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Abstract: Background: Glioblastoma multiforme (GBM) is a highly aggressive brain cancer known
for its challenging survival rates; it is characterized by distinct subtypes, such as the proneural and
mesenchymal states. The development of targeted therapies is critically dependent on a thorough
understanding of these subtypes. Advances in single-cell RNA-sequencing (scRNA-seq) have opened
new avenues for identifying subtype-specific gene biomarkers, which are essential for innovative
treatments. Methods: This study introduces a genetic optimization algorithm designed to select a
precise set of genes that clearly differentiate between the proneural and mesenchymal GBM subtypes.
By integrating differential gene expression analysis with gene variability assessments, our dual-
criterion strategy ensures the selection of genes that are not only differentially expressed between
subtypes but also exhibit consistent variability patterns. This approach enhances the biological
relevance of identified biomarkers. We applied this algorithm to scRNA-seq data from GBM samples,
focusing on the discovery of subtype-specific gene biomarkers. Results: The application of our genetic
optimization algorithm to scRNA-seq data successfully identified significant genes that are closely
associated with the fundamental characteristics of GBM. These genes show a strong potential to
distinguish between the proneural and mesenchymal subtypes, offering insights into the molecular
underpinnings of GBM heterogeneity. Conclusions: This study introduces a novel approach for
biomarker discovery in GBM that is potentially applicable to other complex diseases. By leveraging
scRNA-seq data, our method contributes to the development of targeted therapies, highlighting the
importance of precise biomarker identification in personalized medicine.

Keywords: genetic optimization; feature selection; single-cell RNA-seq; glioblastoma; proneural;
mesenchymal

1. Introduction

Studying diseases at the molecular level, particularly complex cancers like glioblas-
toma multiforme (GBM), has been pivotal in uncovering their complex causes. Among the
various forms of cancer, GBM stands out due to its heterogeneity, with subtypes such as
the mesenchymal and proneural states exhibiting distinct molecular profiles and clinical
behaviors [1]. The advent of advanced gene sequencing technologies, such as single-cell
RNA sequencing (scRNA-seq), has provided critical insights into these conditions, lead-
ing to more precise diagnoses and customized treatments. The technique examines gene
activity in individual cells, capturing the intrinsic differences within tissue populations,
which is crucial in understanding the diverse nature of GBM subtypes. This method allows
for a nuanced measurement of gene expression variation across single cells, revealing
intricate disease mechanisms specific to GBM and its subtypes. However, analyzing the
detailed data provided by scRNA-seq presents its own set of challenges, particularly in the
context of the highly variable and complex nature of GBM. Identifying important genes
across various cell types can be daunting, due to the presence of errors and artifacts in raw

BioMedInformatics 2024, 4, 811–822. https://doi.org/10.3390/biomedinformatics4010045 https://www.mdpi.com/journal/biomedinformatics

https://doi.org/10.3390/biomedinformatics4010045
https://doi.org/10.3390/biomedinformatics4010045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com
https://orcid.org/0000-0003-0053-7847
https://orcid.org/0000-0003-1892-0000
https://doi.org/10.3390/biomedinformatics4010045
https://www.mdpi.com/journal/biomedinformatics
https://www.mdpi.com/article/10.3390/biomedinformatics4010045?type=check_update&version=1


BioMedInformatics 2024, 4 812

scRNA-seq data. Therefore, meticulous data cleaning is imperative before any effective use
of this information can be made.

In the realm of scRNA-seq data analysis, several critical steps lay the groundwork
for meaningful biological discoveries. Dimensionality reduction techniques, which are
crucial for managing the substantial data generated by scRNA-seq, play a pivotal role in
simplifying the inherent complexity of high-dimensional data while safeguarding the in-
tegrity of cell populations. This preservation is vital for accurate cell type identification and
subsequent analyses, highlighting the indispensability of dimensionality reduction [2,3].
In addition to traditional dimensionality reduction methods, feature selection is a critical
technique in scRNA-seq [4]. This approach focuses on identifying key genes, which process
is equally essential as it enables more targeted and efficient analysis. Advanced methods
significantly enhance the purity of cell clustering and the accuracy of lineage reconstruction,
demonstrating the critical role of feature selection in mitigating noise and improving the
precision of scRNA-seq data analysis [5].

While dimensionality reduction and feature selection are fundamental in refining
the complexity of scRNA-seq data for more accurate analysis, the application of genetic
algorithms (GAs) introduces a complementary, evolutionary-based approach to optimizing
this analysis process.

Genetic algorithms (GAs) are adaptive metaheuristic search algorithms classified as
evolutionary computing algorithms, which use techniques inspired by natural evolution.
They are efficient tools for solving optimization problems. GA is a discrete and non-linear
process that is not mathematically guided, wherein optima evolve from one generation to
another without mathematical formulation. Integration among GA parameters, including
mutation and crossover rates in addition to population, is vital for a successful GA search.
GA implementation operates on a binary chromosome representation, where each gene is
denoted by a bit in the chromosome. The presence or absence of a gene in the feature set
is represented by a 1 or 0, respectively. The GA initiates with a population of randomly
generated chromosomes and iteratively evolves this population using genetic operators
such as crossover and mutation [6,7].

Moreover, the analysis of scRNA-seq data frequently involves comparing transcript
abundance across various conditions or cell types to identify differentially expressed genes
(DEGs). These DEGs are pivotal in unveiling the dynamics of gene regulation and the
cellular heterogeneity inherent in scRNA-seq data. Serving as more than mere markers of
cellular diversity, DEGs are crucial in unraveling the intricate gene expression landscape
within individual cells [8–10]. This makes them invaluable for advancing biomedical
research and the development of personalized medicine, as they offer deep insights into
gene regulation, development, and disease.

Furthermore, the significance of variance in scRNA-seq data cannot be overstated.
It plays a pivotal role in identifying DEGs and profoundly impacts the overall analysis.
The effectiveness of variance-driven approaches in integrating scRNA-seq data leads to
the discovery of new cell types and markers. These findings underscore the importance
of capturing hidden variations for robust analysis [11,12]. Such insights highlight the
necessity of comprehensively understanding and accounting for variance in scRNA-seq
data. High-variability genes (HVGs) play a pivotal role in scRNA-seq analysis, as they
exhibit significant variation in expression levels across individual cells within a sample [13].
This variability extends beyond mere technical noise or experimental errors, often reflecting
genuine biological differences among cells. The identification of HVGs is crucial, as these
genes provide insights into cellular heterogeneity and are instrumental in unraveling
the underlying biological processes and cellular states [14]. In the context of scRNA-seq
data, understanding gene variance is integral to deciphering cellular heterogeneity. Genes
with high variance typically indicate a diversity of biological processes or cell states, thus
facilitating the identification of distinct cell types or states in complex samples. Conversely,
genes exhibiting low variance generally show uniform expression across cells, which could
indicate housekeeping functions or consistent expression regardless of cell type or state [15].
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Despite the significance of DEGs and HVGs in scRNA-seq analysis, relying solely
on these metrics can sometimes be misleading. High-variability genes (HVGs), for in-
stance, may not always reflect true biological variation but could be influenced by techni-
cal noise, such as dropout events, potentially leading to false conclusions about cellular
heterogeneity [16]. Similarly, DEGs may not fully capture the complexity of gene regula-
tion dynamics, as they might overlook subtle but biologically relevant changes in gene
expression [17]. Therefore, a balanced approach that considers both DEGs and HVGs, along
with additional validation methods, is crucial for accurate scRNA-seq data interpretation.

To effectively navigate the complexities of scRNA-seq data, particularly for intricate
cancers like glioblastoma multiforme (GBM), the GeneSelector framework has been devel-
oped. It addresses the heterogeneity seen in GBM subtypes such as the mesenchymal and
proneural categories. The framework begins with comprehensive preprocessing, enhancing
data quality by removing noise and artifacts. Central to GeneSelector is a sophisticated
genetic algorithm (GA) that not only emphasizes gene variance but also incorporates
differentially expressed genes (DEGs). Through a well-constructed fitness function, this
approach allows for identifying genes that are both biologically significant and highly
variable, thus aiding in the discovery of potential GBM biomarkers. This paper delves into
the multifaceted methodology of GeneSelector, showcasing its effectiveness in providing a
thorough and biologically pertinent analysis of scRNA-seq data in the context of GBM’s
cellular complexity.

2. Methodology

In the GeneSelector framework, scRNA-seq data preprocessing plays an integral
part, beginning with the Seurat package for quality control and normalization. Initial
steps involve filtering cells based on gene count thresholds to remove potential technical
noise and non-informative signals [18]. The pipeline then systematically filters the genes
to retain those genes expressed in a sufficient number of cells, enhancing signal clarity.
Seurat’s normalization method is applied, in which the feature counts for each cell are first
normalized by dividing them by the total counts for that cell and then scaled using the scale
factor. Following this process, these values undergo a natural logarithm transformation
using the log1p function [19].

The genetic algorithm (GA) feature selection phase is enhanced with a sophisticated
selection operator using the “GA” package in R [20]. This operator selects the top 50% of
individuals from the population, based on performance, ensuring the retention of high-
quality genetic combinations. Additionally, the best individual from each generation is
always carried over to the new population, making the algorithm elitist. This approach,
combined with a custom initialization giving each gene a 1% chance of selection, ensures a
balance between diversity and the preservation of superior solution gene sets.

The fitness function is a pivotal component of our genetic algorithm (GA), which
has been meticulously designed to assess genes for their expression variability, statistical
significance, and changes in expression. It plays a critical role in highlighting the algo-
rithm’s capacity to discern genes characterized by both considerable variance and biological
importance [21]. By leveraging a tour-selection approach alongside carefully calibrated
crossover and mutation rates, our GA is strategically optimized to enhance genetic diver-
sity and facilitate thorough exploration. This multifaceted evaluation mechanism ensures
the identification of genes that are not only significantly differentially expressed but also
demonstrate substantial variance and relevance to biological processes, thereby reinforcing
the algorithm’s effectiveness in uncovering biologically significant gene markers.

In each generation of the analysis, key metrics such as variance, p-value, and log fold
change (logFC) are evaluated to determine gene significance. The algorithm employs a
weighted scoring system for these metrics: assigning 50% to variance 30% to logFC, and
20% to the p-value score. Once these scores are computed, they undergo normalization to
ensure uniformity and comparability across the dataset. Subsequently, an average of these
normalized, weighted scores is calculated. This systematic approach aids in identifying
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genes that are not only statistically significant but also demonstrate significant biological
variance and expression changes, ensuring a comprehensive assessment of gene relevance.

The DEGs are identified using the Wilcoxon rank sum test, a non-parametric approach
that allows us to detect statistically significant differences in gene expression between
subtypes. This method is complemented by variance analysis to pinpoint HVGs, focusing
on genes that exhibit significant expression variability across samples, which is indicative
of their potential regulatory roles in glioblastoma.

Building upon this evaluation, the genetic algorithm then applies the principles of
natural selection and evolution through its crossover and mutation processes. The process
of crossover entails the blending of genetic information from two parent individuals to pro-
duce a descendant, whereby certain portions of the parental genetic sequences are chosen
at random for exchange. This influences the genetic composition of the offspring. Similarly,
the mutation process affects every new individual by introducing random changes to their
genetic makeup. By randomly flipping elements in their genetic code, variations in the
traits that are passed on for future classification purposes are created. Each individual
has a certain probability of undergoing these alterations, which introduces diversity and
adaptability into the population, fostering the evolution of more effective solutions over
successive generations.

To provide comprehensive insights into our algorithmic methodology and ensure
reproducibility, we have made our full codebase, datasets, and a detailed table of the 92 gene
markers identified available on GitHub. Interested parties can access these resources
at https://github.com/PaplomatasP/GeneSelector, accessed on 2 February 2024. This
repository encompasses the genetic algorithm scripts, data preprocessing and analysis
procedures, and detailed findings concerning the 92 gene markers. By sharing these
resources, we aim to facilitate the replication of our study, validation of our results, and
further investigation into the identified genetic markers by our peers and the scientific
community at large.

3. Results

This study’s results highlight the effectiveness of the GeneSelector framework in
identifying critical biomarkers in glioblastoma multiforme (GBM) through a novel genetic
algorithm (GA)-based feature selection process. The integration of differentially expressed
genes (DEGs) and highly variable genes (HVGs) within this framework facilitates the dis-
covery of genes that are both biologically significant and exhibit high variance, a necessary
step in understanding GBM’s complexity.

Initially, the clear separation between the two GBM subtypes (see Figure 1) is apparent,
implying that in-depth gene-centric analysis holds the promise of uncovering substantial
insights regarding their interrelation. Employing the well-established dimensionality
reduction method of UMAP, we condensed the gene feature space into a 2D representation,
providing a clearer perspective on our samples. An initial investigation into the selection
of genes revealed a pivotal observation: the actual overlap between DEGs and HVGs is
limited (Figure 2). This discrepancy highlights the inherent differences in gene selection
with each method and suggests that a considerable number of relevant genes might be
overlooked if only one selection method is employed. By utilizing both DEGs and HVGs
within a genetic algorithm framework, the possibility arises of harnessing a more complete
representation of the genomic landscape. This dual-method approach increases the chances
of identifying genes that are both biologically significant and exhibit high variability, which
may be crucial in understanding complex disease mechanisms, such as those found in
GBM. Moreover, the integration of DEGs and HVGs within a GA provides a strategic
balance; while DEGs offer insights into differential expression under various conditions,
HVGs reveal intrinsic expression variability that can pinpoint cellular heterogeneity. The
combination within a GA thus enriches the feature selection process, yielding a robust set
of candidate biomarkers and providing a comprehensive genetic profile that is essential for
advancing precision medicine.

https://github.com/PaplomatasP/GeneSelector
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Figure 1. The UMAP 2D plot illustrates the spatial distribution of cells within a glioblastoma multi-
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tion (UMAP) for dimensionality reduction. The cells are color-coded based on their GBM subtypes, 
with mesenchymal subtypes shown in vibrant orange and proneural subtypes shown in deep blue. 
The distinct separation between the two GBM subtypes is evident, suggesting that a thorough gene-
based analysis has the potential to reveal significant insights into their relationship. 

 
Figure 2. This graph depicts the relationship between the number of DEGs and the corresponding 
overlap with HVGs. The solid black line represents the actual shared genes between the two cate-
gories, while the dashed blue line indicates the hypothetical maximum overlap if all DEGs were also 
HVGs. The widening gap between these lines underscores the distinct nature of gene selection by 
DEGs and HVGs, justifying the integration of both sets into the GA for a comprehensive biomarker 
discovery process. 

Figure 1. The UMAP 2D plot illustrates the spatial distribution of cells within a glioblastoma
multiforme (GBM) sample. Each dot on the plot represents an individual cell, and their positions
in the two-dimensional space have been determined using uniform manifold approximation and
projection (UMAP) for dimensionality reduction. The cells are color-coded based on their GBM
subtypes, with mesenchymal subtypes shown in vibrant orange and proneural subtypes shown in
deep blue. The distinct separation between the two GBM subtypes is evident, suggesting that a
thorough gene-based analysis has the potential to reveal significant insights into their relationship.
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Figure 2. This graph depicts the relationship between the number of DEGs and the corresponding
overlap with HVGs. The solid black line represents the actual shared genes between the two
categories, while the dashed blue line indicates the hypothetical maximum overlap if all DEGs were
also HVGs. The widening gap between these lines underscores the distinct nature of gene selection by
DEGs and HVGs, justifying the integration of both sets into the GA for a comprehensive biomarker
discovery process.

Motivated by the limited convergence between differentially expressed genes (DEGs)
and highly variable genes (HVGs) (Figure 2), a genetic algorithm (GA) was utilized to
amalgamate these distinct gene sets effectively. The trajectory of the GA’s performance,
illustrated in Figure 3, reveals a consistent improvement in gene selection quality within the
population over successive generations. The mean fitness score climbs steadily, indicating
a concentrated effort by the GA to identify genes that have significant biological relevance.
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This is complemented by the observation that the best individual fitness score in each
generation surpasses the mean, evidencing the algorithm’s evolutionary advantage in
identifying and retaining the most promising gene candidates. As the GA progresses, it
reaches a point of stability, a steady state wherein further improvements in fitness scores
begin to plateau. This stabilization signals that the algorithm is nearing an optimal gene set,
thereby highlighting the GA’s adeptness at narrowing down the most biologically pertinent
features for disease understanding and biomarker discovery.
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Figure 3. This plot illustrates the optimization process of the genetic algorithm (GA) in selecting gene
features across successive generations. The red line indicates the mean fitness score of the population
at each generation, revealing how the average quality of gene selection improves over time. The blue
line represents the best fitness score achieved by any individual in the population, which provides
insight into the peak performance of the GA at each stage. The vertical dashed line marks the “steady
state”, the point beyond which further iterations yield diminishing improvements, suggesting the
convergence of the GA towards an optimal set of genes.

In the exploration of the genetic landscape pertaining to glioblastoma multiforme
(GBM) subtypes, particularly the mesenchymal and proneural categories, a panel of
92 genes was rigorously examined. The genes were selected based on their functional
roles within cancer biology, their expression profiles within GBM subtypes, and any docu-
mented correlations with patient prognoses or responses to treatment. The selection process
was informed by reliance on the established literature due to the absence of specific gene
expression-level data.

The gene ATM, known for its critical role in DNA repair and cell cycle control, was
identified as a key player, with its mutations and signaling pathways being recurrent themes
across various cancer types, including GBM [22]. Similarly, the gene HDAC6, a member
of the histone deacetylase family, was noted for its significance in chromatin remodeling
and gene expression regulation, with ongoing research investigating its potential as a
therapeutic target in GBM [23]. Furthermore, the gene ANGPTL2 was highlighted for
its involvement in angiogenesis, a process quintessential to cancer progression that is
specifically noted for its potential impact on the vascularization of GBM tumors.

Additionally, STAG2 [24] was recognized for its integral role within the cohesin
complex and its contribution to chromosomal stability, a pivotal aspect in the pathogenesis
of cancer. The gene LAMB2, which encodes a component of the extracellular matrix,
was noted for its influence on cellular differentiation, migration, and survival—factors
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pertinent to the pathology of GBM. The importance of these genes was emphasized by their
functional attributes within the realms of cancer biology. However, it was acknowledged
that a more precise determination of genes related to the mesenchymal and proneural GBM
subtypes would necessitate a comprehensive analysis of gene expression data, along with
a review of the current scientific literature specific to GBM subtypes. Such an approach
would provide a contextually richer understanding, taking into account the presence of
these genes in GBM stem cells and their roles within the tumor microenvironment.

For the mesenchymal subtype, those genes implicated in mesenchymal differentiation,
angiogenesis, inflammatory responses, and extracellular matrix remodeling were given
particular attention. Although the provided gene list did not include specific data on
differential expression or functional studies, two genes, ANGPTL2 and HDAC6, were
repeatedly referenced due to their known biological functions and potential relevance to
the mesenchymal transition in GBM [25]. In contrast, the proneural GBM subtype, which is
characterized by those genes involved in neural development and oligodendrocyte lineage
transcriptional programs, presented a different challenge. Without specific expression data,
the association of genes with this subtype was less clear. Nonetheless, genes like OLIG2 and
PDGFRA, which were not listed but are known to be associated with the proneural subtype,
were discussed for their roles in neural progenitor cell development and maintenance.

In summary, the discussion elucidated the complexity of selecting and analyzing
genes in relation to GBM subtypes. It underscored the need for a multifaceted approach
that combines bioinformatics analyses with experimental validation and a literature re-
view. This would enhance the identification of genes most pertinent to the mesenchymal
and proneural subtypes of GBM, thereby advancing the understanding of their respec-
tive biological underpinnings and contributing to the development of subtype-specific
therapeutic strategies.

The final 92 genes that resulted from the genetic optimization-based pipeline were
examined in an enrichment analysis based on gene ontologies (Figure 4). The analysis was
conducted using WebGestal [26], a popular tool for the interpretation of gene lists derived
from large-scale -omics studies. It was found that the gene ontologies associated with these
genes displayed a variety related to glioblastoma. The outcomes of the enrichment analysis
demonstrate a variety in those gene ontologies related to the complex biological processes
associated with glioblastoma multiforme (GBM) subtypes. Indicatively, the ontology term
“glycerophospholipid metabolic process” is related to the metabolic pathways that are
crucial for maintaining cellular membrane integrity and the signaling, processes that are
often altered in cancer cells, including those in GBM.
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ontologies (GOs) for the set of 92 genes obtained through a genetic optimization-based pipeline.

Furthermore, the term “semaphorin-plexin signaling pathway” is particularly note-
worthy due to its involvement in neural development, which aligns with the characteristics
of the proneural subtype of GBM. This pathway is known to play a significant role in neural
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patterning and development, making it a point of interest for further investigation in the
context of GBM. Additionally, “protein-containing complex disassembly” and “protein
depolymerization” are GO terms that may highlight important aspects of protein regulation
and degradation in GBM. These processes could be pivotal in understanding the aberrant
protein dynamics within GBM cells.

The GO term “lysosome localization” also emerges as relevant, potentially indicating
alterations in the cellular trafficking and degradation pathways within the GBM tumor
microenvironment [27]. This aspect could provide insights into how GBM cells manage
cellular waste and recycling, which are critical for their survival and proliferation. Given
the objective of achieving a more comprehensive cellular analysis, the analytical phase
of this research focused on isolating the most significant differentially expressed genes
(DEGs) that differentiate between the proneural and mesenchymal states of glioblastoma
multiforme (GBM). Their expression profiles across all cell samples were then examined
(refer to Figure 5). It was observed that these genes exhibited a higher level of expression
in cells derived from patients with the mesenchymal subtype of GBM, while a lower level
of expression was noted in cells from the proneural subtype.
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Figure 5. Uniform manifold approximation and projection (UMAP) visualization depicting individual
cells, each represented as a distinct dot. The cells are colored based on their expression profiles, which
have been normalized, logarithmized, and scaled, focusing on the six most significantly differentially
expressed genes distinguishing the proneural from mesenchymal subtypes in glioblastoma. This
color-coded representation offers a detailed comparative insight into the gene expression variations
between these two glioblastoma subtypes.

This in-depth analysis at the cellular level highlighted the potential of these DEGs to
interpret the differences between the two GBM subtypes. The findings provided insights
into the molecular mechanisms underlying the distinct pathological features of the proneu-
ral and mesenchymal GBM subtypes. The approach enabled a detailed understanding of
the gene expression variations that contribute to the unique characteristics of each subtype,
thereby offering a foundation for future research aimed at targeted therapeutic strategies.
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In our study, a set of key genes, including VAMP5, CLIC1, PLXND1, MSN, METRNL,
and LITAF, were identified as having higher mRNA expression levels in mesenchymal
cells compared to the proneural cells of glioblastoma multiforme (GBM). This differ-
ential expression suggests a potential overproduction of the respective proteins in the
mesenchymal subtype.

Among these, VAMP5 (vesicle-associated membrane protein 5) and CLIC1 (chloride
intracellular channel 1) are particularly noteworthy. VAMP5 plays a role in vesicular
transport and membrane fusion, processes that are crucial for cellular trafficking and
signaling. Its elevated expression in mesenchymal cells may contribute to the altered
cellular dynamics characteristic of this GBM subtype [28]. Meanwhile, CLIC1 is involved
in chloride ion transport and cell cycle control, and its upregulation could be linked to
the enhanced proliferative capacity and invasiveness observed in mesenchymal GBM
cells. PLXND1 (Plexin D1), another gene from the list, is integral to the semaphorin
signaling pathway, which is implicated in angiogenesis and cellular migration. Its increased
expression in mesenchymal cells aligns with the subtype’s aggressive nature, marked by
enhanced angiogenesis and invasiveness.

MSN (moesin) and METRNL (meteorin-like) are also of interest. MSN is part of the
ERM (ezrin, radixin, moesin) protein family, playing a role in cytoskeletal rearrangement
and cellular morphology, potentially influencing cell motility and invasion in mesenchymal
GBM. METRNL, which is implicated in immunometabolic responses, could contribute to the
unique inflammatory microenvironment of the mesenchymal subtype [29]. Finally, LITAF
(lipopolysaccharide-induced tumor necrosis factor-alpha factor), with its role in inflammatory
response regulation, may reflect the mesenchymal subtype’s pro-inflammatory traits.

Furthermore, the mesenchymal gene signature in glioblastoma multiforme (GBM) is
associated with aggressive tumor behavior and poor patient outcomes. Elevated expression
of VAMP5, CLIC1, PLXND1, MSN, METRNL, and LITAF genes has been observed within
this subtype, indicating their potential involvement in driving disease progression. These
genes are implicated in various cellular processes, such as vesicle trafficking (VAMP5), ion
transport (CLIC1), cell signaling (PLXND1), cytoskeletal organization (MSN), and immune
regulation (METRNL and LITAF). Their collective impact likely contributes to the invasive
and treatment-resistant nature of mesenchymal GBM. Understanding the specific roles of
these genes within the mesenchymal subtype could offer insights into novel therapeutic
strategies aimed at mitigating disease aggressiveness and improving patient outcomes.

The elevated mRNA expression of these genes in mesenchymal cells compared to the
proneural cells of GBM provides valuable insight into the molecular distinctions driving the
pathophysiology of these subtypes. This understanding could pave the way for targeted
therapeutic strategies tailored to the unique characteristics of each GBM subtype.

In our study, the “Pathways in Cancer” KEGG pathway map (see Figure 6) plays
a pivotal role in elucidating the molecular mechanisms underlying the transition from
proneural to mesenchymal glioblastoma (GBM) cells. The above map highlights those
genes with the most significant differential expression (DEGs) by enclosing them within
red boxes, providing a visual representation of their importance within the broader context
of cancer-related pathways. Notably, these DEGs are portrayed as central players in cancer
biology, suggesting their potential roles as key regulators in GBM progression. Furthermore,
we observe 23 genes displaying considerable activity. This observation underscores the
substantial involvement of the “Pathways in Cancer” KEGG pathway in the transition
between GBM cell subtypes, reaffirming the relevance of our experimental results in
shedding light on the underlying molecular processes that drive GBM pathogenesis.
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Figure 6. The “Pathways in Cancer” KEGG pathway map, highlighting key DEG genes. Arrows
within the map typically represent the direction of biochemical reactions or biological processes.
The genes with the most significant differential expression when transitioning from proneural
to mesenchymal GBM cells are enclosed within red boxes, illustrating their positions and roles
within the broader context of cancer-related pathways. Observations reveal the activity of 23 genes
within the pathway, indicating a considerable level of pathway activity, as per the results of the
experimental study.

4. Conclusions

This study marks a significant advancement in the field of glioblastoma multiforme
(GBM) research, employing a novel genetic optimization algorithm to identify key gene
biomarkers for proneural and mesenchymal GBM subtypes. By effectively integrating
differential gene expression and gene variability, this approach not only identifies genes
specific to GBM subtypes but also ensures their biological relevance. The successful appli-
cation of this methodology to single-cell RNA-sequencing data underscores its potential,
not only in enhancing our understanding of GBM but also in contributing to the broader
realm of biomarker discovery for various complex diseases. This work opens new avenues
for targeted therapy development in GBM and potentially in other cancers, demonstrating
the power of innovative genomic techniques in precision medicine.
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