
Citation: Ott, S.; Burkhard, B.;

Harmening, C.; Paffenholz, J.-A.;

Steinhoff-Knopp, B. Comparative

Analysis of Algorithms to Cleanse

Soil Micro-Relief Point Clouds.

Geomatics 2023, 3, 501–521.

https://doi.org/10.3390/

geomatics3040027

Academic Editors: Dionissios Kalivas,

Thomas Alexandridis, Konstantinos

X. Soulis and Emmanouil Psomiadis

Received: 11 October 2023

Revised: 20 November 2023

Accepted: 23 November 2023

Published: 26 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Comparative Analysis of Algorithms to Cleanse Soil
Micro-Relief Point Clouds
Simone Ott 1,* , Benjamin Burkhard 1 , Corinna Harmening 2, Jens-André Paffenholz 3

and Bastian Steinhoff-Knopp 4

1 Institute of Physical Geography and Landscape Ecology, Leibniz University of Hannover,
30167 Hannover, Germany; burkhard@phygeo.uni-hannover.de

2 Geodetic Institute Karlsruhe (GIK), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany;
corinna.harmening@kit.edu

3 Institute of Geo-Engineering, Clausthal University of Technology (TUC),
38678 Clausthal-Zellerfeld, Germany; jens-andre.paffenholz@tu-clausthal.de

4 Coordination Unit Climate and Soil, Thünen-Institute, 38116 Braunschweig, Germany;
bastian.steinhoff-knopp@thuenen.de

* Correspondence: ott@phygeo.uni-hannover.de

Abstract: Detecting changes in soil micro-relief in farmland helps to understand degradation pro-
cesses like sheet erosion. Using the high-resolution technique of terrestrial laser scanning (TLS), we
generated point clouds of three 2 × 3 m plots on a weekly basis from May to mid-June in 2022 on
cultivated farmland in Germany. Three well-known applications for eliminating vegetation points
in the generated point cloud were tested: Cloth Simulation Filter (CSF) as a filtering method, three
variants of CANUPO as a machine learning method, and ArcGIS PointCNN as a deep learning
method, a sub-category of machine learning using deep neural networks. We assessed the methods
with hard criteria such as F1 score, balanced accuracy, height differences, and their standard devia-
tions to the reference surface, resulting in data gaps and robustness, and with soft criteria such as
time-saving capacity, accessibility, and user knowledge. All algorithms showed a low performance at
the initial measurement epoch, increasing with later epochs. While most of the results demonstrate a
better performance of ArcGIS PointCNN, this algorithm revealed an exceptionally low performance
in plot 1, which is describable by the generalization gap. Although CANUPO variants created the
highest amount of data gaps, we recommend that CANUPO include colour values in combination
with CSF.

Keywords: point cloud classification; CSF; CANUPO; ArcGIS PointCNN; vegetation detection;
terrestrial laser scanning; soil surface; micro-relief

1. Introduction

The importance of healthy soils is impossible to overestimate, as it is the foundation of
food security and many other life-sustaining ecosystem services. One major driving factor
of soil degradation is the process of soil erosion. Current global rates of soil erosion are
already far above the natural soil formation rates. Moreover, climate change, as well as
land use changes, will exacerbate the situation [1,2].

Knowledge about drivers and actual soil erosion rates at the local scale is key to
mitigating the degradation process, in particular, as relevant land management actions
are at the local level. Consequently, high-resolution acquisition techniques such as un-
manned aerial vehicle (UAV) photogrammetry or terrestrial laser scanning (TLS) have
already been used in various studies to determine soil loss due to erosion under controlled
conditions [3–8]. However, the findings can only be transferred to a limited extent to field
conditions with actual agricultural tillage and cultivation of crops. In addition to silting,
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soil settlement, shrinkage, and swelling, sheet erosion is a significant process that changes
the soil micro-relief [9].

Two specific challenges therefore exist in the assessment of soil surface change. Firstly,
as the focus lies specifically on the detection of small-scale erosion processes, such as sheet
erosion or incipient formation of rill erosion, changes at the microscale level (millimetre
to centimetre differences) have to be detectable. At that scale, particular difficulties like
strong data noise and an increased influence of outliers occur. Secondly, when changes in
field conditions are assessed, it can be seen that the influences of varying environmental
conditions increase (e.g., crops). Thus, the acquired data have to be cleaned by removing
the environmental condition (e.g., growing crop) of different measurement epochs (the
term “measurement epoch” is abbreviated as “epoch” in the following and should not
be confused with the term epoch as it is used in the field of machine learning) from the
data set.

The separation of 3D point clouds into meaningful subsets is a task that is addressed
by many applied filtering and classification algorithms. In principle, the point cloud is
grouped into subsets based on characteristics like geometry or radiometry, mostly based on
their spatial relation to each other (segmentation) or a combination of specific pre-defined
features, which are labelled on a point-by-point basis (classification) [10,11]. Point clouds
are mostly divided into separate ground points from points representing vegetation [12,13].

These approaches can be categorized according to their complexity, as shown in
Figure 1 (top). Filtering algorithms simply extract subsets of point clouds based on spe-
cific criteria like intensity or reflectance values. In contrast to the segmentation process,
not all filtering algorithms need neighbourhood as feature information [14]. In contrast,
classification methods use statistical or machine learning methods [14].
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Since classification algorithms are predominantly machine learning algorithms, they
can be categorized into unsupervised, supervised, or semi-supervised classification algo-
rithms [10]. While unsupervised classification depends only on simple parametrization
set by the user without further data labelling, the point cloud division by supervised
classifications requires pre-categorization. Semi-supervised classification uses partly cat-
egorized training data as a basis for the classifier to allocate the unlabelled data. Deep
learning is a more complex sub-category of machine learning, using different stacked
layers of information for the iterative decision process. Nguyen et al. (2013) and Sarker
(2021) [15,16] categorized the subdivision methods for 3D point clouds into five classes:
edge-based methods (based on the shape of objects), region-based methods (based on
neighbourhood information), attributes-based methods (clustering attributes and spatial
information), model-based methods (grouping points based on geometric primitive shapes),
and graph-based methods (point clouds considered in terms of a graph with connected
vertices). Graph-based methods are mainly used in deep learning algorithms, where point
clouds are structured at different levels [15]. In this paper, we therefore distinguish be-
tween the sub-category of machine learning applications, which requires a higher degree of
human intervention and are not based on deep neuronal networks, and the more complex
sub-category of machine learning, deep learning, where a deep neuronal network leads to
minimal human intervention during the learning process. Figure 1 illustrates the different
categorizations of partitioning algorithms.

Depending on which method the algorithm is based on, it is more or less sensitive
to noise. The quality of the structuring of a highly dense 3D point cloud (in this study,
0.4 points per cm2) at the microscale therefore particularly depends on the choice of the
algorithm. While graph-based methods are robust against noise or uneven density, edge-
based and region-based methods are sensitive to noise [15]. Therefore, the question arises
as to choosing the right method when investigating changes in soil micro-relief at the plot
scale. The following questions are addressed in this study:

(1) Can well-known methods provide sufficiently accurate results in separating vegeta-
tion from soil at the plot scale?

(2) Can these algorithms maintain their level of accuracy at different epochs during the
examined vegetation growing period and different plots?

(3) To what extent does the choice of the algorithm affect the results?
(4) Does the complexity of the application increase the accuracy of the results?

As we focus on the applicability and possible time-saving capacity of methods to
detect dynamics in the soil surface micro-relief, three well-known applications were tested
for their performance and their aftereffects in the estimation of soil surface changes like soil
loss. We tested the filter algorithm Cloth Simulation Filter (CSF) [17] and the region-based
classification algorithm CANUPO [18] as supervised machine learning applications, both
implemented in the open-source software CloudCompare (version 2.12 beta). As a deep
learning method, we used the graph-based algorithm PointCNN [19], which was integrated
as an extension in the software ArcGIS Pro (version 2.9). The basic assumption is that as the
complexity of used methods increases, the accuracy improves, and consequently, errors are
reduced regardless of different starting points such as varying plot positions or changing
vegetation height.

2. Materials and Methods
2.1. Data Acquisition
2.1.1. Study Site

The study area is located in the southern part of the German federal state Lower
Saxony, near the village of Lamspringe (Figure 2). The area under investigation is situated
on cropland, which is, since the year 2000, part of a long-term soil erosion monitoring
program [20]. The region is characterized by a slightly hilly landscape; therefore, the height
ranges from 217 to 237 m above sea level with slope gradients between 5 and 14 degrees
at the study site. The predominant soil type is shallow stagnic Luvisol. Mean annual
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precipitation is 795 mm [21], which is in line with the average for Germany. This is also the
case for the mean yearly erosivity (R-factor of the Universal Soil Loss Equation USLE [22])
between 2001 and 2017, which is at about 73 [N/h/yr] [23].
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Figure 2. Location of the study area and positioning of the three plots along the thalweg.

2.1.2. Field Campaign

The field campaign was conducted from 11 May 2022 to 8 June 2022, using three plots
in a thalweg. The field measurements were performed on a weekly basis, starting im-
mediately after sowing. For plot 3, the measurement started one week later. All plots
covered 2 m × 3 m and were selected based on previously recorded erosion events [20] that
considered different gradients in the micro-topography and slope. Specifications of the
different characteristics underlying each plot are listed in Table 1. Most soil erosion events
are expected to occur when low soil cover coincides with heavy rainfall occurrence. The
plots were placed on cropland with late sown field crops, in this case, maize, to increase
the probability that measurable erosion events accompanied by changes in the micro-relief
will occur.

Table 1. List of characteristics underlying each plot.

Plot
Name

Previously
Recorded Erosion

[t/ha·a] *

Elevation
[m.a.s.l.]

Slope
Gradient [◦]

Soil Texture
Top Soil (0–5 cm)

Sand
[%]

Silt
[%]

Clay
[%]

Soil Organic
Carbon [%] K-Factor **

Plot 1 0.2–1.0 235 13.8 5 65 30 6.8 0.4

Plot 2 1.0–2.0 228 13.3 5 75 20 6.0 0.5

Plot 3 3.0–6.0 218 5.5 5 75 10 6.0 0.5

* Average data obtained from mapped soil erosion in course of the long-term soil erosion monitoring program
Lower Saxony [20]. ** K-factor is the soil erodibility factor of the Universal Soil Loss Equation (USLE) and
represents the susceptibility of the top soil to soil erosion by water dependent on the soil properties [22].

For each plot, a 3D point cloud was obtained weekly from two stations at a distance of
about 1 m with a mean incidence angle of roughly 50 degrees. Masking of soil aggregates,
tyre marks, and growing vegetation led to inhomogeneous point densities, which did
not allow simple modelling via a planar surface. Growing field crops led to an increasing
heterogeneity of the point density on the soil surface and a decline in the points representing
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the soil surface over time. The utilized laser scanner Zoller+Fröhlich (Z+F) IMAGER
5010X (scan setting with high quality, which results in approx. 0.4 points per cm2) has an
integrated high dynamic range camera, providing additional RGB colour information for
the 3D point cloud.

In order to set up a stable reference coordinate system, each plot was established with
six control points (CP), temporarily marked with spheres (145 mm diameter) at a distance
of 1 m around the plot. The measurement set-up is shown in Figure 3.
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The CP positions, as well as the edges of the plot, were marked by ground sleeves
driven 25 cm deep into the soil. The ground sleeves remained in the soil during the entire
field campaign, whereas the spheres were removed after each measurement epoch to avoid
interference with the agricultural cultivation procedures. The absolute positions of the CP
were observed by determining coordinates before the weekly data acquisition procedure
with a Trimble R8s GNSS System using an RTK-positioning with respect to a close-by
SAPOS reference station and a measurement duration of 3 min per CP. The relatively high
measurement duration allows obtaining a higher quality of reference coordinates for the
subsequent registration of the point clouds.

In the following chapters, the data processing steps following the data acquisition
in the field are described in detail. A first overview of the data processing is given in the
workflow in Figure 4.

2.2. Data Processing
2.2.1. Spatial Adjustment and Cleansing of Point Clouds

In order to test the performance of different classification methods in our setting, we
conducted the following procedure using the software Z+F LaserControl for the registration
of the point clouds and the open-source software CloudCompare (version 2.12 beta), as
well as the software ArcGIS Pro (2.9) for the subsequent steps.
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Based on the coordinates, a target-based registration was carried out using the sphere
targets (shown in Figure 3). After registration of the two 3D point clouds of the same
plot across all epochs, the plot-based point clouds were downsampled using voxel grid
filtering with a voxel size of 1 mm, i.e., the downsampled point clouds have an average
point spacing of 1 mm [24]. This step aims for a better handling of the data and for reducing
outliers and noise.

In order to further optimize data handling, the point clouds were cropped to cut the
point clouds to the plot size as the area of interest.
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Height differences due to a general inclination of the terrain can cause inaccuracies
when using filters (resp. classificators), especially when the algorithm operates with
geometrical information. Since the area under investigation has a small size, there are no
large slope deviations within the plot. This simplifies the levelling of the point cloud into
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a horizontal position by transforming the local coordinates. Assuming a uniform tilt, the
points were converted by the difference to the horizontal plane. The processed point cloud
can be transformed back into the original position after processing.

2.2.2. Vegetation Detection

As the measurements were taken under field conditions, disturbing objects, like
vegetation, had to be eliminated to obtain a “clean” representation of the soil surface. This
is equivalent to a binary classification problem, separating points in the point clouds into
soil and vegetation. Long-term soil cover as stones, as well as mulch and other plant
residues, were considered to be part of the soil surface. The epoch-wise data acquisition
scheme allows for a spatio-temporal analysis. One of the challenges are changing disturbing
objects, e.g., growing vegetation, which may lead to varying shadowing effects on the
soil surface.

As the problem of objects covering surface information occurs commonly, many
algorithms to create subsets of point clouds have been developed or modified [25–28]. In
this study, we used the methods CSF [17] and CANUPO (CAractérisation de NUages de
POints) [18], implemented in the open-source software CloudCompare (V2.12.beta), as well
as PointCNN [19] integrated as an extension of the software ArcGIS Pro (2.9).

The geometrical filter CSF computes a horizontal “cloth” grid covering the inverted
point cloud surface. The point cloud and cloth grid are projected to a horizontal plane,
and the nearest corresponding point of the point cloud to each of the next cloth nodes
(interconnection points of the cloth, describing the structure of the cloth) is captured.
Afterwards, the filter algorithm compares the distance of the original point cloud to the
computed surface and separates the points into ground and non-ground points based on a
threshold. For further information, please refer to [17].

In contrast to CSF, the CANUPO algorithm uses three dimensions and compares the
spatial relationship of each point in the point cloud to its adjacent points at multiple scales.
The number of scales, taking into account as diameters around each point, is one of the
variable input settings (see Figure 1, region-based methods).

As a result, structures are identifiable that are only recognizable by referring points to
the positions of their neighbourhood, in our case, elongated structured vegetation and the
smoother soil surface. In its basic implementation, CANUPO considers dimensionality as a
classification parameter, but there is also the option to include scalar fields as additional
parameters [18]. In this study, we integrated the RGB values acquired during the TLS scan-
ning process into the data processing steps. For this purpose, the RGB values are converted
into scalar fields (SF) using the combination of the three colour bands. The intention for
using this additional data is to increase the separability between living vegetation and
mulch residues with similar dimensionalities but different colouring.

To achieve better results, CANUPO, including dimensionality and RGB-based scalar
fields, is carried out by using CSF afterwards, as CSF is very useful in correcting outliers in
the Z-direction.

As an easy-to-use representative of deep learning approaches, we also tested PointCNN
implemented in ArcGIS Pro (2.9). This extension uses a generalized principle of Convolu-
tional Neural Networks (CNN) [29]. The point cloud is first divided into blocks of a specific
number of points, which are then included in the model training (see Figure 1, graph-based
methods). Basically, the algorithm restructures the dense point cloud hierarchically based
on local correlations of point features (e.g., RGB values, intensity) [30].

The X-Conv operator aggregates information of neighbouring points in local regions
into representative points with an increased number of channels, comprising therefore
more information per point. More information on the application of CNN specifically for
point cloud classification can be found in [19].

After pre-testing different settings, the input parameters, which led to the best results,
were finally adopted in each case. We manually selected the training and validation datasets
proportionally according to class distribution across the point cloud. The ratios which
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produced the best results during the test phase, were used in this study (see Table 2).
Training and validation data, as well as training and testing data, covered different areas
of the point cloud. The different classification approaches that were tested and the initial
parameter settings are listed in Table 2.

Table 2. Settings applied for the tested algorithms (-: no setting option given).

Parameters CSF CANUPO
Dimensionality

CANUPO
Dimensionality + SF

CANUPO + CSF
Dimensionality + SF

ArcGIS
PointCNN

Scene * Relief - - Relief -
Slope processing ** No - - No -

Cloth resolution (m) 0.1 - - 0.1 -
Max. iterations 500 - - 500 -
Classification

Threshold (m) *** 0.1 - - 0.1 -

Scales - 0.1–1.0; 0.001 0.1–1.0; 0.001 0.1–1.0; 0.001 -
Scales after tuning - 300 300 300 -
Max. core Points - 10,000 10,000 10,000 -

Ratio training data
Vegetation–soil - ~1:5 ~1:5 ~1:5 -

Ratio training data-
whole point cloud - ~1:5 ~1:5 ~1:5 ~1:6

Ratio validation
data-whole point cloud - ~1:5 ~1:5 ~1:5 ~1:6

Block size (cm) - - - - 40
Block point limit - - - - 8192

Model selection criteria - - - - F1 score

* Input parameter of CSF: determines the rigidness of the calculated cloth and has three options: steep slope, relief
and flat [17]. ** Input parameter of CSF: setting for point clouds with high inclination [17]. *** Input parameter of
CSF: distance between points and simulated terrain (lowest value: 0.1) [17].

2.2.3. Quality Assessment

In order to obtain a reference for the different partitioned point cloud results, manually
cleaned point clouds were generated using cropping tools of the software CloudCompare
(V2.12.beta) to separate vegetation points from soil surface information. All manually
cleaned results were compared with the generated reference point cloud representing the
soil surface. As litter is considered part of the soil, the top layer with mulch residues was
assigned to the soil surface even though mulch has a high structural similarity with living
vegetation and may influence the results.

Thus, a confusion matrix [31] could be generated comparing points falsely classified
as soil with points falsely classified as part of the vegetation. The focus of the evaluation
lies on the accuracy in capturing vegetation; therefore, the confusion matrix represents
a true positive (TP) as vegetation points correctly eliminated, a false negative (FN) as
leftover vegetation, a false positive (FP) as soil being eliminated, and a true negative (TN)
as correctly not-filtered points representing soil surface.

As the last step, we calculated the F1 score [32] (Equation (1)) as a harmonized mean of
precision and recall. Precision depicts the proportion of positives classified (Equation (2)),
while recall measures the relation of true positives to all actual positives (Equation (3)). If
both precision and recall are equally high, the F1 score, ranking between 0 and 1, is high as
well. Hence, an F1 score of 0.5 could be interpreted as moderate, considering the balance
between precision and recall.

F1 score = 2
Precision × Recall
Precision + Recall

(1)

Precision =
TP

TP + FP
(2)
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Recall =
TP

TP+ FN
(3)

As our data were highly imbalanced, we also used the balanced accuracy as a further
comparable quality indicator. Balanced accuracy [33] (Equation (4)) considers the preva-
lence of the class and therefore recall (Equation (3)) and selectivity are used in the equation.
Selectivity calculates the relation of true negatives to all actual negatives (Equation (5)).
Balanced accuracy also ranges from 0 to 1, with 1 standing for the best possible classifier. A
balanced accuracy of 0.5 could be interpreted as a random guess.

Balanced Accuracy =
Recall + Selectivity

2
(4)

Selectivity =
TN

TN + FP
(5)

3. Results
3.1. Accuracy Assessment

The described methods were implemented for all three plots of the field campaign.
As stated earlier, the focus of the study lies on applicability and time saving capacity.
Thus, the training data for CANUPO variations and ArcGIS Pro PointCNN was composed
of all epochs for each plot, knowing that individual calculations would produce more
accurate results. Afterwards, the generated classifiers were applied to each epoch of each
plot separately.

To obtain an idea of the baseline data, first, the result of the manually generated
reference data is shown in Table 3.

Table 3. Total amount of vegetation and soil points and proportion of vegetation points in the total
point cloud (2 × 3 m plot after voxel-grid filtering) based on the manually generated reference dataset.

Plot Class E1 E2 E3 E4 E5

Plot 1

Vegetation 0 12,099 33,108 88,216 225,683
Soil 2,289,748 1,947,945 1,746,486 2,028,377 1,744,019

Proportion 0% 0.62% 1.86% 4.17% 11.46%

Plot 2

Vegetation 0 26,227 50,101 126,938 343,693
Soil 2,193,646 2,387,142 1,861,216 2,187,462 1,726,862

Proportion 0% 1.09% 2.62% 5.48% 16.60%

Plot 3 *

Vegetation - 20,000 42,238 112,365 319,714
Soil - 1,884,898 1,549,683 1,912,494 1,764,541

Proportion - 1.05% 2.65% 5.55% 15.34%
* Measurement of plot 3 had to start one week later than plot 1 and plot 2.

During the field campaign, the proportion of the vegetation points in the total point
cloud increased exponentially, up to 15.34% in plot 3. Data gaps in the soil surface due to
shadowing by vegetation become apparent in the decrease in point clouds representing the
soil surface, especially in E5 for all plots. For further comparison of the algorithm perfor-
mances in the different plots, it must be considered that the data acquisition in plot 3 started
one week later. Since there is no vegetation in E1, this epoch is not considered in the direct
comparison of the algorithm performance in vegetation detecting, but since training com-
prised all epochs, it could have an influence on the performance in the subsequent epochs.

The comparison of the F1 score (0 stands for either recall or precisionare of the value 0
as well, and 1 shows high matches for both precision and recall) for each tested algorithm
depicts an increase with the proceeding of the timeline (Figure 5). The highest F1 scores are
consistently achieved in E5 with median values over the different algorithms of 0.85, 0.92,
and 0.77 for plots 1, 2, and 3, respectively. Most of the tested variations show F1 scores above
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0.9 for E5, punctuating the very good performance in the scene with the highest vegetation.
Accordingly, the lowest values are obtained for the epoch with the first germination with
a sharp increase in the F1 score afterwards. In E2, median values for the plots are 0.15,
0.13, and 0.37, which means severely insufficient performance, presumably because of low
height and structure differences that could be used for differentiation between mulch and
living vegetation, for example. CSF, as a filtering tool based on height, turns out to be the
one with the highest differences during the timeline because of the increasing number of
points above the calculated cloth. Apart from this, caution must be exercised when directly
comparing the F1 scores with CSF. Since CSF is based on height differentiation, there are no
parts of the plot that are falsely categorized as vegetation (false positive). This automatically
sets the precision value to 1.0 and accordingly increases the influence of recall in the F1
score. Nonetheless, comparing the tested classifications, the ArcGIS PointCNN algorithm
shows the highest score for all epochs of Plots 2 and 3. Interestingly, the performance for
plot 1 falls sharply out of line. Most differences between the classifications appear in plot 3,
which could not only be the consequence of missing data from E1 for the training but also
a different soil structure because the lower slope area, where plot 3 was located, had more
stone content. Apart from E2, the overall performance for all tested algorithms—except
CSF and ArcGIS PointCNN for plot 1—is satisfactory when considering the F1 score.
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Figure 5. Comparison of the tested algorithms based on F1 score. As the first epoch did not show any
signs of vegetation, the point cloud of E1 is not shown in the graphic.

The balanced accuracy reveals a slightly different picture of the performance of the
partitioning algorithms (Figure 6). With the balanced accuracy, the performance indicator of
the used tools is cleared of the class imbalance naturally contained in the data and therefore
can be considered as a more reliable performance indicator. In Figure 6, the increasing trend
of the performance indicator corresponding to growing vegetation also turns up, but with
a lower gradient curve. The difference in the performances between E2 and E3 is lower
than in Figure 5 but is still striking. This shows that, apart from the corrected imbalance,
the vegetation points in E2 are still comparably poorly recognized. For E2, only the median
value for plot 3 with 0.74 can be considered to have a good performance, while plots 1 and 2
show median values of 0.63 and 0.54 and therefore moderate to unsatisfying results. Despite
the low performance of ArcGIS PointCNN at Plot 1, all balanced accuracy values are located
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above 0.5, considering the quantity of the two classes. However, apparently, CSF shows
lower performances for all plots and epochs with a median value of 0.76 and a direct
dependency on vegetation height/ground cover, as the correlation with the timeline shows.
As already mentioned above, false positive points are missing in CSF, which limits a direct
comparison, as changes in balanced accuracy are solely based on changing recall values.
In contrast to the F1 Score, ArcGIS PointCNN does not seem to have the highest rating in
plots 2 and 3 for the balanced accuracy. The overall median is 0.79 (0.91 excluding Plot 3
performance), whereas the CANUPO variations all reveal an overall balanced accuracy
median of 0.92 to 0.93.
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Figure 6. Comparison of the tested algorithms based on balanced accuracy. As the first epoch did not
show any signs of vegetation, the point cloud of E1 is not shown in the graphic.

Since we focused on changes in the soil microstructure using the classified point clouds,
beyond the general evaluation indicators, the spatial distribution of falsely classified points
and point subsets are of interest. Figure 7 shows as an example distribution of the point
separation variables for the three different tested segmentation approaches on plot 2 in
E2 and E5. For CANUPO, the best performing stand-alone variation with the inclusion of
dimensionality and scalar field, without further usage of CSF, is shown.

Figure 7 reveals that no parts of the plot are falsely categorized as vegetation (false
positive) because of the filtering method itself. This leads automatically to precision
values of 1.0. Furthermore, Figure 7 shows that the seedbeds, in particular, are a problem,
especially for CSF but also for all tested algorithms, as the seedbeds lie below the general
soil surface. This becomes especially evident in E2, where the field crop is just sprouting,
almost no true positive subsets are detected, and a recall of 0.0 is calculated. In contrast
to CSF, the machine learning classification CANUPO has a higher rate of true positives
in E2 and E5 but also a higher percentage of false positive parts, where soil is classified
as vegetation. ArcGIS PointCNN also shows some false positive subsets, but altogether a
lower falsely classified rate. In general, false positives appear mainly in E5 for CANUPO
variations near the points representing crop. The higher false positive rates become obvious
in the precision rates listed in Table 4. While the very high mean precision rate (1.0) of CSF
shows that no false positives were detected, because of the filtering method itself, and only
the low recall values contribute to an overall deficient F1 score, the CANUPO variations
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come off with the lowest precision values for all tested variations. Apart from that, of
all points that should be classified as vegetation, CANUPO shows a solid hit rate, with a
better performance when more variables are used. Nonetheless, despite the extremely low
rates on Plot 1, ArcGIS PointCNN reveals the best scores both for precision and recall. The
increasing trend of recall with increasing epoch can also be interpreted as a side effect of
the increased hit probability with growing vegetation.
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Table 4. Precision and recall values of the tested algorithms. As the first epoch did not show any
signs of vegetation, E1 is not listed in the table.

Plot Epoch
CSF CANUPO

Dimensionality
CANUPO

Dimensionality + SF
CANUPO + CSF

Dimensionality + SF ArcGIS PointCNN

Precision Recall Precision Recall Precision Recall Precision Recall Precision Recall

Plot 1

E2 1.0 0.0 0.1 0.3 0.1 0.3 0.1 0.3 0.0 0.0
E3 1.0 0.3 0.5 0.9 0.5 0.8 0.5 0.8 0.0 0.0
E4 1.0 0.6 0.5 0.9 0.6 0.9 0.6 0.9 0.0 0.0
E5 1.0 0.8 0.7 1.0 0.7 1.0 1.0 1.0 0.1 0.1

Mean 1.0 0.4 0.5 0.8 0.5 0.8 0.5 0.8 0.0 0.0

Plot 2

E2 1.0 0.0 0.6 0.1 0.2 0.1 0.2 0.1 1.0 0.1
E3 1.0 0.4 0.8 0.8 0.7 0.8 0.7 0.8 1.0 0.7
E4 1.0 0.7 0.6 0.9 0.6 0.9 0.6 0.9 1.0 0.8
E5 1.0 0.9 0.8 1.0 0.9 1.0 0.9 1.0 1.0 1.0

Mean 1.0 0.5 0.7 0.7 0.6 0.7 0.6 0.7 1.0 0.7

Plot 3

E2 1.0 0.0 0.4 0.4 0.3 0.6 0.3 0.6 1.0 0.5
E3 1.0 0.3 0.7 0.8 0.5 0.9 0.5 0.9 1.0 0.8
E4 1.0 0.6 0.5 0.9 0.4 1.0 0.4 1.0 1.0 0.9
E5 1.0 0.9 0.6 1.0 0.6 1.0 0.6 1.0 1.0 1.0

Mean 1.0 0.5 0.6 0.8 0.4 0.8 0.4 0.8 1.0 0.8

3.2. Effects of Algorithms on Soil Surface Detection

In conclusion, the characteristic values listed above show, despite the strong outliers of
plot 1, a tendency in favour of the deep learning approach (PointCNN) and similar results
generated from different CANUPO variations. However, the main subject of the evaluation
should clearly be its effects on soil surface detection. The choice of algorithm has an impact
on subsequent calculations and conclusions about soil surface changes.

As one factor correlating with soil erosion detection, the following section focuses
on height differences but also the changes in the underlying data quality arising from
algorithm choice. Table 5 gives an overview of the average surface height differences in
comparison with the corresponding reference surface and standard deviations (SD) of the
height difference calculations compared to the reference soil surface. While CSF shows,
in general (with the exception of ArcGIS PointCNN variation in plot 1 with 2.4 mm), the
highest mean height deviations in comparison to the reference surface (0.1–0.8 mm), the
lowest average height deviations arise with the usage of CANUPO variations (0.0–0.5 mm).
Results of ArcGIS PointCNN are comparable except for plot 1. The more interesting aspect
seems to be the standard deviation of the discrepancy between the height values of the
surfaces cleaned by an algorithm and the manually created reference surface. The best
values are produced with the combination of CANUPO and CSF (SD: 0.8–1.5 mm). The
ArcGIS PointCNN application stands out because it has comparatively high standard
deviations but low average height deviations. Despite the results of ArcGIS PointCNN for
plot 1, the height differences are not significant but can still give clues to the performance
of the algorithms.

The exemplary cross-sections of plot 2 with the absolute Z-coordinates (shown in
Figure 8) reveal the functioning of the different filtering and classification tools. The
simple filtering of points due to their relative height values results in a surface without any
strong outliers. The range of the Z-coordinates stays similar regardless of the proceeding
epoch. Hence, the increasing height differences to the reference arise from the growing
vegetation between E2 and E4. The highest range difference to the reference surface shows
the CANUPO variation with the integration of scalar field information. The difference in
the highest points reaches up to 90 cm in the displayed subsection of plot 2, E5. Nonetheless,
most of the outliers can be corrected using CSF afterwards (CANUPO Dim + SF and CSF,
not shown in Figure 8). Overall, the crop is captured quite well vertically with CANUPO.
The problem with single outliers also exists when using ArcGIS PointCNN, as can be seen
in the deviating range of plot 2, E5 in Figure 8.
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Table 5. Average height differences (in mm) and standard deviations (SD) of the height differences
(in mm) in comparison to the corresponding reference surface arising from tested algorithms. As the
first epoch did not show any signs of vegetation, E1 is not listed in the table.

Plot Epoch
CSF CANUPO

Dimensionality
CANUPO

Dimensionality + SF
CANUPO + CSF

Dimensionality + SF ArcGIS PointCNN

Height dif.
[mm]

SD
[mm]

Height dif.
[mm]

SD
[mm]

Height dif.
[mm]

SD
[mm]

Height dif.
[mm]

SD
[mm]

Height dif.
[mm]

SD
[mm]

Plot 1

E2 0.1 2.2 0.1 1.6 0.1 1.5 0.1 1.5 2.2 1.9
E3 0.5 5.2 0.0 1.0 0.1 1.9 0.1 1.9 2.4 2.4
E4 0.7 6.4 0.0 0.9 0.0 1.0 0.0 0.9 2.4 2.1
E5 0.8 7.1 0.1 4.9 0.1 4.9 0.0 0.5 2.5 2.1

Mean 0.6 5.2 0.1 2.1 0.1 2.3 0.1 1.2 2.4 2.1

Plot 2

E2 0.2 2.8 0.2 2.3 0.2 2.4 0.2 2.4 0.2 2.1
E3 0.5 5.0 0.1 1.3 0.1 1.4 0.1 1.4 0.2 2.5
E4 0.5 5.2 0.0 1.0 0.1 1.3 0.0 1.1 0.2 3.3
E5 0.6 5.5 0.1 3.7 0.0 1.4 0.0 0.9 0.1 2.3

Mean 0.5 4.6 0.1 2.1 0.1 1.6 0.1 1.5 0.2 2.5

Plot 3

E2 0.2 2.8 0.1 1.7 0.1 1.2 0.1 1.2 0.1 0.9
E3 0.7 5.8 0.1 1.5 0.1 1.3 0.1 1.2 0.1 0.9
E4 0.8 6.3 0.1 1.8 0.0 1.0 0.0 0.4 0.1 0.8
E5 0.7 6.2 0.5 11.3 0.4 10.7 0.0 0.3 0.3 8.0

Mean 0.6 5.3 0.2 4.1 0.1 3.5 0.0 0.8 0.1 2.7

The comparison of height structure as a result of point cloud segmentation shows
that CANUPO has a solid hit rate but a slightly lower standard deviation due to the deep
learning approach. However, another factor affecting data quality when comparing soil
structure changes over time is the data availability in the horizontal direction. As a result
of data acquisition over a time period of six weeks, the quality of the reference data itself
is subject to variability. As stated before, the growing of the field crop leads to increasing
shadowing with the resulting expansion of parts in the soil surface with no data availability.
These data gaps in the reference soil surface range from 0.8% (plot 2 E2) to 10.6% (plot 2
E5). Depending on the classification process used, the gaps where no data is provided for
surface structure analysis alternates. Figure 9 relates the number and size of data gaps
depending on the tested algorithms relative to each other. In plot 1, ArcGIS PointCNN
shows very high divergences in all four epochs, with the result of more than half of the
soil surface (55.2%) being deleted in E5. Despite that outcome, not only does the trend of
increasing data gaps with the proceeding time step crystallize strongly but also the increase
in data gaps due to growing vegetation in subsequent epochs. While CSF shows slightly
lower percentages of no data parts in the horizontal direction than the reference surface, the
CANUPO variations produce bigger holes in the soil surface with ranges from 0.8% (plot 2
E2 CANUPO Dim) to 21.1% (plot 3 E5 CANUPO Dim + SF and CSF). This is concurrent
with the extracted high counts of FN points for CSF, respectively; high counts for FP points
for CANUPO variations (see Section 3.1). Detection of vegetation seems to be the biggest
challenge in plot 3. Comparing the data gaps, the fact that the bare surface of E1 is missing
in the training data in plot 3 becomes evident. Apparently, the bare soil surface as reference
is very important for the training of the CANUPO classifier, as (apart from ArcGIS Point
CNN of plot 1) the highest gaps appear in E4 and E5 of plot 3. As the combination with
RGB values (CANUPO Dim + SF and CANUPO Dim + SF and CSF) especially stands out,
the colour of soil, which changes in the course of the weekly measurements depending
on the soil moisture, in E1 could be of importance. Furthermore, since the shadowing of
vegetation leads to data gaps in the reference soil surface, the reference of the bare ground
in E1 below the vegetation can influence the region-growing model.
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3.3. Quality Criteria for Evaluation of the Tested Algorithms

In this section, we look at the question of which algorithm under investigation is the
best choice for point clouds at the microscale. On top of the performance indicators and
the quality differences in the resulting datasets as hard assessment criteria, the handling of
the different algorithms is also included as soft evaluation criteria. For this purpose, we
transferred the calculated values listed above into the rating scheme 0 to 1, with 1 being the
best-derived value. Furthermore, the ranges of the F1 scores for the three different plots of
the same epoch were compared and transferred to the rating scheme 0 to 1, with 1 being
the lowest derived difference. These criteria show the robustness of the results and can be
interpreted as the sensitivity to the variability of input data. The criteria describing the
handling of the algorithms is denoted as soft evaluation criteria as there are no hard values
behind the evaluation. They describe the personal perception regarding the applicability
of the algorithms. In Table 6, the used criteria and their derivation are listed. Since the
temporal aspect also plays a role, E2 and E5 were presented separately as extremes in the
time span.

Table 6. Evaluation criteria for the presentation of the suitability of the tested algorithms.

Categorization Criteria Process

Hard evaluation criteria

F1 Score RS 1 0–1
Balanced Accuracy RS 0–1
Height Difference Transfer to RS 0–1

Height Difference STD Transfer to RS 0–1
Data Gaps Transfer to RS 0–1

Robustness Range of F1 scores for all three
plots transferred to RS 0–1

Soft evaluation criteria

User Knowledge Estimated based on simplicity of
handling in RS 0–1

Accessibility Estimated based on acquisition
cost in RS 0–1

Time-Saving Capacity Estimated compared to manual
processing in RS 0–1

1 RS: Rating Scheme.

Figure 10 shows the combination of all evaluation criteria, considered useful for the
process of algorithm choice in the research setting of microscale point cloud segmentation.
As expected, easier handling comes along with lower performance, as with the usage of CSF.
Contrary to this, the more time-intensive combination of CANUPO applications with CSF
leads to higher performance indices in E5. This seems to be unappealing to E2, as we can
already see in the subchapters above. The deep learning application (ArcGIS PointCNN)
had problems with the detection of vegetation in plot 1. The influence of the results of plot 1
caused a low rating for all hard evaluation criteria, with a particularly low robustness value.
For a better comparison, the evaluation of ArcGIS PointCNN without plot 1 is also shown in
Figure 10, which shows similar values when plot 1 is not considered. Apart from this, this
algorithm stands out due to low values representing the handling of the tool. Additionally,
machine learning applications in ArcGIS Pro are relatively new extensions that have to
be installed on top of the basic ArcGIS Pro application. As ArcGIS Pro itself is a licensed
product from ESRI, the accessibility of ArcGIS PointCNN is limited. As a consequence of
the relative novelty of the machine learning extensions and limited access, the community
of users is still small. This influences the needed prior user knowledge, as the open-source
software CloudCompare gives far more possibilities for self-learning. Altogether, this leads
to a lower evaluation value for the categories of user knowledge, accessibility and time
saving capacity. Apart from the results of plot 1, the ArcGIS PointCNN algorithm from
ESRI had an outstanding performance (Figure 10), but even with the high-performance
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values of plots 2 and 3, the low accessibility should be taken into consideration before
choosing this algorithm.

Geomatics 2023, 3, FOR PEER REVIEW 19 
 

 

 

Figure 10. Evaluation of the tested algorithms regarding performance (F1 score, balanced accuracy, 
average height difference, standard deviation of height difference, percentage of data gaps after 
processing, and robustness of results) and handling (needed prior user knowledge, accessibility, 
and time saving capacity). For the sake of clarity, only the mean values of the respective E2 and E5 
results across all plots are shown. 

4. Discussion 
The accuracy of the data representing the soil surface does not only depend on the 

resolution of the sensing devices but also on the precision of the succeeding detection/fil-
tering methods. When it comes to capturing small changes in the soil surface especially, 
the performance of the used data filtering or classification method is crucial.  

During data acquisition in a time period of six weeks in our study, the local reference 
coordinate system was kept as stable as possible to maintain comparability between 
epochs of data measurement. As the targets were set up directly in soils under cultivation, 
internal physical processes (e.g., swelling and shrinking of soil aggregates) or external in-
fluences (e.g., soil tillage) led to the movement of the targets, resulting in standard devia-
tions of 3.6 mm of the target positions in the z-axis. Focusing on changes at the microscale 
may have influenced the training of the classifier, as all of the training data contained all 
epochs.  

Shading and masking of growing vegetation increased with the duration of the meas-
urement campaign. The consequences are, on the one hand, accumulative gaps in the 
point cloud representing the soil surface and, on the other hand, an increase in undesirable 
data which derives from crop growth. Despite that issue, this set-up has the advantage 

Figure 10. Evaluation of the tested algorithms regarding performance (F1 score, balanced accuracy,
average height difference, standard deviation of height difference, percentage of data gaps after
processing, and robustness of results) and handling (needed prior user knowledge, accessibility, and
time saving capacity). For the sake of clarity, only the mean values of the respective E2 and E5 results
across all plots are shown.

Another conclusion that can be drawn from Figure 10 is the different performance
of all algorithms in relation to the growth stage of the crop. Obviously, the two aspects,
namely good detection of vegetation and a high percentage of data representing the soil
surface, are divergent. Further investigations might help find the timing with the sweet
spot of both opposing components.

4. Discussion

The accuracy of the data representing the soil surface does not only depend on the res-
olution of the sensing devices but also on the precision of the succeeding detection/filtering
methods. When it comes to capturing small changes in the soil surface especially, the
performance of the used data filtering or classification method is crucial.

During data acquisition in a time period of six weeks in our study, the local reference
coordinate system was kept as stable as possible to maintain comparability between epochs
of data measurement. As the targets were set up directly in soils under cultivation, internal
physical processes (e.g., swelling and shrinking of soil aggregates) or external influences
(e.g., soil tillage) led to the movement of the targets, resulting in standard deviations of
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3.6 mm of the target positions in the z-axis. Focusing on changes at the microscale may
have influenced the training of the classifier, as all of the training data contained all epochs.

Shading and masking of growing vegetation increased with the duration of the mea-
surement campaign. The consequences are, on the one hand, accumulative gaps in the point
cloud representing the soil surface and, on the other hand, an increase in undesirable data
which derives from crop growth. Despite that issue, this set-up has the advantage that we
only need to distinguish (roughly speaking) between (a) points representing vegetation and
(b) points representing soil. Thus, we can use well-established filtering and classification
algorithms with the binary classification approach.

Although there are plenty of studies dealing with the performances of filtering or classi-
fication algorithms, most of them are predominantly geared towards larger scales [13,34,35]
or focus on applications that require programming skills [12,30,36]. Bailey et al. (2022) [37]
demonstrate in their study that the performance of the different algorithms highly de-
pends on the parameter settings. In their study, CSF outperforms Random Forest (RF) and
modified slope-based filter (MSBF). The change in the parameter settings in CSF did not
improve the results in our case. One explanation could be mulch residues, which, in our
study, were assigned to the soil surface and had a strong influence on the performance of
all tested applications. While the higher epochs almost consistently show good results,
even in comparison with other studies [13,37], two noticeable issues arise:

Firstly, ArcGIS PointCNN did not work out in classifying plot 1. Although the amount
of training data was similar to the training data of the other plots, ArcGIS PointCNN
performed much better in the point clouds of the other plots. The results of all epochs in
plot 1 for this algorithm indicate that there must have been a problem with the training
data. Even though changes in the training data amount did not particularly improve the
results, we plan to conduct more experiments (using evenly distributed training data and
training data for each epoch separately). One assumption is that the “generalization gap”
phenomenon occurred in this plot [38]. The generalization gap is a phenomenon that
sometimes occurs when supervised deep learning methods and high training data accuracy
are used. When overfitting occurs, the trained function performs well on the training data
but also becomes sensitive towards noise, following up with a low performance on the
actual data and therefore producing a generalization error [39,40]. As our data are highly
dense, the noise of the data certainly contributes to model irritations. The use of the k-fold
cross-validation could have helped to prevent this problem, as it predicts the performance
of models based on predefined training data [41,42].

Secondly, there is a visible variability of the performance depending on the plot as a
starting point and a high variability depending on the epoch. Altogether, the algorithms
show lower quality in plot 3. As the E1 reference in the training data is missing, this reveals
the importance of the bare soil surface data. The region-growing model of the CANUPO
classifier especially depends on the information below vegetation, as data gaps in the
training data can apparently cause irritations in the model. This leads to the question of
whether a less voxel-grid filtered point cloud could provide better results in the utilization
of the CANUPO algorithm. Furthermore, as soil colour changes, depending on the soil
moisture, the darker colour at the beginning of the field campaign could have supported a
better differentiation of soil and vegetation in the training of CANUPO for plots 1 and 2.
The missing E1 data did not affect ArcGIS PointCNN. This could be explained by the
underlying method of the algorithm. As this algorithm is not a region-based model
(Figure 1) but a graph-based model, it also includes further information on the different
points, and the influence of neighbouring is decreased. This also shows the importance
of aligning the method with the underlying data. In this respect, the different soil surface
structures of the different plots also influence the outcome of the modelling. As plot 3 is
located on the lower part of the slope, it is characterized by a higher coverage of stones and
mulch. The similarity of mulch and living vegetation is a problem, which also shows off in
the other plots but could sum up with increasing coverage.
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Furthermore, this could be the explanation for the low performance of all applications
on epoch 2 as well. The small proportion of living vegetation in epoch 2 and the still low
contrasting colour of the seedlings only offer a small basis for differentiation.

5. Conclusions

We approached the assessment of three main point cloud classification concepts (fil-
tering, machine learning classification not based on deep neuronal networks, and deep
learning classification as a machine learning sub-category based on deep neuronal net-
works) from different angles. The standard procedure is first presented with the F1 score,
which shows the harmonized mean of precision and recall. Since we have highly imbal-
anced data, we also focused on balanced accuracy as a further quality indicator. Both
indicators display the quality of the overall performance of the tested algorithms. As a next
step, depending on the focus of the underlying scientific question, such as the detection
of diffuse soil erosion, the vertical and horizontal structure of the resulting surface is com-
pared to the best possible outcome. As this is of probable interest to other scientists dealing
with similar questions, these findings are also presented in a chapter of its own.

Based on these results, we then created a synthesis comparing the quality criteria
to evaluate which algorithm under investigation is the best choice for point clouds at
the microscale.

Overall, the research questions can be answered as follows:

(1) Can well-known methods provide sufficiently accurate results in separating vegeta-
tion from soil at the plot scale?

This question cannot be answered positively without reservation.
Focusing on epochs 3 to 5, the easy-to-use and open-source method CANUPO, with

the usage of colour as a scalar field and in combination with CSF, performs exceptionally
well. Outliers remaining after the use of CANUPO can be well eliminated with CSF. When
a high imbalance in the distribution of the classes occurs, as in epoch 2, ArcGIS PointCNN
is a better choice. However, it should be considered that, depending on the algorithm, there
is more loss of the soil surface, resulting in data gaps (CANUPO) or more undesirable data
remaining in the final product (CSF).

(2) Can these algorithms maintain their level of accuracy at different epochs during the
examined vegetation growing period and different plots?

None of the tested methods could maintain their level of accuracy at different epochs
and plots. The highest differences appeared between epoch 2 and epoch 3 for all tested
algorithms. So, as mentioned before, care should be taken with imbalanced and noisy data
at the plot scale.

(3) To what extent does the choice of the algorithm affect the results?

When it comes to the changes in the micro-relief, differences in the centimetre to
millimetre scale become important. The highest standard variation in the height values
appeared after applying ArcGIS PointCNN, as it does not work with the region growing
method. The resulting surface structure differed most quantitatively with CSF. With regard
to the effect on the surface structure, the CANUPO variation in combination with CSF is
the best choice. Nonetheless, CSF can also be applied after using ArcGIS PointCNN.

(4) Does the complexity of the application increase the accuracy of the results?

Most of the results showed a better performance of the deep learning application
ArcGIS PointCNN. However, this does not apply to plot 1. In addition to the generalization
gap mentioned above, there are more shortcomings when using deep learning methods.
The higher the complexity of the model, the higher the adaption to the specific situation is
required. This problem is pointed out in [39], leading to the result that there is no algorithm
which fits best for all situations and problems. Additionally, in order to prevent overfitting,
the use of k-fold cross-validation could be of great value, as it can predict the accuracy of a
training model [41,42].
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In summary, there are applications that are less suitable than others when a rela-
tively simple solution but sufficient accuracy is required. Taking into consideration the
performances of the used methods but also the soft evaluation criteria (see Section 3), we
would generally recommend the CANUPO variation with RGB as a scalar field in combina-
tion with CSF afterwards when easy-to-use classifications are needed. Besides this, some
questions in regard to the “Epoch 2 problem” remain open and remain to be investigated.
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