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Abstract: Due to the complexity of real-world deployments, a robot swarm is required to dynamically
respond to tasks such as tracking multiple vehicles and continuously searching for victims. Frequent
task assignments eliminate the need for system calibration time, but they also introduce uncertainty
from previous tasks, which can undermine swarm performance. Therefore, responding to dynamic
tasks presents a significant challenge for a robot swarm compared to handling tasks one at a time. In
human–human cooperation, trust plays a crucial role in understanding each other’s performance
expectations and adjusting one’s behavior for better cooperation. Taking inspiration from human
trust, this paper introduces a trust-aware reflective control method called “Trust-R”. Trust-R, based
on a weighted mean subsequence reduced algorithm (WMSR) and human trust modeling, enables
a swarm to self-reflect on its performance from a human perspective. It proactively corrects faulty
behaviors at an early stage before human intervention, mitigating the negative influence of uncertainty
accumulated from dynamic tasks. Three typical task scenarios {Scenario 1: flocking to the assigned
destination; Scenario 2: a transition between destinations; and Scenario 3: emergent response} were
designed in the real-gravity simulation environment, and a human user study with 145 volunteers
was conducted. Trust-R significantly improves both swarm performance and trust in dynamic task
scenarios, marking a pivotal step forward in integrating trust dynamics into swarm robotics.

Keywords: trust repairing; attention transfer; human–robot collaboration; fault recovery

1. Introduction

A robot swarm, comprising multiple homogeneous robots, autonomously coordinates
itself through unified control laws to achieve collective behaviors such as aggregation,
flocking, and navigation [1–3]. In contrast to a single robot, a robot swarm possesses an
enhanced capability for task execution, owing to its multi-member characteristics and
inherent resilience to failures. On the other hand, humans excel in tasks related to compre-
hension, plan adjustment, and risk management [4–6]. By integrating robot swarms with
human operators, a collaborative human–swarm system can effectively perform complex
and large-scale tasks, such as searching for victims in natural disasters [7,8], monitoring
public areas [9,10], and tracking multiple ground targets [11,12]. These tasks are beyond
the capabilities of single-robot systems due to the need for diversity in assistance, coverage
of large areas, and tracking of numerous targets [13–16].

In real-world deployments, task requirements are often dynamic and manifold. A swarm
is expected to execute tasks consecutively. For instance, in social security, the tracking of
multiple suspicious vehicles must be continuous; during flood rescue operations, the search
for new victims must commence immediately after the discovery of a victim; and in forest
fire control, rapidly emerging fire-prone areas demand timely extinguishing. In all these
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scenarios, a swarm must perform sequential task execution without re-calibrating its motion
status after each task. This dynamic task response affords a swarm team limited time for re-
calibration and introduces cumulative uncertainty stemming from unstable physical systems,
motion status, and environmental disturbances, ultimately diminishing team performance.

Although the capacity for dynamic task response holds significant importance in prac-
tical swarm deployments, the frequent occurrence of tasks presents challenges to the quality
of human–swarm collaboration. Firstly, human cognitive abilities are limited, rendering
it challenging for individuals to monitor and control multiple robots simultaneously as
the swarm dynamically responds to tasks. The dynamic nature of robot behaviors and the
constraints of human attention make it difficult for humans to discern and rectify faulty
robot actions.

Secondly, real-world factors encountered during dynamic task responses, such as mo-
tor wear and tear, sensor failures, and disturbances caused by wind, introduce uncertainty
into swarm executions. Maintaining high-quality cooperation with humans becomes a
challenge for a robot swarm in the presence of various disturbances.

Thirdly, unlike a centralized swarm that exhibits consistent behaviors due to unified
control laws, a decentralized swarm exhibits variations in behavior among different local
regions due to distributed control laws. Distinguishing abnormal behaviors from normal
ones is a daunting task for humans [17,18]. For instance, during the status adjustment
phase, a decrease in speed may be considered normal to maintain connectivity, whereas,
during the motion consensus phase, the same decrease in speed may be seen as abnormal
due to the expectation of consistent motion patterns.

Given the aforementioned challenges, effectively aligning swarm behaviors with
human expectations for productive collaboration is a complex endeavor.

Trust in human–human interactions reflects an attitude of cooperation, indicating
an individual’s willingness to rely on teammates [19]. Trust in human–swarm collabora-
tion represents a human’s belief in the capabilities and reliability of a robot team when
performing a task. Greater levels of trust lead to increased willingness on the part of
humans to allocate tasks and a reduced need for corrections in swarm behavior. Con-
versely, lower levels of trust prompt human interventions in both behavior correction and
communication [20]. As trust profoundly influences interactions, trust modeling has the
potential to enhance cooperation between humans and swarms.

Motivated by these advantages, this research introduces the Trust-R method, a trust-
aware reflective control approach, to calibrate swarm behaviors during dynamic task
responses under human supervision. Supported by a trust estimation, as illustrated in
Figure 1, a weighted update algorithm enables a robot to selectively share information with
trusted robot neighbors while limiting information exchange with distrusted neighbors.
This approach mitigates the adverse impact of abnormal robots on the entire swarm, facili-
tating the repair of faulty robot behaviors and the calibration of human–swarm cooperation
by reducing error accumulation during dynamic task responses. This paper makes three
primary contributions:

• A trust-based control algorithm, denoted as Trust-R, has been devised. It relies on
control laws and a trust model to plan swarm movements based on its comprehension
of human expectations. This algorithm facilitates collaboration between a human and
a swarm when responding to dynamic tasks.

• A reflection mechanism has been developed to calibrate cooperation between a swarm
and a human during dynamic responses. Leveraging trust estimation, the Trust-R
approach enables a swarm to self-diagnose its erroneous behaviors and proactively
mitigate their effects by either rectifying or discontinuing the actions of a robot.

• A novel framework, termed “behavior-repair to trust-repair”, has been introduced
to sustain trust between a human and a robot swarm during their cooperation. This
framework emphasizes the swarm’s role in rectifying undesired behaviors to prevent
the erosion of trust between the human supervisor and the robot team.
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Figure 1. Illustration of the trust-aware reflective control of a swarm for dynamic task response. When
a robot swarm exhibits faulty behaviors caused by faulty robots, the Trust-R repairs the performance
of the swarm to regain human trust.

2. Related Work

Previous research has explored trust in human–robot interactions. In efforts to op-
timize task scheduling and alleviate human workloads, studies such as [21,22] have in-
vestigated time-series trust models for human–robot collaboration. These models were
established based on trust factors encompassing factors such as prior trust levels and
current robot performance. In an attempt to enhance the quality and adaptability of
robot motion planning, ref. [23] proposed a trust-based real-time switching framework for
human–robot systems. This framework dynamically switched between autonomous and
manual motion planning modes based on trust value and operator availability. However,
these approaches may not be suitable for real-world scenarios where low-trust robots
frequently encounter inevitable disturbances. Such methods could inadvertently burden
human operators by shifting the responsibilities of lower-trust robots onto them. In contrast,
our approach in this paper leverages human trust as a behavioral expectation for a robot
swarm’s self-correction without placing additional demands on human attention. By uti-
lizing trust, we align human expectations with robot behavior to facilitate fault-resilient
human–robot cooperation.

The concept of trust repair mechanisms has been explored in prior work. Studies
such as [24,25] have evaluated methods for repairing trust in human–robot cooperation
through actions such as robot apologies for mistakes or promises of improved performance.
Additionally, ref. [26] investigated the impact of explanation mechanisms on trust repair,
aiding robots in regaining human trust by providing explanations for their decision-making
processes. However, these studies often assessed trust after tasks were completed, failing
to capture in-process changes in trust. This limitation made it challenging to identify
critical factors influencing cooperation quality during robot task execution. In contrast,
our paper focuses on the cognitive framework of repairing human trust by addressing
faulty robot behaviors. Through trust modeling that helps robots understand human
expectations, our Trust-R approach enables a swarm to self-correct its faulty behaviors
promptly, rectifying these behaviors before human intervention becomes necessary. This
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proactive fault correction mechanism reduces the cognitive load on humans and fosters
trust repair.

Previous research has also delved into fault detection and tolerance in robot
swarms [27,28]. Inspired by the synchronized flashing behavior observed in fireflies, ref. [29]
developed a general abnormality detection method to identify non-operational robots in a
swarm by analyzing the different flashing frequencies of each robot’s onboard light-emitting
diodes. However, this method required faulty robots to proactively report their fault status
to the swarm for correction, leaving unreported issues unaddressed. Refs. [30,31] developed
behavior-based approaches to distinguish normal from abnormal robots in a swarm, treating
persistent and abundant behaviors as normal and rare behaviors as abnormal. Nevertheless,
these methods have limitations when it comes to robots diagnosing higher-level faults
without a holistic view, as well as coping with variations in tolerance to abnormal behaviors
over time and in specific situations. In contrast, our paper investigates a fault detection
method for robot swarms by developing a robot’s understanding of human trust. Through
self-reflection of robot behaviors based on its estimation of human trust, Trust-R helps a
swarm proactively correct its faulty behaviors.

Some previous work has addressed failures caused by faulty robots within swarms.
For instance, ref. [32] used the transmission of position data between robots to identify
and isolate faulty robots. Refs. [33,34] proposed a decentralized fault-tolerant rendezvous
algorithm to enable fault-free robots to achieve rendezvous even in the presence of faulty
robots. However, these studies assumed that the motion patterns of faulty robots signif-
icantly differed from those of others and had a limited impact on overall performance.
Ref. [35] defined faulty robots as those not located in the desired position, while [36] defined
them as robots with incorrect heading directions. These methods detected and corrected
faulty behaviors by comparing observed behavior with ideal robot behaviors. Nonetheless,
these studies did not account for real-world issues, such as environmental disturbances,
motor degradation, or sensor failures, which introduce uncertainty and significantly affect
swarm performance. In contrast, our Trust-R approach aids robots in self-reflecting on
their behaviors from the perspective of human trust, enabling them to identify and correct
swarm-wide faults while mitigating the negative influence of individual faulty robots. This
proactive fault correction mechanism makes human–swarm cooperation more applicable
to real-world deployments.

Previous research has addressed challenges in dynamic task response. Ref. [37] em-
ployed multiple cooperating robots, with some stationary robots serving as position ref-
erences at each movement step to reduce accumulated position errors. Refs. [38,39] intro-
duced dynamic task allocation, decomposing tasks into a sequence of sub-tasks to limit the
effects of accumulated position errors resulting from hardware information noise over time.
However, these studies assumed that a robot would stop and wait for others to take over
its work once it reached a predefined threshold of position error, which is not suitable for
general dynamic task responses that require continual task execution without interruptions.
In contrast, Trust-R reduces accumulated uncertainty during dynamic task response by
enabling robots to self-diagnose and correct their faulty behaviors early in the process.

Our previous work, as presented in [40,41], demonstrated the effectiveness of a de-
centralized trust-aware behavior reflection method in correcting faulty swarm behaviors.
It also investigated the Trust-R approach, which restored performance and human trust
in the swarm to an appropriate level by correcting undesirable behaviors. This paper
extends our previous research by exploring the effectiveness of Trust-R in dynamic task
response, where sequential task assignments lead to the accumulation of uncertainties
that can undermine swarm performance. Trust-R assists in correcting these accumulated
errors in real time to support dynamic task response in swarms. Additionally, this paper
adopts real-gravity environmental settings and robot models, further aligning the Trust-R
implementation with real-world scenarios.
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3. Materials and Methods
3.1. Distrusted Flocking in Dynamic Task Response
3.1.1. Illustrative Scenario for Swarm Correction

The chosen task scenario involves the execution of patrol tasks in the realm of social
security. A robot swarm is deployed to carry out area inspections as directed by human
supervisors. The desired behaviors for the robots within the swarm encompass consistent
speed and heading direction, along with functional connectivity and formation maintenance.

Let us consider a robot swarm comprising n holonomic robots, each characterized
by their respective positions denoted as Xi ∈ R3, where Xi = (xi,h, xi,v, θi). Each robot is
assigned a unique identifier (UID) represented as i ∈ {1, 2, . . . , n}. The communication
network is represented as G = (V , E), where each node v ∈ V corresponds to a robot.
Robot i exclusively communicates with its immediate neighbors, denoted as j ∈ Ni, with Ni
being the set of all neighbors within a specified communication radius R. If robot j is a
neighbor of robot i, then there exists an edge (vi, vj) ∈ E . The connectivity graph adheres
to the principles of being connected and undirected, meaning that if (vi, vj) ∈ E , then
(vj, vi) ∈ E as well.

Each robot i is controlled via linear velocity uv
i and angular velocity uw

i , which are
generated by the robot’s motors. The state of each robot is characterized by xi and θi, repre-
senting the horizontal and vertical positions as well as the orientation state, respectively.
For a detailed description of the dynamic model for each robot, please refer to our prior
publication [40].

At each time step t, a robot i updates its motion status by computing an average of its
neighbors’ motion statuses using Equation (1).

ui[t + 1] =
1

Ni + 1
(ui[t] + ∑

j∈Ni

uj[t]) (1)

As evident from the aforementioned distributed update method, faulty robots can
transmit unreliable motion information to their neighbors, thereby misleading the motions
of their neighbors.

Definition 1. A “Faulty robot” is defined as a robot that exhibits undesired behaviors resulting from
the propagation of faulty data from a failed robot, environmental disturbances, or other correctable
causes. In contrast, a “Failed robot” refers to a robot whose undesired behaviors are not correctable.

Definition 2. During swarm deployments, where the influence of faulty robots is apparent,
the swarm may display abnormal behaviors, such as partial disconnection or heading deviation.
Such deviations erode human trust in the swarm’s performance, leading to the categorization of the
swarm as a “Distrusted swarm”.

Definition 3. In the context of this study, “Influential Factors” refer to real-world factors such as
degraded robot motors, sensor and mechanical system uncertainties, environmental disturbances
(e.g., wind or rain), or other elements that can induce abnormal robot behaviors and compromise
robot performance. These influential factors contribute to the occurrence of “robot faults”, which are
characterized by abnormal robot behaviors, such as degraded performance or anomalous motions.

3.1.2. Dynamic Task Response with Accumulated Uncertainty

In practical scenarios characterized by the complexity of real-world tasks and environmen-
tal conditions, robot swarms are often tasked with continuous task execution. This includes
transitioning from one task to another seamlessly and adapting to emergent tasks even in
the middle of an ongoing one. To ensure that the robot swarm effectively navigates toward
dynamic task destinations, the robots within the swarm are categorized into two types: leader
robots and follower robots. In a conventional hierarchical swarm control setup [42], only leader
robots have access to control information transmitted from the base station, such as dynamic
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target coordinates and cruising speeds. In contrast, sensor data, encompassing velocity and
position information, can be exchanged among all types of robots within the swarm.

Simultaneously, faulty robots tend to accumulate motion uncertainties, manifesting as
shifts in location, deviations in heading direction, fluctuations in speed, and inconsistencies
in mapping within the swarm due to updates in consensus policies. In this paper, focusing
on the speed and heading direction requirements for flocking behaviors, the accumulated
uncertainty is quantified as the accumulated speed δu and accumulated location shift δx of
the swarm relative to the expected swarm status upon receiving a new task assignment.
Under this assumption, the velocity ui of leader robots is updated using Equation (2):

ui[t + 1] =
1

Ni + 1
(ui[t] + ∑

j∈Ni

uj[t]) + uγ
i [t] (2)

where uγ
i is the navigational feedback and accumulated uncertainty given by:

uγ
i [t] := f γ

i (xi[t], xγ, δx, ui[t], uγ, δu)

= −cγ
1 (xi[t]− xγ + δx)− cγ

2 (ui[t]− uγ + δu), cγ > 0,

and the γ − robot (xγ, uγ) is the virtual leader that leads the swarm to follow its trajectory.
Here, xγ and uγ represent the destination and cruising speeds of the virtual leader (γ),
which guides the swarm to follow a predetermined trajectory [43,44]. The parameters cγ

represent the gain components associated with the virtual leader’s control. In the context
of normal task execution, as time progresses (t → ∞), the behaviors of individual robots
are expected to converge toward values such that |xi[t]− xγ| → 0 and |ui[t]− uγ| → 0 [45].
However, when the swarm responds to a dynamic task, the expected swarm status upon
receiving the new task assignment can be influenced by δx and δu. As demonstrated by
the dynamic task update method mentioned earlier, faulty robots have the potential to
introduce uncertainty into the swarm’s behavior, thereby deteriorating the swarm’s task
performance. To mitigate this uncertainty and ensure swarm performance, our method is
designed to actively suppress the negative influences represented by δx and δu in real time,
ultimately leading to the correction of swarm behaviors.

3.2. Trust-Aware Reflective Control for Dynamic Task Response

The architecture of the Trust-R system is illustrated in Figure 2. With the Trust-R
approach, an understanding of human-expected behaviors is cultivated to govern the
quality of communication between the robot and its neighboring robots, with the aim of
minimizing the adverse impact of a faulty robot on the entire swarm.

Figure 2. Trust-aware reflective control for dynamic task response in human–supervisory swarm
deployment. The weighted communication quality method enhances information exchange and
connectivity between trustworthy robots and decreases information sharing between faulty robots.
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3.2.1. Human Supervision

Within the realm of human–swarm cooperation, the human assumes the role of an
operator responsible for monitoring and directing the task execution of the robot swarm.
As the operator, the human continuously monitors the real-time status of all robots and pos-
sesses knowledge of the desired swarm behavior, including parameters such as minimum
velocity, heading direction, and formation criteria. The operator is capable of discerning
the current performance from the expected performance and assigns performance scores
to individual robots and the entire swarm. Subsequently, these performance scores are
employed to establish thresholds that determine the trust level of the behaviors exhibited
by the swarm. The swarm, informed of these thresholds, then undertakes self-correction
based on its comprehension of human trust. In this paper, the scores assigned by the
human operator to each robot serve as fundamental parameters for adjusting the overall
performance of the robot swarm.

3.2.2. Trust-Aware Connectivity

In response to the trust signal conveyed by a human operator, each robot formulates its
communication strategy with neighboring robots. Typically, each robot within the swarm
calculates its speed by averaging the speeds of all its neighbors in order to reach a consensus.
However, in instances where faulty robots are present within the swarm, their detrimental
impact on swarm performance poses a risk to the successful execution of assigned tasks.
For example, a robot in the swarm may exhibit unexpected linear velocity and angular
velocity due to a motor malfunction. Since the swarm strives to reach a consensus, where
robots exchange status information with their neighbors, the presence of faulty robots can
disrupt the swarm’s performance. To address this challenge, this paper employs a weighted
connection approach, drawing inspiration from the weighted mean subsequence reduced al-
gorithm [46]. This method enhances connectivity and communication between trustworthy
robots while reducing the level of information-sharing among faulty robots. Incorporating
the WMSR algorithm, Trust-R dynamically adjusts communication weights among robots
based on trust assessments. Each robot i exclusively engages in communication with its
direct neighbors, denoted as j ∈ Ni, where Ni represents the set of all neighbors of robot i
within the communication radius. Specifically, for robot i, the velocity ui is updated with a
weighted reference to its neighbors, incorporating trust-derived weights:

ui[t + 1] = wi[t]ui[t] + ∑
j∈Ni

wj[t]uj[t] (3)

Here, wi[t] and wj[t] are weights aligned with trust levels of robot i and its neighbors at
time t, respectively. The calculation method of the weights is detailed in Section 3.2.4. This
integration of WMSR into Trust-R effectively diminishes the influence of less trustworthy
robots, ensuring the swarm’s robustness and alignment with human expectations. The
major parameters of the robot in the swarm used are illustrated in Figure 3.

Figure 3. Major robot movement parameters used in the trust-aware reflective control framework.
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3.2.3. Trust-Aware Communication Quality Assessment

For robot i, the complete communication graph is denoted as E = (i, j) | j ∈ Ni.
Within this context, the estimated trust levels of the two robots i, j are employed to es-
tablish the communication quality, denoted as fij ∈ [0, 1], which serves as a metric for
assessing the reliability of exchanged information. The trust-aware communication quality
undergoes dynamic updates to adapt to changes in the communication graph, as described
by Equation (4). The parameter ρ signifies the optimal communication distance between
two robots i and j, where communication within this distance is deemed to possess the
highest quality. Additionally, the parameter η is introduced as a weighting factor designed
to mitigate the impact of faulty robots on their neighboring robots.

fij =


0 ||xi − xj|| ≥ R
1
2 (gi + gj)η ||xi − xj|| ≤ ρ
(gi+gj)η

2 exp
−γ(||xi−xj ||−ρ)

R−ρ otherwise
(4)

where gi is the trust level of robot i. The communication quality evaluation method outlined
above implies that within the communication range, the reliability of communication is
determined by averaging the trust values of the two robots involved, i, j. In cases where both
robots are trusted, their communication is considered the most reliable. However, if one
of the robots is deemed faulty, the most reliable communication within that connection is
attributed to the trusted robot.

The motivation behind developing the trust-aware communication quality is twofold.
Firstly, it aims to promote information-sharing with trusted robots by assigning higher
upper limits to their communication quality. Conversely, it discourages information-
sharing with untrusted robots by setting lower upper limits on their communication quality.
Secondly, to encourage the formation of a cohesive swarm with robots positioned close to
each other, the communication quality diminishes as the distance between robots increases.

3.2.4. Trust-Aware Behavior Correction

The process of proactively correcting faulty behaviors within a swarm is a two-step
procedure. Initially, it involves the correction of faulty robots by limiting the exchange
of unreliable information originating from these robots and relying on trusted robots for
behavior correction. Failed robots are segregated from the group of trusted robots to
prevent the dissemination of unreliable motion information. Subsequently, the connectivity
control mechanism introduced in Section 3.3 is employed to reduce the separation between
robots and their “normal” neighbors. This adjustment results in each robot modifying its
behavior, including heading direction and speed, based on a higher proportion of trusted
motion information.

wk[t] =
f̂k[t]

f̂i[t] + ∑j∈Ni
f̂ j[t]

, k ∈ [i, Ni] (5)

The calculation of weights for updating each robot’s status is determined by
Equations (3) and (5). The outcome of the weighted connection mechanism is depicted on
the right side of Figure 2 and can be expressed using Equation (6).

ui[t + 1] =
f̂k[t]

f̂i[t] + ∑j∈Ni
f̂ j[t]

(ui[t] + ∑
j∈Ni

uj[t]) (6)

In the process of updating the status of robot i, the weights wk are computed by
normalizing all the communication quality values within the communication range, as de-
scribed in Equation (5). Specifically, when k = i, the trust level of the robot itself is used,
denoted as f̂k = gi. Conversely, when k = j ∈ Ni, the communication quality between
robots i and j is utilized, denoted as f̂k = fij. It is important to note that f̂i = gi holds true
for all values of k.
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With the trust-weighted update, the control input ui
v and ui

w for robot motors are changed
to ui

v,trust and ui
w,trust. The gains Kv and Kw are parameters for adjusting the motor output.

uv
i,trust = (Kv + Kv,trust)(vi + qNi )

Tbi (7)

uw
i,trust = (Kw + Kw,trust)

(
γi + ϕ(bi, qNi

)
)

(8)

Let ui[t + 1] represent the current speed of a robot exhibiting abnormal behaviors at
time t + 1, while the expected speed calculated by referencing its trusted neighbors is de-
noted as ui,trust[t + 1]. To adjust the control output of the robot’s motors, we can determine
the additional trust gains Kv,trust and Kw,trust. These gains are updated according to the
disparity between the robot’s actual speed and the speed trusted by the human operator.

Kv,trust[t + 1] =
uv

i,trust[t]− uv
i [t]

uv
i [t]

(9)

Kw,trust[t + 1] =
uw

i,trust[t]− uw
i [t]

uw
i [t]

(10)

In order to avoid collision, the safe distance (repulsion radius) for separating robots is
set to r.

3.3. Trust-Aware Connectivity Maintenance for Motion Consensus

To further rectify faulty swarm behaviors, the connectivity between a faulty robot and
the other trusted robots is enhanced using Equation (6). In this context, L represents the
Laplacian matrix of the graph, and λ2 denotes the algebraic connectivity, with e2 corre-
sponding to the associated eigenvector. This enhancement aims to reduce the separation
between a faulty yet correctable robot and its neighboring trusted robot. By bringing
these robots closer together, more reliable information becomes available, facilitating the
correction of the faulty robot’s behavior. Here, xi,ψ represents the position component

in the direction ψ (either horizontal or vertical) for robot i. The computation of αL(x)
αxi,ψ

is
achieved by assessing the difference in reliability values, fij, between adjacent time steps,
as demonstrated in Equation (6).

ui = ▽i,ψλ2 (11)

=
αλ2(L)

αxi,ψ
=

αλ2(L)
αL(x)

αL(x)
αxi,ψ

= Trace


[

e2eT
2

eT
2 e2

]T[
αL(x)
αxi,ψ

] (12)

Theorem 1. The Trust-R method promotes a relatively shorter distance between a robot and other
trusted robots, while simultaneously advocating for a relatively greater distance between a robot and
other distrusted robots. This adjustment gradually diminishes to zero once a consensus is attained
within the flocking behavior.

Proof. When using the trust-aware communication quality to adjust the distance of robot i
to other robots, the adjustment along a direction ψ is

ui = Trace


[

e2eT
2

eT
2 e2

]T[
αL(x)
αxi,ψ

]
= Trace


[

e2eT
2

eT
2 e2

]T[
α[L]ij
αxi,ψ

]
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For the off-diagonal elements in the Laplacian matrix, L,
α[L]ij
αxi,ψ

is solved by

∑
K

−
α fij

αxk,ψ
uk,ψ =

α fij

αxi,ψ
(uj,ψ − ui,ψ)

For the diagonal elements in L,
α[L]ij
αxi,ψ

is solved by

∑
k

(
∑

j

α fij

αxk,ψ

)
uk,ψ = ∑

j

α fij

αxi,ψ
(ui,ψ − uj,ψ)

Since

α fij

αxi,ψ
= −

γη(gi + gj)(xi,ψ − xj,ψ)

2(R − ρ)||xi − xj||
exp

−γ(||xi − xj|| − ρ)

R − ρ

α fij
αxi,ψ

is constrained by the distance between the robots, which is always smaller than the
communication radius R. When considering a desired flocking direction q0, the degree
of adjustment ui between two robots i and j is directly proportional to their average trust

score, calculated as
(gi+gj)η

2 . A higher trust score results in a more significant adjustment.
Consequently, the Trust-R method encourages robots to maintain a relatively shorter
distance from other trusted robots while advocating for greater separation from abnormal
robots. As a result, the swarm gradually distances itself from the abnormal, faulty robots.

Once the robots achieve consensus in their heading direction, the values of ui and uj

will become equal within a finite time. Consequently,
α fij

αxi,ψ
will reach 0, effectively ceasing

the adjustment process when consensus is attained.

3.4. Experiment

To assess the effectiveness of Trust-R in assisting the swarm in self-diagnosing and
proactively mitigating the influence of faulty behaviors, three sequential task scenarios
were developed. These scenarios were employed to compare the accumulated error and
human trust ratings of the swarm both before and after implementing the Trust-R method.

3.4.1. Environment Design

The simulation environment was constructed using the CRAImrs framework, which
is based on the Gazebo simulation software, task-specific swarm control laws, and trust
models [47,48]. This environment is capable of simulating multi-robot teamwork while
accounting for faulty robot behaviors resulting from real-world factors.

The simulated world has a map size of 50 × 50 m, as depicted in Figure 4. Within this
environment, three green areas represent the targets for three distinct tasks. A quadrotor
UAV model is incorporated into the simulation, and it can be controlled through velocity
components in three-axis directions. The UAV model provides status information such as
linear velocity, angular velocity, altitude, and absolute coordinates in the simulation world
via an API. The experiment involves six robots, including one robot with motor issues,
simulating a faulty robot. Each robot has a velocity set at 5.0 m/s, and a repulsion radius of
2 m is established to prevent collisions. The communication radius for all robots is 7.5 m.

In the communication quality assessment method (Equation (4)), g and η are used to de-
fine upper limits on communication quality, while γ determines the sensitivity of quality to
mutual distance. Based on previous research [40], the g values are set as (1, 0.5, 0) for trusted
robots, faulty robots, and failed robots, respectively. The η values are (1, 1, 0.4, 0.3, 0.2, 0.2),
and the γ values are (0.1, 0.5, 1, 3, 5, 7) for communications between trusted-trusted robots,
trusted-faulty robots, trusted-failed robots, faulty-faulty robots, faulty-failed robots, and
failed-failed robots.
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Figure 4. The simulation environment. In each task, the robot swarm will dynamically flock to an
assigned target area marked in green on the map.

3.4.2. Task Scenario Design

Three typical tasks covering essential elements of dynamic task response scenarios
were designed: Scenario 1: flocking to the assigned destination; Scenario 2: a transition
between destinations; and Scenario 3: emergent response. In the first scenario, the UAV
swarm’s task is to monitor a target. The swarm is initially positioned at the “base station”,
and its objective is to flock to “target 1”. During this flocking operation, one of the UAVs
experiences a motor issue, affecting the entire swarm’s performance. The application of
Trust-R is tested in this scenario to determine whether it can help restore trust between the
human operator and the UAV swarm by improving the swarm’s performance. In the second
scenario, the UAV swarm is programmed to follow the final state achieved in Scenario 1
and then transition to “target 2”. This represents a situation where the UAV swarm needs
to switch destinations, moving from “target 1” to “target 2”. The scenario assesses how
the accumulated error during the transition between destinations affects human trust in
the swarm and whether Trust-R can enhance the UAV swarm’s performance in dynamic
situations. In the third scenario, similar to Scenario 2, the UAV swarm follows the final
state achieved in Scenario 1 and then transitions to “target 2.” However, in the middle of
the flight, the leader UAV receives an order to change the target to an “emergent target”
(“target 3”). The entire UAV swarm is expected to shift from the normal target to the
emergent target, altering the swarm’s state from cruising response to emergent response in
terms of direction and velocity.

Each of the three task scenarios was simulated under four different conditions to
thoroughly evaluate the effectiveness of Trust-R in various scenarios and with different
levels of influential factors. The two different levels of influential factors, pertaining to
motor issues, have restricted maximum speeds of 40% and 70%, respectively, to test the
effectiveness of Trust-R with different faulty levels. Moreover, the variation in motor fault
allows for more opportunities for the human to perceive the fault if the faults were not
readily salient and apparent to the participants. The four simulated conditions are faulty
condition suffering one failed robot with 40% maximum speed, faulty condition suffering
one failed robot with 70% maximum speed, repaired condition suffering one failed robot
with 40% maximum speed, and repaired condition suffering one failed robot with 70%
maximum speed.
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3.4.3. Human User Study

A human user study was conducted with the participation of 145 volunteers. The com-
plete questionnaire can be accessed via the link https://kent.qualtrics.com/jfe/form/
SV_0OImxiQRWOqxSId (accessed on 20 March 2024). The study was conducted on the
crowd-sourcing platform Amazon Mechanical Turk, as detailed by Buhrmester et al. (2016)
[49]. Volunteers who were proficient in English were recruited and compensated with a
payment for their active involvement. To ensure data quality, strict eligibility criteria were
enforced, requiring participants to be Amazon Turk Masters with an answer Approval Rate
exceeding 80%.

The user study comprised two primary segments: a tutorial and an actual survey.
The tutorial encompassed instructional video materials pertaining to a specific task, along
with responses to associated queries. Subsequently, the survey phase featured twelve
distinct sections, including three task scenarios, each encompassing four simulated condi-
tions. While the three task scenarios followed a sequential order, the presentation of the
four conditions within each scenario was randomized to mitigate any potential bias from
prior knowledge. In each section of the study, participants were tasked with monitoring
the progress of a designated task and assessing the swarm’s motion behaviors. These
behaviors included attributes such as flocking speed, heading direction, and the spatial
relations of robots (connectivity and formation). Participants were then presented with
a video depicting a UAV swarm engaged in a task and asked to determine whether any
faults occurred in the video. Subsequently, a series of questions concerning the participants’
judgments regarding the swarm and specific UAVs were presented. For illustrative pur-
poses, two sample questions pertaining to the normal performance of a UAV swarm from
the tutorial section are provided below. Following the viewing of a video showcasing the
normal performance of a UAV swarm, participants were introduced to these two questions:

Question 1: According to your observation of their motion behaviors and performance, do you
think a fault occurs in the video? Answer 1: a. Yes, a fault occurs. b. No, it looks normal.

Question 2: Determine to which extent you trust the whole robot swarm. Answer 2: a.
Completely Distrust. b. Distrust. c. Neutral. d. Trust. e. Completely Trust.

4. Results

The data we have collected comprises 50 instances of valid data, with the collected
variables falling under the category of ordinal categorical data. To evaluate the influence
of various factors on human trust in UAV swarm interactions, we have employed the
Mann–Whitney U test as our analytical method. This non-parametric statistical test is ideal
for our analysis because it compares differences between two independent groups when
the dependent variable, in this case, ordinal trust levels, is not normally distributed. For
the sake of convenience, a mapping relationship has been established between human
trust levels and numerical values, which are as follows: Completely Distrust: 1, Distrust: 2,
Neutral: 3, Trust: 4, and Completely Trust: 5.

In summary, Table 1 presents the trust levels of human participants in both the faulty
and repaired conditions for UAV swarms across all scenarios. Additionally, Table 2 com-
piles the final values of the flocking heading direction and distance to the destination for
all scenarios. The results of testing the effects of Trust-R on human trust reveal substantial
disparities between the faulty and repaired conditions, as depicted in Figure 5. The mean
trust levels in the faulty and repaired conditions were 2.4 and 4.0, respectively. Participants
were more likely to bestow higher levels of trust upon the repaired condition when com-
pared to the faulty condition (U = 18560, ρ = 0.21). Notably, in Scenario 1, participants
did not exhibit a significantly elevated level of trust in the repaired conditions as opposed
to the faulty conditions. However, as the accumulated error propagated negative effects
from faulty UAVs to the entire swarm in Scenarios Two and Three, participants were more
inclined to place their trust in the repaired conditions rather than the faulty conditions.
Detailed results from the three designed scenarios are presented as follows.

https://kent.qualtrics.com/jfe/form/SV_0OImxiQRWOqxSId
https://kent.qualtrics.com/jfe/form/SV_0OImxiQRWOqxSId
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Table 1. Dynamic scenario conditions ∗ Mann–Whitney U.

Swarm Status
Median Trust Level

Faulty Repaired ρ ∗

Scenario 1 Neutral/3.34 Trust/3.53 0.46
Scenario 2 Distrust/1.83 Trust/4.18 0.04
Scenario 3 Distrust/2.0 Trust/4.22 0.09

Table 2. Values of flocking heading direction and final distance to target.

Value 1 Value 2

Designed Faulty Repaired Designed Faulty Repaired

Scenario 1 −4 −25 −19 0.0 6.6 5.6
Scenario 2 43 3 46 0.0 20.6 2.0
Scenario 3 0 −19 −4 0.0 9.8 3.2

Figure 5. The average human trust level of the faulty condition and repaired condition for dynamic
task response.

4.1. Scenario I: Flocking to the Assigned Destination

Figure 6 presents the outcomes of the experiment conducted within Scenario 1. Notably,
participants exhibited similar tendencies to report faults in both the faulty and repaired
conditions (U = 4550, ρ = 0.46). The mean trust levels for the faulty and repaired conditions
were 3.34 and 3.53, respectively, with participants not indicating significantly higher trust
levels in the repaired condition than in the faulty condition (U = 4746, ρ = 0.47).

Figure 6. Experiment result for Case Study I: flocking to the assigned destination. In the faulty
condition, the UAV swarm performs the task in the presence of a faulty robot; while applying
the Trust-R, the UAV swarm will restrict the influence of the faulty robot, which improves the
performance of the UAV swarm.

In the context of Scenario 1, the likelihood of participants reporting faults in the
faulty conditions varied with the severity of the faulty issues (U = 600, ρ = 0.24). Partici-
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pants were more inclined to report faults when confronted with more substantial levels of
faults. Concerning the faulty conditions, participants exhibited lower trust levels as the
severity of faulty issues increased (U = 479, ρ = 0.19). Similarly, in the repaired condition,
participants displayed diminished trust levels with increasing severity of faulty issues
(U = 440, ρ = 0.18). Regarding the faulty condition, participants conveyed an average con-
fidence level of 3.6 points in their ability to identify the faulty robots within the swarm. This
confidence level was categorized as follows: (Very difficult: 1, Difficult: 2, Neutral: 3, Easy:
4, and Very easy: 5). In the faulty condition, 52% of participants who reported faults were
able to correctly identify the faulty UAV within the swarm but made misidentifications
among the normal UAVs. In contrast, only 8% of the participants correctly identified the
faulty robot without any errors.

4.2. Scenario II: A Transition between Destinations

Figure 7 shows the result of the experiment under Scenario 2. In Scenario 2, a signif-
icant distinction was observed between the likelihood of participants reporting faults in
the faulty condition compared to the repaired condition. Participants were notably more
inclined to report a fault in the faulty conditions as opposed to the repaired conditions
(U = 400, ρ = 0.04). The mean trust levels for the faulty and repaired conditions were
1.83 and 4.18, respectively, with participants demonstrating a stronger tendency to report
higher trust levels in the repaired condition than in the faulty condition (U = 316, ρ = 0.03).

Figure 7. Experiment results for Case Study II: a transition between destinations. In the faulty
condition, the UAV swarm performs a task in the presence of a faulty robot; while applying the Trust-
R, the UAV swarm will restrict the influence of the faulty robot, which improves the performance of
the UAV swarm.

The probability of participants reporting faults in the faulty conditions remained
relatively consistent across different levels of faulty issues (U = 1250, ρ = 0.5). Participants
exhibited a similar disposition to report faults irrespective of the severity of faulty issues
in Scenario 2. Furthermore, within the faulty condition, participants displayed uniform
trust levels across varying levels of faulty issues (U = 1226, ρ = 0.49). Similarly, in the
repaired condition, participants exhibited consistent trust levels across different levels
of faulty issues (U = 1220, ρ = 0.49). For the faulty condition, participants expressed
an average confidence level of 3.9 points in their ability to identify faulty robots within
the swarm. In the faulty condition, 95% of participants who reported faults were able to
correctly identify the faulty UAV within the swarm, albeit with misidentifications among
the normal UAVs. Moreover, 23% of the participants correctly identified the faulty robot
without any errors.

4.3. Scenario III: Emergent Response

Figure 8 shows the results of the experiment under Scenario 3. The likelihood of par-
ticipants reporting faults in both the faulty and repaired conditions exhibited a significant
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disparity in Scenario 3. Participants displayed a greater propensity to report faults in the
faulty conditions compared to the repaired conditions (U = 850, ρ = 0.09). The mean trust
levels in the faulty and repaired conditions were 2 and 4.22, respectively. Furthermore,
participants were more inclined to attribute higher trust levels to the repaired condition as
opposed to the faulty condition (U = 480, ρ = 0.05).

Figure 8. Experiment results for Case Study III: emergent response. In the faulty condition, the UAV
swarm performs a task in the presence of a faulty robot; while applying the Trust-R, the UAV swarm
will restrict the influence of the faulty robot, which improves the performance of the UAV swarm.

In Scenario 3, concerning various levels of faulty issues, the probability of participants
reporting faults in the faulty conditions was relatively similar (U = 1050, ρ = 0.42).
Participants did not manifest a discernible variance in fault reporting across different
faulty levels in Scenario 2. Both in the faulty and repaired conditions, participants exhibited
uniform trust levels across varying faulty levels (U = 1060, ρ = 0.42 and U = 1071, ρ = 0.43
for faulty and repaired conditions, respectively). In the faulty condition, participants
exhibited an average confidence score of 3.9 in identifying faulty robots within the swarm.
In this condition, 90% of participants correctly identified the faulty UAV among the swarm
when they reported a fault, while 22% of the participants identified the faulty robot without
any misclassification errors when normal UAVs were erroneously identified.

5. Discussion

This study has delved into the potential application of Trust-R within the context of
robot swarms under human supervision. In such scenarios, information exchange among
neighboring robots plays a pivotal role in the control loop of each individual agent. The uti-
lization of a weighted connection mechanism facilitates the translation of human trust
into the information-sharing process, thereby imposing constraints on the dissemination
of untrustworthy information, ultimately leading to performance enhancements for the
entire team. In essence, human trust serves as an estimation of the capabilities of individual
robots or the swarm as a whole. The implementation of a trust mechanism has demon-
strated its capacity to bolster the performance of Unmanned Aerial Vehicles (UAVs) and
foster improved collaboration between humans and robots. Trust-R serves as a crucial
intermediary, bridging the gap between robot performance and human oversight, thus
facilitating more dependable predictions of successful task completion.

The research indicates that the application of Trust-R enhances the performance of
swarms and gains higher human trust. It is important to see trust-aware mechanisms in
the context of human–robot collaboration. Trust-R works by making robot actions closer
to what humans think should happen and fixing problems fast, improving the overall
functionality and reliability of the system, which is vital for tasks requiring quick and
accurate execution, such as disaster response or surveillance. Trust-R’s objective focuses on
improving task efficiency and better understanding and integrating trust dynamics within
the human–swarm cooperation scenario. By embedding trust as a core component of the
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control algorithm, Trust-R enhances the build-up of better trust and belief between humans
and groups of robots. Trust-R can be adopted in practical applications for various needs,
such as environmental monitoring and search and rescue operations. Using Trust-R, these
systems can perform their jobs better and are more trustable, making them better for use in
the real world. Additionally, the principles underlying Trust-R can inspire new models for
human–swarm interactions, underscoring the importance of trust and the ability to rectify
mistakes for effective collaboration.

6. Conclusions

This paper presents the methodology for enhancing human–swarm cooperation and
reports the outcomes of an experimental investigation in which the application of Trust-
R was employed to mitigate the impact of malfunctioning UAVs within the swarm. In
Scenario 1, participants were unable to discern a significant difference between the faulty
and repaired conditions (ρ1 = 0.46). Their levels of trust in both conditions were simi-
lar, measuring at 3.34 and 3.53, respectively. However, in Scenarios 2 and 3, participants
could readily distinguish between the faulty and repaired conditions (ρ2 = 0.04, ρ3 = 0.09).
Following the implementation of Trust-R, participants exhibited increased trust in the
repaired condition compared to the faulty condition. In both normal and emergent scenar-
ios, Trust-R substantially mitigated the adverse influence of malfunctioning UAVs on the
swarm, achieving comparable effectiveness in guiding a human–supervised swarm toward
dynamic task responses.

Looking ahead, our future research endeavors will encompass a comprehensive con-
sideration of additional fault factors arising from system instability and environmental
disturbances. This will enable the development of a precise trust-based methodology aimed
at enhancing the performance of UAV swarms engaged in dynamic tasks. Furthermore,
we intend to measure the trust levels assessed by human operators and the associated
thresholds, shedding light on the intricate relationship between fault factors and human
judgment. Simultaneously, challenges emerge when operating in environments replete
with obstacles or overseeing swarms comprising a multitude of UAVs, primarily stemming
from the inherent limitations of human cognitive capacities when it comes to multitasking
and attending to multiple robots. Therefore, forthcoming research endeavors will be geared
toward adapting robots to accommodate these constraints inherent in human cognition
during human–swarm collaboration scenarios.
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