

)
≥ 1 − α. (1)

An SCI can be understood as the Cartesian product of D individual confidence inter-
vals such that

I1−α = ×
d∈D

Id;1−αd
with Id;1−αd

{
θ̂d ± c1−αd/2σ̂d

}
, d = 1, . . . , D, (2)

where c1−αd are suitable critical values and σ̂d consistent estimates of the standard deviation
of θ̂d. For many of the direct and indirect estimators, standard errors can be estimated
relatively easily. It is more challenging to find c1−αd such that Equation (1) holds. These αd
could be different from each other, but for practical reasons one would set them all to be
equal, αd = α′, ∀ d.

Obvious devices are the Bonferroni correction, the S̆idák correction and the max-type
statistic typically used for uniform inference. The Bonferroni correction can be applied by
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setting the individual levels to α′ = α/D and choosing for c1−α′/2 the 1 − α′/2 quantile
of the student distribution with n − D degrees of freedom, with n indicating sample size.
( One may argue that one should take different critical values for each domain based on
a tnd−1 distribution. At the same time, the approximation of the degrees of freedom is
arguable since we are working with design-based estimators which include the use of
potentially complex sampling weights. We will see in the simulations, however, that the
Bonferroni approach will not even work in the simplest sampling design case.) Ref. [15]
derived SCIs for arbitrary linear combinations of normally distributed means. Later on,
this was taken as a justification to do the same for other estimators that are asymptotically
normal. Ref. [16] proposed α′ = 1 − (1 − α)1/D but suggested to otherwise use the same
procedure. He showed that this correction can increase the multiple power uniformly.

The third approach considers the (relatively) largest deviation for all considered
estimates, i.e., a max-type statistic. Refs. [11,12] applied this idea to small area estimation
and introduced bootstrap procedures to approximate the distribution of the resulting
pivotal statistic. In our case, such a max-type statistic is

S0 = max
d∈D

∣∣S0;d
∣∣ , where S0;d :=

θ̂d − θd
σ̂d

. (3)

It is recommend to use a resampling distribution of S0 to approximate critical values.
While the above-mentioned authors used model-based parametric bootstrap, we do not
have a model. Furthermore, we need a bootstrap procedure that works for finite popula-
tions. There exist many proposals for those problems; in our simulations, we follow the
recommendations of [17]. See also our Supplementary Materials for details, procedures
and further references.

We close this section with a remark: there exist many modifications of the Bonferroni
correction. Most of these were made in order to better control for potential correlations
between testing or estimation problems. This can increase the power of a multiple test or
decrease the length of SCIs. In our simulations, the estimates are uncorrelated such that
those modifications are not of interest for our study—which is not necessarily the case in
practice. As we will see that, in our context, the problem with Bonferroni is not an over-
but a serious undercoverage, those modifications are therefore expected to produce worse
results. In practice, the distributions of some domain parameter estimates have larger tails
than the asymptotic distribution suggests. Consequently, the problem is less the proposed
correction as it is finding an appropriate c1−α′/2 that could be useful in practice.

3. Considered Direct and Indirect Estimators

One of the main benefits of direct methods is that they lead to design-consistent
estimation and nearly design-unbiased estimators [18]. We concentrate on two popular
estimators, the Horvitz–Thompson [19] (H-T) and the direct generalized regression estima-
tor (GREG) [20] to estimate the total Yd := ∑k∈Ud

yk. One could alternatively consider any
linear function of the yk, but for the sake of presentation we concentrate on the simplest case.
This is because (a) for our simulations we need to consider a specific one, (b) together with
the domain mean, the total is one of the most frequently demanded parameters and (c) we
will see that even for the simplest case, the considered standard devices do not work. In
the following, the Yd are our parameters of interest, our θd. The quantities πk, πkℓ denote,
respectively, the first-order inclusion probability of unit k and the second-order one of units
k and ℓ. ∆kℓ is the covariance between the inclusion probabilities of units k and ℓ within the
same sample. Then, the H-T estimator is

Ŷht
d := ∑

k∈sd

yk
πk

, (4)

and similarly ˆ̄Yht
d = N−1

d Ŷht
d for the mean with Nd the domain size.
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As said, when auxiliary variables xk ∈ Rp, p ≥ 1 are available and their totals are
known, then domain-level linear mixed models become more and more popular in practice.
The more traditional ancestor is the direct-GREG approach, an estimator assisted by a
standard linear regression model with errors ϵkd, i.e.,

ykd = x⊤kdβd + ϵkd, Var(ϵkd) = σ2
kd, (5)

where βd is a parameter vector associated with domain Ud, typically estimated by

β̂d =

(
∑

k∈sd

xkx⊤k
πk

)−1(
∑

k∈sd

xkyk
πk

)
. (6)

The direct-GREG is

Ŷdgreg
d := ∑

k∈Ud

ŷk + ∑
k∈sd

ek
πk

= Ŷht
d + (Xd − X̂ht

d )⊤ β̂d, (7)

where Xd is the vector of true domain totals for each auxiliary variable, ek = yk − ŷk and
X̂ht

d is its Horvitz–Thompson estimator.
Indirect estimators borrow strength from domains or clusters that are different from

the domains of interest [21]. Therefore, we introduce here the notion of groups. These are
subsets Ug, g = 1, . . . , G, different from the domains and not necessarily of interest, that
partition the population, i.e.,

⋃G
g=1 Ug = U , with Ug

⋂
Ug′ = ∅ for g ̸= g′. Typically, G

is small. An estimator of a group’s mean Ȳg is given by

ˆ̄Yg :=
1

N̂ht
g

∑
k∈sg

yk
πk

=
Ŷht

g

N̂ht
g

where N̂ht
g := ∑

k∈sg

1
πk

, (8)

also known as the Hajek estimator [22]. The synthetic estimator (Syn) for the total in
domain d is

Ŷsynth
d :=

G

∑
g=1

Ndg
ˆ̄Yg, (9)

where Ndg are the crossed population sizes between domain d and group g.
A modification of the synthetic estimator is its post-stratified version (P-S). Instead of

using the group’s mean, one uses the means in subsets Udg = Ud
⋂

Ug,

Ŷpsts
d :=

G

∑
g=1

Ndg
ˆ̄Ydg, where ˆ̄Ydg :=

1
N̂ht

dg
∑

k∈sdg

yk
πk

with N̂ht
dg := ∑

k∈sdg

1
πk

. (10)

This estimator is generally unbiased [3] and performs better than the basic synthetic
estimator when yk has a large variation within groups.

The indirect-GREG estimator (I-GREG) for the total can also be considered as an
indirect estimator under regression yk = x⊤k β + ϵk, i.e., with a common parameter vector β
for the population, instead of one for each domain [23]. Similar to the direct-GREG, it is
defined by

β̂ =

(
∑
k∈s

xkx⊤k
πk

)−1

∑
k∈s

xkyk
πk

,

and the I-GREG estimator of the total is for ŷk = x⊤k β̂ and ek = yk − ŷk given as

Ŷigreg
d := ∑

k∈Ud

ŷk + ∑
k∈sd

ek
πk

= Ŷht
d +

(
Xd − X̂ht

d

)⊤
β̂ = ∑

k∈s

gdkyk
πk

, (11)
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where gdk := Idk + (Xht
d − X̂ht

d )⊤(∑k∈s xkx⊤k /πk)
−1.

If Nd is known, Equation (11) can be simplified [23] to

Ŷigreg
d := ∑

k∈Ud

ŷk +
Nd

N̂ht
d

∑
k∈sd

ek
πk

. (12)

For more details about these estimators, see our Supplementary Materials and [3,20,23].

4. Simulation Studies

The aim of our simulation study is to better understand the performance of the above
methods. Specifically, we compare the actual coverage probabilities of different SCIs of
all combinations of estimators and methods to construct SCIs. As said, here, we consider
the estimation of domain totals or functions of them. To keep it simple, we perform this
first for samples of small and moderate size and then consider what happens to the best
combinations when sample sizes increase a bit.

4.1. Simulation Designs

As we included GREG estimators in our study, we need to use a hierarchical model for
generating the data for populations U. We generate N observations allocated in D domains
and G = 2 groups. To face G = 2 is quite frequent in practice, like for gender or private
vs. public. Our findings remain the same for larger G. We are interested in the results
for different combinations of N and D; G is only included for computing the synthetic
estimators. The data generating process is

ykd = β0 + β1xkd + β21{k ∈ G1}+ ud + ϵkd, k = 1, . . . , Nd, d = 1, . . . , D, (13)

where xkd stands for some auxiliary information (which often is not available in practice),
1{• ∈ G1} the group indicator, ud a domain effect and ϵkd an independent (of x, u and
the other ϵ) random subject effect. Both u, ϵ are normally distributed with mean zero and
variances Var(ud) = σ2

u , Var(ϵkd) = σ2
ϵ . We applied σu = 2 or 0.02 alternatively but kept

σϵ = 0.8 fixed to control the effect of intercorrelation σ2
u/(σ2

u + σ2
ϵ ). The xkd are uniformly

distributed on [0, 1] and [0, 10], respectively. Alternatively, one could vary the β values. It
must be emphasised that we use model Equation (13) only to generate data, not to model
our response variable after a sample has been selected. Except for the GREG, we are neither
in a model-based nor in a model-assisted estimation setting.

Once a population is generated, we compute the true totals (θd) for all domains. We
generate samples of size n, first by means of simple random sampling without replacement
(SRSWOR) and then by sampling with unequal probabilities (UPs); for both, we used
the R package sampling. For the UP design, each sample is generated by a systematic
sampling algorithm to be close to maximum entropy. This is standard in official statistics
as it simplifies a lot the estimation of the estimators’ variances, c.f. our Supplementary
Materials. Moreover, for the bootstrap methods to work, it is recommended to use sampling
designs that try to maximize the entropy [17]. We applied the so-called random systematic
algorithm [24] for its computational performance and easy use. All these choices were
to guarantee good performance of the estimators and to favour the Bonferroni method,
i.e., to not directly generate data for which the latter is clearly inappropriate. For the UP
design, we skipped the direct-GREG estimator as, apart from being computationally quite
expensive, the related I-GREG is known to perform much better.

For SRSWOR, all inclusion probabilities πk are the same for each unit in our population;
for UPs, we compute them for the auxiliary variable xkd of the data generating process in
Equation (13). Note that the SRSWOR is the basic design for multistage sampling and that
UPs are often encountered in practice. We assume no non-response for the rest of this paper.
Note that if the considered methods fail already in our sampling designs, then there is little
hope for more complex ones. We could consider more sampling designs, but we decided
to focus on these two as they were widely used in theory and practice. Stratification is
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not considered since we are interested in the performance of SCIs even for cases where
the domains may not be considered in the sampling design. The implementation of
a complex sampling design such as a multistage one for uniform inference is a rather
complex computational task and leads to research questions beyond the scope of this paper,
including the need for accordingly designed bootstrap procedures.

Throughout our simulations, we construct 95% SCIs and compute their uniform cov-
erage probabilities for each type of method and estimator. From each generated population,
we take M samples of size n. We perform this for different sample sizes n and sampling rates
f , namely, f1 = 1/6 and f2 = 2/3. Repeating this for K populations, we obtain K × M interval
estimates for each domain which are used to approximate the uniform coverage probabilities.

While we tried many more situations, for the first simulations shown below, we set
K = 100 and M = 10, i.e., 1000 samples, and B = 250 bootstrap samples, with β0 = β1 =
β2 = 1, and we constructed populations partitioned into D = {3, 10, 50, 100} domains, such
that collection D of domains is the full set of domains in the population. The population
sizes N corresponding to the above domain numbers were {90, 300, 1500, 3000}. Notice
that the nd were random in our setting, as is often the case in practice. We tried many more
combinations with (much) larger samples, but the findings were the same overall.

4.2. Simulation Results

The presentation is organized using the designs and described methods for construct-
ing SCIs, first discussing them individually for all estimators and then comparing them.
Sampling design, methods and estimators can be perfectly compared to each other since
they were computed for the same targets based on the same samples taken from the
same populations.

4.2.1. Bonferroni and S̆idák Method: Results and Analysis

Recall that the Bonferroni correction introduced in [15] was originally proposed for a
linear combination of normally distributed means; when variances were estimated, the t-
distribution was suggested. Similarly, ref. [16] considered the means of multivariate normal
distributions when the variances were known or at least equal; in the latter case, again the
t-distribution was suggested for the critical values.

In the following figures, we compare boxplots for the Bonferroni-SCI coverages ob-
tained for the different estimators and designs; see Figure 1 for the SRSWOR design
and Figure 2 for the more complex UP design. For the S̆idák method, see the simulation
averages summarized in Table 1. The boxplots roughly indicate the distributions of the joint
coverages of all domain parameters over the K = 100 populations. From these illustrations
of medians and spreads of achieved coverages, we discover serious undercoverage which
converges to zero quite rapidly for increasing D. Simulations for X∼U[0, 10] reveal no
additional findings, so it is sufficient to look at variations of σu, f , D, n and N.

It becomes immediately clear that in using Bonferroni or S̆idák, we achieve the wanted
joint coverage of 95% = 1 − α only for the H-T estimator in the simple SRSWOR design,
but even there only when considering just three domains with high sampling rates. When
looking at the other estimators, we obtain worse results. For direct-GREG and our synthetic
estimators, Bonferroni fails to provide appropriate coverage probabilities in almost all
cases. So, either the variance estimates or the t-approximations do not work sufficiently
well. For the synthetic estimator, it is also likely that the total estimator itself does not
work well unless nd is sufficiently large in all domains. At first glance, P-S and I-GREG
estimators perform somewhat better. But this holds only for the least interesting case with
D = 3. From the table, we see that there is not much difference in the coverage between
SCIs constructed by Bonferroni versus S̆idák.
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Figure 1. Boxplots of uniform coverage probabilities for all estimators when σu = 2, X∼U[0, 1] under
SRSWOR and applying the Bonferroni correction for 95% SCI.

Figure 2. Boxplots of uniform coverage probabilities for all estimators when σu = 2, X∼U[0, 1] under
UP design and applying the Bonferroni correction for 95% SCI.
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Table 1. Coverage probabilities for all methods and estimators in various scenarios under SRSWOR.
X∼U7[0, 10] for lines 8, 7, 11, 12; otherwise, X∼U[0, 1]. Estimators are H-T: Horvitz–Thompson, D-G:
direct-GREG, Syn: synthetic, P-S: post-stratified, I-G: indirect-GREG.

f
Bonferroni S̆idák Max-Type

H-T D-G Syn P-S I-G H-T D-G Syn P-S I-G H-T D-G Syn P-S I-G

σu = 2 D = 3
1/6 0.874 0.355 0.187 0.773 0.887 0.874 0.355 0.205 0.773 0.887 0.946 0.946 0.991 0.895 0.999
2/3 0.953 0.87 0 0.953 0.918 0.953 0.87 0 0.953 0.917 0.987 0.998 0.951 0.983 0.998
1/6 0.865 0.355 0.546 0.677 0.869 0.864 0.355 0.565 0.676 0.869 0.948 0.969 0.986 0.914 1
2/3 0.946 0.87 0.015 0.926 0.943 0.945 0.87 0.014 0.926 0.942 0.992 1 0.687 0.987 1

σu = 0.02
1/6 0.873 0.355 0.971 0.773 0.902 0.873 0.355 0.978 0.773 0.902 0.952 0.954 0.995 0.895 1
2/3 0.948 0.87 0.572 0.953 0.932 0.948 0.87 0.57 0.953 0.929 0.978 1 0.956 0.983 1
1/6 0.869 0.355 0.912 0.677 0.872 0.867 0.355 0.919 0.676 0.871 0.943 0.971 0.993 0.914 1
2/3 0.946 0.87 0.015 0.926 0.943 0.945 0.87 0.014 0.926 0.942 0.992 1 0.687 0.987 1

σu = 2 D = 10
1/6 0.63 0.017 0 0.274 0.654 0.629 0.017 0 0.274 0.654 0.949 0.87 1 0.947 0.993
2/3 0.88 0.73 0 0.873 0.825 0.88 0.729 0 0.872 0.824 0.991 1 0.731 0.992 0.999

σu = 0.02
1/6 0.618 0.017 0.708 0.274 0.701 0.616 0.017 0.724 0.274 0.7 0.951 0.879 1 0.947 0.999
2/3 0.868 0.73 0.005 0.873 0.855 0.867 0.729 0.005 0.872 0.855 0.99 1 0.61 0.992 1

σu = 2 D = 50
1/6 0.142 0 0 0 0.171 0.141 0 0 0 0.171 0.977 1 1 0.964 0.998
2/3 0.724 0.448 0 0.661 0.637 0.724 0.446 0 0.66 0.636 0.984 1 0.007 0.999 1

σu = 0.02
1/6 0.105 0 0 0 0.224 0.105 0 0 0 0.223 0.962 1 1 0.964 1
2/3 0.703 0.448 0 0.661 0.647 0.701 0.446 0 0.66 0.645 0.987 1 0.006 0.999 1

σu = 2 D = 100
1/6 0.019 0 0 0 0.039 0.019 0 0 0 0.039 0.973 1 1 0.962 0.988
2/3 0.582 0.257 0 0.511 0.508 0.578 0.253 0 0.51 0.506 0.988 1 0 0.993 1

σu = 0.02
1/6 0.008 0 0 0 0.052 0.008 0 0 0 0.051 0.96 1 1 0.962 0.998
2/3 0.577 0.257 0 0.511 0.549 0.575 0.253 0 0.51 0.547 0.995 1 0 0.993 1

For the UP design, we see that things become much worse. It is a bit surprising that
the coverage is sometimes better for the low sampling rate than for the high one. But no
estimator delivers an appropriate joint coverage, and the results are again “best” for the H-T.
Our findings do not vary over the considered simulation designs although the numerical
outcomes do, especially when increasing the ratio f . Not shown is that simulation outcomes
became much worse when the random effects u and ϵ deviated from normality.

In sum, Bonferroni and S̆idák SCI (which are typically considered as conservative
methods, i.e., they should lead to overcoverage) fail almost always. Then, comparative
or joint inference for domains is impossible for any set of D > 3 domains based on these
methods even in the most simple setup and estimation problem. For understanding the
failures, it is worth recalling that increasing the number of domains has two effects: the
risk that some domains have a very small nd increases, and at the same time we have
to cover an increasing number of θd. It is increasingly likely that one interval does not
contain its θd, unless all θ̂d exhibit good variance estimates and obey the t-distribution.
The quality of the variance estimates has been studied extensively in the literature. Let
us therefore have a closer look at the problem of taking as critical values the quantiles
of the t-distribution. Clearly, the quality of distributional approximation depends on the
nd, d = 1, . . . , D, but also on the estimators and the distribution of yk; if its shape is very
skewed (and/or has heavy tails), an approximation by t requires a much larger nd in all
domains than would be the case for symmetric ones [20] (with slim tails). From Figure 3,
we see that in this sense, our simulation setting is quite favourable for the Bonferroni and
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S̆idák corrections. One may ask why we nonetheless obtain those bad results. Figure 4 gives
an answer for the H-T estimates on which we built the SCIs. While the majority of domain
estimates fit well to the normal distribution, in several domains the true distribution is far
from it; those destroy the joint coverage. This is even more emphasised for other estimators
(figures not shown).

Figure 3. Densities of Y for different sampling rates with σu = 2, X∼U[0, 1] under SRSWOR.
The normal distribution with the same parameters is plotted in grey.

Figure 4. Densities of the Horvitz–Thompson estimates for different simulation designs under
SRSWOR. Each domain estimate is plotted in a different colour.

Consequently, Bonferroni and S̆idák corrections with t-quantiles cannot work. An
alternative for obtaining the quantiles needed for the critical values could be to estimate
the distribution by bootstrap. Unfortunately, while this may work for quantiles q1−α/2
with α = 0.1, 0.5 or 0.01, for Bonferroni, we need quantiles with α′ = α/D, which become
extremely small as D increases. The bootstrap estimates of those quantiles are not reliable
unless the nd or f become very large. For D > 10, one may easily obtain situations in which
one needs more bootstrap samples than different samples exist, leaving computational
issues apart. Thus, while bootstrap for estimating critical values is interesting, it is not
helpful in combination with the Bonferroni or S̆idák corrections.
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Clearly, for increasing sample sizes or sampling rate f , the problem might be less
emphasised, depending on the underlying distribution of Y and the wanted estimator. In
practice, this could become quite costly, but we conducted a simulation which considered
larger N and larger n for the same data generating process as described above; see Table 2.
While one may argue that the coverage probabilities in this example are not too bad, we still
observe divergence, not convergence. Moreover, recall that we simulated a quite favourable
situation with yk and estimators not being too far from normality. In the Supplementary
Materials, we briefly discuss what the literature tells us about the sample sizes needed for
a reasonable approximation of a simple mean estimate by normality when Y is not normal.
It can be seen there how dramatically nd must increase in all domains to achieve this when
the distribution of Y becomes more skewed. We conclude that one needs a sampling design
that accounts for the partitioning of the population into domains and guarantees large
sample sizes and/or a high sampling rate in each domain. By controlling the sampling rate
within each domain, we are no longer in a standard situation in practice. Moreover, if some
of the Nd are small, then this solution also would fail.

Table 2. Coverage probabilities for 95% SCI when using the Horvitz–Thompson estimator with the
Bonferroni correction under SRSWOR.

D = 5 D = 10 D = 50

N 1000 2000 10,000
n 750 1500 8500
f 0.75 0.75 0.85

Coverage 0.93 0.92 0.9

4.2.2. Max-Type Statistic with Bootstrap and an Overall Comparison

We now pursue the idea of using bootstrap for approximating the critical values,
combining it with the approach of performing uniform inference via max-type statistics;
recall Section 2. Results under SRSWOR are summarized in Table 1. We see that we are
much closer to the nominal level of 1 − α than before. For the sake of comparison, we
repeat the exercise of the last subsection, showing in Figure 5 the distributions of coverage
probabilities for the max-type SCIs. Comparing this with Figure 1, we observe that the
distributions are more concentrated on the right. We also observe that in most cases,
the spread of the boxes is much smaller. Finally, we observe that in some situations the
max-type approach leads to overcoverage, which was never the case before.

Again, the SCIs for the direct-GREG and the synthetic estimator almost never have the
desired coverage. Like for the Bonferroni method, this may be due to the large variation
in these estimators. For the H-T and the P-S estimators, we obtain reasonable results,
except for the latter when D = 3. However, in several situations, the coverage is larger than
1 − α, in particular for the I-GREG, which is therefore not recommendable. We conclude
that for D ≤ 10 one would recommend constructing SCIs by max-type statistics of H-T
estimators and for D > 10 alternatively by the P-S estimators.

As the estimates and their corresponding variances are the same for all methods,
the main difference to the above in our new SCI construction is the way we calculate the
critical values. In Table 3, we compare these when using the max-type statistic and the
Bonferroni correction, respectively, both for the H-T estimator. As expected, for D = 3,
they differ only a bit, substantially depending on the sampling rate f . For increasing D,
the difference between them becomes more and more substantial.
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Figure 5. Boxplots of the uniform coverage probabilities for all estimators under different simulation
designs with σu = 2 under SRSWOR, when applying the max-type statistics approach combined with
bootstraps for finite populations for constructing 95% SCI.

Table 3. Critical values of 95% SCI for the Bonferroni and the max-type approaches using the
Horvitz–Thompson estimator under SRSWOR.

D = 3 D = 10 D = 50

f 0.25 0.5 0.75 0.8 0.9 0.25 0.5 0.75 0.8 0.9 0.25 0.5 0.75 0.8 0.9
Max-Type 2.56 2.63 2.88 3.03 3.65 3.35 3.2 3.43 3.36 3.75 4.32 3.86 4.16 4.91 4.57
Bonferroni 2.42 2.41 2.4 2.4 2.4 2.82 2.81 2.81 2.81 2.81 3.29 3.29 3.29 3.29 3.29

Results for the UP design are displayed in Table 4. Again, the real coverage is much
closer to the desired level for the “max-type with bootstrap” method than for the classical
approaches. However, we obtain the desired coverage for almost all simulations only for
the I-GREG estimator. As for the SRSWOR design, the max-type SCIs are too conservative
when the number of domains increases but the sampling rate decreases. For the H-T
estimator, we observe that, as the number of domains increases and the sampling rate
is high, the coverage becomes better. For D = 50 and D = 100, we obtain the desired
coverage probability. We also observe a similar pattern for the P-S estimator. Finally, the SCI
for Syn fails in all situations. These findings are coherent with the ones previously found
for a SRSWOR design. The “Na” indicate that in some crossed group-domains Udg we do
not have data.

Even though we briefly commented above on it, let us add some comments on the
seemingly quite-frequent overcoverage of the max-type statistic-based SCIs. There are two
major comments on this issue and some smaller ones. First, the max-type-based approach
tries to construct SCIs that account for the worst case. Intuitively, this suggests that these
SCIs tend to have overcoverage; one may even argue that this would be suboptimal.
However, our aim was not to invent new methods at this stage. We rather wanted to study
how well-known methods work when employed to construct SCIs for frequently used direct
and indirect domain estimators. Second, the max-type approach is particularly sensitive
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to the quality of variance estimators; recall statistic Equation (3). To what we found, these
work particularly badly for the direct-GREG and indirect-GREG approaches but are also
problematic for the synthetic one. Certainly, the choice of the bootstrap method also can
play a role, but here we cannot generally blame the bootstrap for over- or undercoverage.

Table 4. Coverage probabilities for all methods and estimators in various scenarios for an unequal
probability design UP and X∼U[0, 1]. Estimators are H-T: Horvitz–Thompson, Syn: synthetic, P-S:
post-stratified, I-G: indirect-GREG.

f
Bonferroni S̆idák Max-Type

H-T Syn P-S I-G H-T Syn P-S I-G H-T Syn P-S I-G

σu = 2 D = 3
1/6 0.713 0.08 0.3183 0.7065 0.713 0.08 0.3183 0.70355 0.883 0.297 0.8404 0.99
2/3 0.625 0.002 0.492 0.569 0.624 0.002 0.489 0.568 0.843 0.067 0.804 0.923

σu = 0.02
1/6 0.727 0.773 0.291 0.671 0.726 0.773 0.291 0.667 0.894 0.793 0.836 1
2/3 0.628 0.428 0.492 0.497 0.625 0.426 0.489 0.497 0.851 0.538 0.804 0.962

σu = 2 D = 10
1/6 0.532 0 Na 0.469 0.531 0 Na 0.464 0.884 0.009 Na 1
2/3 0.253 0 0.151 0.229 0.25 0 0.151 0.229 0.905 0.002 0.863 0.961

σu = 0.02
1/6 0.507 0.51 0.078 0.476 0.505 0.508 0.0779 0.473 0.889 0.526 0.739 1
2/3 0.269 0.058 0.151 0.126 0.268 0.058 0.151 0.123 0.905 0.179 0.863 0.987

σu = 2 D = 50
1/6 0.287 0 Na 0.316 0.286 0,00 Na 0.315 0.8 0.003 Na 1
2/3 0.004 0.001 0 0.004 0.004 0 0 0.004 0.946 0.001 0.926 0.946

σu = 0.02
1/6 0.367 0.021 Na 0.367 0.367 0.02 Na 0.367 0.794 0.2882 Na 0.794
2/3 0.005 0.001 0 0 0.005 0.001 0 0 0.934 0.019 0.926 0.995

σu = 2 D = 100
1/6 0.197 0 Na 0.289 0.197 0,00 Na 0.286 0.651 0.009 Na 1
2/3 0.001 0 0 0 0.001 0 0 0 0.964 0 0.93 0.991

σu = 0.02
1/6 0.286 0.004 Na 0.361 0.282 0.0043 Na 0.358 0.65 0.4243 Na 1
2/3 0 0.001 0 0 0 0.001 0 0 0.957 0.007 0.93 0.994

How large the SCIs are in practice and how well they separate domain parameters
significantly depends on many factors, like sample size, sample rate, the distribution of
the estimator and in particular its variance. How reasonable they are, and consequently
conducting comparative statistics between domains at all, depends also on the ratio of
the within-domain variation compared to the between-domain variation. In brief, there
is no generally valid answer to this. If in practice it is noted that constructing SCIs for a
large number D of domains gives extremely large and therefore useless intervals, then one
should concentrate on small but interesting subsets of domains and construct the SCIs for
them (reducing D). The simulation design may look a bit artificial but was constructed this
way to see the different effects not only of sample size and the complexity of sample design
but also of size, within versus between variation, etc.

In the following, we present a small simulated (now visual) illustration before we turn
to the real data example. We concentrate on max-type-based SCIs for the H-T estimators of
domain totals with our different sampling rates and sampling designs. Let us first consider
D = 10 domains simultaneously. For a better illustration, the variable of interest is now
generated by

ykd = 0.2 + 4xkd + ud + ekd, k = 1, . . . , Nd, d = 1, . . . , 10,
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where xkd are, as before, uniformly distributed on [0, 10], ud = 10d are the domain intercepts
(not randomly drawn) to control the between-domain variation and ekd are normally dis-
tributed noise with mean 0 and standard deviation equal to xkd. The latter was performed
for obtaining a reasonable UP design whose weights are determined out of the dependence
between y and x; a too-low relation results in worse estimators and larger SCIs for the UP
design. The domain population size is set to Nd = 120 for all domains. The sampling rates
are set such that the sample sizes are n ∈ {200, 500}.

Figure 6 plots the SCIs obtained from one simulation run. We see that the SCIs are
reasonably small and therefore useful throughout when the total sample size is n = 500.
For the much smaller sample size, we observe quite large SCIs, at least for the domains
with large values for their ykd. The results are less promising for the UP design which,
however, is also due to the small relation between y and x.

Figure 6. Plots of max-type-based SCIs for D = 10 with Horvitz–Thompson estimator.

Next, we consider an example for D = 50 domains with sample sizes n ∈ {1000, 2500}.
The data are generated from the same process as above but now with domain intercepts
ud = ud−1 + 2, where u1 = 1. The resulting SCIs of one simulation run are plotted in
Figure 7. Here, we observe a similar situation as before, but even less favourable for the
small sample situation, and just uninformative SCIs for the UP design. However, even for
D = 50, the SCIs are reasonably short for many domains when the total sample size is 2500.
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Figure 7. Plots of max-type-based SCIs for D = 50 with Horvitz–Thompson estimator.

5. Estimating Total Tax Incomes: A Simulation Study with Belgian Data

In this section, we conduct a simulation study that is based on real data. We consider
the Belgian Municipalities Population set provided in the R package sampling [24]. It contains
data on incomes in the Belgian municipalities for 2003 and 2004. Our yd of interest is the
total taxable income in each of the N = 589 municipalities.

The provided auxiliary information here is the total population Tot04 in each mu-
nicipality, x1, and the total number of women Women04 in each municipality, x2, both
for 2004. The kernel density of taxable income is shown in Figure 8; it exhibits a strongly
skewed distribution that even after taking the logarithm does not become symmetric. The
population U of municipalities is partitioned in D1 = 9 domains that correspond to the
Belgian provinces and in D2 = 93 that correspond to the arrondissements. Our methods
will be studied in both cases: when the 9 domains are of interest and afterwards for the
situation when the 93 domains are of interest. We consider sample size n1 = 85, which
corresponds to f1 ≈ 1/6, and n2 = 335, which gives f2 ≈ 2/3.

Again, we use a SRSWOR sampling design: all the first- and second-order inclusion
probabilities are known to be πk = ni/N, πkℓ = ni(ni − 1)/N(N − 1), i = 1, 2. Based on
the findings of the above sections, we concentrate on the H-T and the I-GREG estimators,
respectively. The former is still the most considered one in survey methodology, performs
best in our simulations and is also applied to compute the GREG; recall Equation (11). The
latter was chosen due to its performance in Section 4. Results are summarized in Table 5
and Figure 9, the latter indicating the sample distribution of the estimators for D1 = 9.

Our results confirm the ones found in Section 4. The Bonferroni and S̆idák corrections
do not work as they never succeed in jointly covering the set of estimates and the coverage
is lower when the sample size decreases or the number of domains increases. In contrast,
our max-type approach is able to deliver a joint coverage that is at least close to the
nominal level, except for the situation of a large number of domains with small sample
sizes when using the H-T estimator for constructing SCIs. In conclusion, for the SCIs of the
totals and mean or linear functions of them, we recommend using the max-type method
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with a bootstrap algorithm suitable for finite populations and a specific sampling design,
in combination with H-T and I-GREG.

Figure 8. Density of total taxable income.

Figure 9. Densities of the Horvitz–Thompson estimator in each of the 9 provinces. Some are close to
a normal distribution, but others display asymmetric or bimodal distributions.

Table 5. Uniform coverage probabilities for the Belgian Municipalities Population dataset.

Provinces Arrondissements

Bonferroni S̆idák Max-Type Bonferroni S̆idák Max-Type

H-T I-GREG H-T I-GREG H-T I-GREG H-T I-GREG H-T I-GREG H-T I-GREG

n1 0.3647 0.4138 0.3637 0.4124 0.9618 1 0.0917 0.0196 0.091 0.0196 0.9019 0.9679
n2 0.4824 0.606 0.4813 0.6054 0.9753 1 0.0206 0.0292 0.0204 0.0291 0.9677 0.9998
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6. Discussion and Conclusions

Even though the literature on methods for domain and small area estimation has
evolved amazingly over the last decades, little attention has been given to the problem of
comparative or simultaneous analysis for them. But today, domain estimates are increas-
ingly often used for resource allocation, i.e., redistribution or joint allocations under budget
constraints. This requires simultaneous comparisons for at least some subsets of domains.
For valid inference, we should then offer multiple tests or confidence intervals. Just recently,
this was performed in the context of mixed model-based small area estimation [11,12,14]. To
the best of our knowledge, we are the first who consider this problem for direct and indirect
domain estimators which are still in frequent use. A reason for this gap in the literature
could be that people may have relied on standard devices like the well-known Bonferroni
correction. Our article shows, however, that simple standard devices fail, not only for large
D, but already for D > 3. Moreover, for an increasing number of domains, the size nd of all
domain samples must grow significantly if one wants to guarantee the functioning of those
standard devices. In practice, the Bonferroni and S̆idák corrections can therefore not be
recommended. In contrast, for linear indicators, we succeed in showing that the max-type
statistics approach works very well if equipped with an appropriate bootstrap. One could
further think about alternative refined Bonferroni methods. However, we have seen that
the original, typically too-conservative method does not lead to over- but to undercoverage.
Consequently, one would directly resort to bootstrap confidence intervals. Combining
this idea with the max-type statistic for uniform inference provides us with reasonably
well-working SCIs. An R package for constructing those SCIs is in preparation.
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