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Simple Summary: Until recently, 18F-fluorodeoxyglucose ([18F]FDG) PET/CT has primarily served
in the evaluation of myeloma patients to identify osteolytic lesions and assess response to treatment.
However, in recent years, new areas of myeloma disease have been investigated using PET/CT,
including bone turnover, dual-time-point imaging, chemo brain, novel PET radiotracers, and artificial
intelligence. This article aims to provide a comprehensive review of both conventional and novel
roles of PET/CT in the assessment of myeloma.

Abstract: In multiple myeloma (MM), specific cytokines produced by plasma cells disrupt the
equilibrium between osteoblasts and osteoclasts. As a result, MM patients experience an increase
in osteoclast activity and a decrease in osteoblast activity. This disparity is fundamental to the
development of myeloma bone disease. Lytic lesions, which are a feature of MM, can result in
pathologic fractures and excruciating pain. For many years, whole-body X-ray radiography has been
the standard imaging method for identifying lytic lesions. However, its sensitivity is limited because
it can only detect lesions once the bone mass has been reduced by 30% to 50%. Hence, utilizing
advanced and sensitive imaging modalities, such as positron emission tomography (PET) fused with
computed tomography (CT), is crucial for the early detection of osteolytic lesions. Among radiotracers
used in PET imaging, 18F-fluorodeoxyglucose ([18F]FDG) is the most commonly employed in the field
of oncology. Currently, most guidelines include [18F]FDG PET/CT in the assessment of myeloma
patients, particularly for detecting osteolytic lesions, evaluating treatment response, and assessing
extramedullary and residual disease. Nonetheless, in recent years, new applications of PET/CT
for evaluating myeloma have been investigated. These include assessing aspects such as bone
turnover, dual-time-point imaging (early and delayed scans), the impact of chemotherapy on the
brain (commonly known as ‘chemo brain’), innovative PET radiotracers, and the use of artificial
intelligence technology. This article aims to provide a comprehensive review of both conventional
and innovative uses of PET/CT in evaluating multiple myeloma.

Keywords: multiple myeloma; PET/CT; positron emission tomography; [18F]FDG; osteolytic lesions;
new applications of PET/CT

1. Introduction

While there have been remarkable strides in multiple myeloma (MM) treatment,
resulting in unprecedented response rates and improved survival, patients continue to ex-
perience relapses, and achieving a complete cure remains a challenging goal [1]. Therefore,
a comprehensive assessment process for MM patients, which involves a complete blood
count with differentiation, serum chemistry analysis, assessments of creatinine, lactate
dehydrogenase, β2-microglobulin levels, immunoglobulin studies, imaging, and a bone
marrow examination, is necessary for the majority of the patients [2]. The hallmark of MM
is the clonal expansion of plasma cells [3]. The plasma cells produce some cytokine that
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imbalances the interaction between osteoblasts and osteoclasts [4]. It has been shown that
osteoclast activity in the bone marrow of MM patients increased while osteoblast activity
decreased [4]. This disproportion is the core issue of bone complications in individuals
with myeloma. Those afflicted with myeloma frequently exhibit osteolytic bone lesions,
resulting in fractures and severe pain [5]. Fatigue and repeated infections are two additional
common non-specific myeloma presentation symptoms [5]. Among malignant diseases,
myeloma has the highest occurrence of bone involvement, with around 90% of patients
developing bone lesions and up to 60% experiencing pathologic fractures throughout the
course of their illness [5]. Any bone can be affected, although the spine (49%), skull (35%),
pelvis (34%), ribs (33%), humeri (22%), femora (13%), and mandible (10%) have the highest
number of lesions [6]. Most patients do not experience healing from these lytic lesions, and
skeletal lesions might advance even when the disease is largely under control thanks to
chemotherapy. [7].

For a long duration, whole-body X-ray (WBXR) imaging has been recognized as the
premier imaging modality for detecting lytic lesions [8]. The 2017 National Comprehensive
Cancer Network (NCCN) Clinical Practice Guidelines in Oncology recommended the use
of a skeletal survey as a component of the initial diagnostic workup for MM [9]. It is
now commonly understood that standard X-rays are not very effective at spotting lytic
lesions, as these lesions do not show up until there is a 30% to 50% destruction in bone
mass [8]. As a result, it becomes vital to employ advanced imaging techniques, such
as positron emission tomography (PET) fused with computed tomography (CT), for the
prompt detection of osteolytic lesions [8]. In 2021, NCCN guidelines suggested CT or
PET/CT to be used in place of a skeletal survey [10]; in low-resource settings, where
advanced imaging techniques are not available, a skeleton survey is still acceptable [10].
The International Myeloma Working Group (IMWG) has also recommended the use of
more sophisticated imaging modalities in detecting osteolytic lesions at an earlier stage
due to their higher sensitivity [11].

18F-fluorodeoxyglucose ([18F]FDG) is the most commonly used PET radiotracer for
identifying cancers and their metastases [12]. Because cancer cells typically absorb glucose
at a higher rate than normal cells, they also exhibit an increased uptake of [18F]FDG,
which is a glucose analogue, when compared to healthy tissues. [18F]FDG PET/CT merges
the functional imaging capabilities of PET with the structural evaluation provided by
CT [13]. Beyond its cancer detection capabilities, this imaging modality can gauge the
intensity and variability of different diseases across the body. [18F]FDG PET/CT has
been extensively studied in evaluating myeloma patients, particularly in the detection of
osteolytic lesions, evaluation of therapy response, and assessment of extramedullary and
residual disease. Numerous studies have demonstrated that [18F]FDG PET/CT has great
sensitivity and specificity ranges from 80% to 100% for identifying osteolytic myeloma
lesions [11]. However, recent advancements have spurred further investigations into novel
applications of PET/CT in myeloma assessment, such as assessing bone turnover, dual-
time-point imaging or early and delayed scans, chemo brain, novel PET radiotracers, and
artificial intelligence (AI) technology. This article aims to offer a comprehensive review of
both traditional and innovative implementations of PET in the evaluation of MM (Figure 1).
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Figure 1. Conventional and novel roles of PET/CT in myeloma disease assessment. 
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The efficacy of [18F]FDG PET/CT in the evaluation of myeloma osteolytic lesions has 

been validated (Figures 2 and 3), with recorded sensitivity and specificity ranging between 
80% and 100% [8,11]. In a systemic review including eighteen studies with 798 patients, 
[18F]FDG PET exhibits higher sensitivity for detecting myeloma bone lesions compared to 
WBXR [14]. In another systemic review by Ragerlink et al. [15], all of the imaging modal-
ities demonstrated a greater detection rate when compared to WBXR, showing up to an 
80% increase in the rate of osteolytic lesion detection: MRI (1.12–1.82), CT (1.04–1.33), PET 
(1.00–1.58), and PET/CT (1.27–1.45). Some recent guidelines, including those from the Eu-
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cology guidelines, advocate for the use of whole-body low-dose CT as the preferred 
method to evaluate lytic bone lesions in MM [15]. There are, however, few studies that 
have prospectively compared whole-body low-dose CT with [18F]FDG PET/CT [11]. Ac-
cording to the latest IMWG consensus guideline, the initial diagnostic evaluation of mye-
loma patients can be performed by [18F]FDG PET/CT instead of low-dose whole-body CT 
(IV level of evidence) [11]. In addition, as per the NCCN guidelines, both low-dose CT 
and [18F]FDG PET/CT are considered appropriate options for the initial assessment of my-
eloma patients [10]. 

Figure 1. Conventional and novel roles of PET/CT in myeloma disease assessment.

2. Assessment of Bone Disease in MM: An Examination of Osteolytic Lesions

The efficacy of [18F]FDG PET/CT in the evaluation of myeloma osteolytic lesions has
been validated (Figures 2 and 3), with recorded sensitivity and specificity ranging between
80% and 100% [8,11]. In a systemic review including eighteen studies with 798 patients,
[18F]FDG PET exhibits higher sensitivity for detecting myeloma bone lesions compared to
WBXR [14]. In another systemic review by Ragerlink et al. [15], all of the imaging modalities
demonstrated a greater detection rate when compared to WBXR, showing up to an 80%
increase in the rate of osteolytic lesion detection: MRI (1.12–1.82), CT (1.04–1.33), PET
(1.00–1.58), and PET/CT (1.27–1.45). Some recent guidelines, including those from the
European Myeloma Network and the 2016 update of the European Society of Medical
Oncology guidelines, advocate for the use of whole-body low-dose CT as the preferred
method to evaluate lytic bone lesions in MM [15]. There are, however, few studies that have
prospectively compared whole-body low-dose CT with [18F]FDG PET/CT [11]. According
to the latest IMWG consensus guideline, the initial diagnostic evaluation of myeloma
patients can be performed by [18F]FDG PET/CT instead of low-dose whole-body CT (IV
level of evidence) [11]. In addition, as per the NCCN guidelines, both low-dose CT and
[18F]FDG PET/CT are considered appropriate options for the initial assessment of myeloma
patients [10].

According to Bredella and colleagues, [18F]FDG PET/CT demonstrated an 85% sen-
sitivity and a 92% specificity in detecting lytic lesions [16]. In another study conducted
by Zamagni et al. on newly diagnosed multiple myeloma (NDMM) patients, [18F]FDG
PET/CT revealed a higher number of lesions compared to WBXR in 16 out of 28 patients [17].
The researchers observed that in 46% of patients, [18F]FDG PET/CT exhibited better per-
formance in detecting active lesions, whereas only in 8% of myeloma patients did WBXR
demonstrate greater sensitivity than PET/CT for detecting osteolytic lesions [17]. Another
study revealed that there was no substantial difference in treatment choices between various
imaging techniques, despite the fact that whole-body MRI (WBMRI) demonstrated superior
sensitivity in detecting bone myeloma lesions compared to 18F-FDG PET on a per-patient
evaluation [18]. Consequently, the authors concluded that either approach ([18F]FDG PET
or WBMRI) would be appropriate for early staging, with the choice depending on available
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resources and expertise [18]. In another study, both MR and [18F]FDG PET/CT imaging
modalities demonstrated equivalent success in detecting localized lesions in the spine
of myeloma patients [19]. It is important to note that a limitation of MR imaging is its
restricted field of view, as up to one-third of patients may have osseous abnormalities
detectable by [18F]FDG PET/CT in regions that MR imaging cannot explore [19].
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Figure 2. This figure illustrates the crucial role of [18F]FDG PET in evaluating skeletal disease in
MM. The case is of a 60-year-old man newly diagnosed with MM. [18F]FDG PET revealed cervical
lymphadenopathies and multiple active lesions with varying degrees of [18F]FDG uptake in the
skeleton (A). An active lesion in the sternum (indicated by arrows) was detected on PET and PET/CT
(A,B,D), but was not clearly visible on CT alone (C). The image was sourced from PMID: 31084774
(Figure 1), and permission was granted for its use.
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Figure 3. This figure demonstrates the high sensitivity of [18F]FDG in detecting active MM lesions.
The images present [18F]FDG PET (left) and Na[18F]F scan (right) of a 60-year-old man diagnosed
with MM. The whole-body [18F]FDG PET scan reveals numerous active lesions in the skeleton
and extramedullary sites (A). The whole-body Na[18F]F PET scan did not identify most of the
lesions detected by [18F]FDG PET (B). The image was sourced from PMID: 31084774 (Figure 2), and
permission was granted for its use.
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3. Prediction of Prognosis

The progression of MM can vary, and unfortunately, it remains a life-threatening
condition. Consequently, it is crucial to identify high-risk individuals at an early stage,
making the search for precise prognostic myeloma markers of utmost importance [8]. In
an investigation on myeloma patients who received autologous stem cell transplantation
(ASCT), Zamagni and colleagues found that the presence of focal bone lesions (FLs) higher
than three, along with the detection of extramedullary disease (EMD) using [18F]FDG
PET/CT, adversely affected both progression-free survival (PFS) and overall survival
(OS) [20]. Sachpekidis and colleagues conducted a research study on baseline [18F]FDG
PET/CT scans in 47 NDMM patients. After ASCT, 34 of these patients, or 72.3%, had a
subsequent PET/CT examination [21]. In a univariate survival analysis, the number of
[18F]FDG -avid spots observed both before and after treatment, along with the presence
of paramedullary disease (PMD) and extramedullary disease (EMD) prior to treatment,
negatively influenced PFS [21]. In a multivariate survival evaluation, the count of distinct
[18F]FDG -avid lytic lesions and the existence of EMD were indicators of a less favorable
outcome, irrespective of the international staging system (ISS) or the existence of high-risk
genetic factors [21].

Correlation of [18F]FDG PET and β2-Microglobulin

A pre-treatment serum β2-microglobulin level serves as an assessment of tumor load
and stands as one of the foremost prognostic factors in MM [22]. In one study enrolling
24 myeloma patients, the pre-treatment β2-microglobulin strongly correlated with the
presence of [18F]FDG-avid focal bone lesions (r: 0.869, p = 0.002) [22].

4. Importance of [18F]FDG PET/CT in Assessing Treatment Efficacy

Evaluating the response to treatment is a significant area where [18F]FDG PET/CT
might offer greater utility compared to conventional imaging methods [23] (Figures 4 and 5).
By analyzing the metabolic behavior in areas with clonal plasma cell growth, [18F]FDG
PET/CT can precisely gauge and quantitatively measure alterations in cancer cell activity
following therapeutic interventions [24–29]. Furthermore, there is a robust correlation
between negative [18F]FDG PET/CT results and a highly positive response to treatment in
myeloma patients [20].

4.1. Baseline Parameters of [18F]FDG PET

In a scientific study involving MM patients, [18F]FDG PET/CT scans were performed
either on the seventh day after the start of initial treatment or before the commencement
of the first ASCT [26]. The study revealed that myeloma patients with high-risk genetic
patterns, who still had more than three distinct lesions on PET/CT after the seventh day,
faced decreased PFS and OS outcomes [26]. Likewise, there was a notable enhancement in
both PFS and OS among instances where [18F]FDG avidity in focal lesions was eliminated
prior to ASCT. Additionally, the research showed that [18F]FDG PET/CT scans could
potentially predict a complete response, sometimes almost 18 months earlier than detections
made through MR imaging or other structural imaging techniques [26]. In a different study
with 239 patients who received ASCT after neoadjuvant therapy, those who had more than
three focal lesions on the baseline [18F]FDG PET scan had lower OS and event-free survival
(EFS) [25]. To be precise, eighty seven percent of patients with three or less [18F]FDG
-avid lesions experienced an event-free 30-month survival, compared to only six percent
of patients with more than three such lesions. Moreover, individuals who demonstrated
a complete reduction in [18F]FDG PET uptake prior to undergoing a stem cell transplant
exhibited enhanced rates of OS and EFS [25].
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Figure 4. This figure presents the case of a 39-year-old patient with symptomatic multiple myeloma
(MM) who was being prepared for high-dose therapy (HDT) and autologous stem cell transplantation
(ASCT). This patient underwent an [18F]FDG PET/CT scan both before and after treatment. The
maximum intensity projection (MIP) of the [18F]FDG PET/CT scan before treatment (A) revealed
a combination of intense, widespread uptake in the axial skeleton and multiple focal bone marrow
lesions in locations such as the sternum, ribs, humerus, scapula, and femur (indicated by arrows).
The follow-up [18F]FDG PET/CT MIP after HDT and ASCT (B) demonstrated a complete remission
of both the diffuse bone marrow uptake and the focal MM lesions. Figure 2, PMID: 31905752, PMCID:
PMC6982887, OPEN ACCESS.
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Figure 5. This figure is displaying the baseline (A,B) and follow-up (C,D) [18F]FDG PET images of a
patient with MM before high-dose chemotherapy and 2 months post-treatment. The [18F]FDG uptake
by the lesions was quantified using an adaptive thresholding algorithm. The image was sourced from
PMID: 31084773 (Figure 3), and permission was granted for its use.

4.2. Assessment of Myeloma Patients after Treatment

Research studies have confirmed that a negative post-therapy PET/CT scan can predict
the absence of relapse and a prolonged disease-free period [30]. Conversely, there is a
connection between elevated post-treatment [18F]FDG uptake and shorter durations before
experiencing a relapse [31]. As an example, an illustration comes from the work of Zamagni
and co-authors [20], where the persistence of [18F]FDG avidity three months post-ASCT
was indicative of a decreased PFS. After three months following ASCT, 65% of patients
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showed a negative result in their PET/CT scans. These individuals exhibited better rates
of PFS at four years, reaching 66%, and OS at 89%, compared to patients with positive
PET results [20]. Some studies conducted a comparison between PET and MR imaging
to assess treatment response. Compared to contrast-enhanced MR imaging, [18F]FDG
PET/CT indicated a faster return to normalcy in patients who achieved a complete or
significant partial response to treatment. In one examination, PET/CT accurately detected
positive treatment responses in 80% (16 out of 20) of patients, outperforming MR imaging
which correctly identified positive responses in only 60% (12 out of 20) of patients [30]. In a
separate study, Spinnato and fellow researchers examined 40 MM patients. They revealed
that among those with favorable or full responses to therapy (27 patients, accounting for
67.5% of the group), the normalization process occurred more rapidly in PET/CT compared
to MR imaging [32].

5. Identification of Minimal Residual Disease (MRD) in Myeloma

The focus on assessing and managing MRD has heightened due to recent advance-
ments and the introduction of novel medications, which provide enhanced efficacy in
treating MM [33]. IMWG has suggested the utilization of both sensitive bone marrow-
based tests and functional imaging methods with the ability to identify MRD beyond the
confines of the bone marrow [11]. The integration of these methods enables the deter-
mination of the complete elimination of tumor clones. Extensive research, including a
comprehensive meta-analysis, has unveiled that the absence of metabolic activity detected
by a negative [18F]FDG PET/CT scan following ASCT serves as a strong indicator of more
favorable outcomes, contrasting with indications of persistent metabolic activity [8].

In a retrospective investigation, [18F]FDG PET/CT scans were examined both before
and after therapy for patients who were and were not eligible for ASCT [34]. Even though
100 out of 189 patients (53%) had a full response, [18F]FDG PET/CT remained positive in
29 cases [34]. When compared to other patients, those with persistent [18F]FDG uptake had
significantly shorter PFS and OS (median PFS: 44 months vs. 84 months [p = 0.0009], 5-year
OS: 70% vs. 90% [p = 0.003]) [34].

6. Dual-Time-Point Imaging (DTPI) in MM

Between the 1 h and 4 h intervals following the injection of [18F]FDG, cancerous
tumors consistently exhibit heightened [18F]FDG absorption, whereas benign tumors and
healthy tissues consistently display reduced uptake [35]. As a result, delayed imaging
demonstrates higher sensitivity and specificity in detecting malignant lesions compared to
imaging at a single time point [35]. Hence, DTPI has demonstrated promise as a method to
differentiate between malignant and benign lesions [36]. Nevertheless, the literature lacks
a well-established understanding of the role of DTPI in evaluating lesions associated with
MM. In an initial investigation, Taghvaei and co-authors [37] conducted a study where
they evaluated the [18F]FDG uptake in patients with MM at 1 and 3 h. The study indicated
that partial response was linked to lesions demonstrating a significantly higher increase in
[18F]FDG uptake between two PET scans, whereas situations involving complete response
showed stable [18F]FDG measures [37] (Figure 6). The study came to the conclusion that
DTPI may be able to predict the degree of treatment sensitivity and aggressiveness in MM
patients [37].
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consequence of myeloma bone disease. While [18F]FDG can reveal fractures to a certain 
degree, numerous studies have demonstrated that a bone-seeking PET radiotracer, 18F-
sodium fluoride (Na[18F]F), is more effective for this specific purpose [38] (Figure 7). On 
the other hand, most comparative studies showed that [18F]FDG is superior to Na[18F]F in 
identifying osteolytic lesions [38] (Figure 3). This outcome is anticipated due to the fact 
that Na[18F]F reflects osteoblastic activity, whereas localized myeloma lesions predomi-
nantly involve heightened osteoclast activity [38]. 

Figure 6. This figure showcases [18F]FDG PET/CT scans from a 60-year-old man recently diagnosed
with multiple myeloma. (A) Illustrates the [18F]FDG PET scan taken 1 h post-administration of the
[18F]FDG tracer. (B) Depicts the [18F]FDG PET scan taken 3 h post-administration of the [18F]FDG
tracer. The table exhibits the percentage of change in the SUVmean and pvcSUVmean for the lesions
showing complete response (CR) and partial response (PR) in the patient from the 1 h scan to the 3 h
scan. The terms CR, PR, pvc, and SUVmean stand for complete response, partial response, partial
volume correction, and mean standardized uptake value, respectively. The image was sourced from
PMID: 30420215 (Figure 5), and permission was granted for its use.

7. Assessment of Pathologic Fractures

Fractures, which impact 60–80% of myeloma patients, represent a notable adverse
consequence of myeloma bone disease. While [18F]FDG can reveal fractures to a certain
degree, numerous studies have demonstrated that a bone-seeking PET radiotracer, 18F-
sodium fluoride (Na[18F]F), is more effective for this specific purpose [38] (Figure 7). On
the other hand, most comparative studies showed that [18F]FDG is superior to Na[18F]F in
identifying osteolytic lesions [38] (Figure 3). This outcome is anticipated due to the fact that
Na[18F]F reflects osteoblastic activity, whereas localized myeloma lesions predominantly
involve heightened osteoclast activity [38].

In a research conducted by Ak et al. [39], even though there were certain limitations
to the ability of Na[18F]F PET to identify osteolytic lesions, this radiotracer managed
to identify 135 bone lesions, encompassing rib fractures and other anomalies linked to
degenerative alterations. Hence, the researchers concluded that Na[18F]F PET/CT might
offer a complementary function in identifying fractures linked to myeloma [39]. In another
study conducted by Sachpekidis et al., the Na[18F]F PET/CT scan revealed only 135 lesions
indicative of MM, whereas the whole-body [18F]FDG PET/CT scan depicted a total of
343 focal lesions [40]. Nonetheless, Na[18F]F PET/CT revealed indications of degenerative
processes associated with trauma [40].
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8. PET for Assessment of Bone Turnover in Myeloma Patients

The presence of fluoride in Na[18F]F serves as a direct marker of osteoblastic activity,
as it is specifically incorporated into newly formed bone mineral sites that are exposed [41].
Consequently, Na[18F]F PET can be utilized to evaluate bone turnover in different medical
conditions. Zirakchian Zadeh et al. investigated the effects of high-dose therapy (HDT)
and conventional-dose chemotherapy on the uptake of Na[18F]F in myeloma patients [42].
In total, 19 patients with MM who received HDT and an additional 11 MM patients
who received chemotherapy at standard doses were included in the study (Figure 8) [42].
Following HDT, myeloma patients exhibited a noticeable decrease in Na[18F]F uptake
in various areas, including the overall skeleton, pelvis, entire femoral neck, and lateral
femoral neck. Conversely, in the non-HDT group, no significant alterations were observed
(Figure 8) [42]. As a result, the authors inferred that Na[18F]F holds potential for evaluating
bone loss in myeloma patients after HDT [42].
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tigations have linked high-dose chemotherapy (HDC) to alterations in brain structure, 
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of white matter [46]. Examining CRCI, also known as chemo brain, has until recently been 
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brain lesions [46]. However, [18F]FDG is capable of detecting alterations in brain activity 
post-treatment, as it visualizes and quantifies changes in glucose metabolism [46]. 

In a recent study, the aim was to compare the effects of treatment—specifically, con-
ventional standard-dose chemotherapy (CDC) versus HDC followed by autologous stem 
cell transplantation (HDC/ASCT)—on the overall brain glucose metabolism of MM pa-
tients [46]. The researchers employed a comprehensive brain [18F]FDG PET measurement 
approach for this purpose, providing an evaluation of changes in 18FDG metabolism 
throughout the whole brain (Figure 9) [46]. After treatment, a notable reduction in the 
GSUVmean (global standardized uptake value mean) was observed in the supratentorial 
brain and cerebellum of patients who underwent HDC/ASCT (p-values < 0.05) (Figure 9) 
[46]. Conversely, there were no statistically significant GSUVmean changes after treat-
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Figure 8. The images on the left depict a semi-automated CT-based segmentation used to assess
bone turnover in the entire bone and pelvis of multiple myeloma patients before and after treatment
(a,b). Regions of interest were also delineated to evaluate changes in Na[18F]F uptake in the femoral
neck of these patients (c). Images obtained from comparison of Na[18F]F uptake in the whole bone,
pelvis, and femoral neck of multiple myeloma patients before and after high-dose therapy and
conventional-dose chemotherapy, Zirakchian Zadeh et al., EJNMMI, Figures 2 and 5, obtained with
permission; reference [42] in this review article.

9. Chemo Brain

The existing literature indicates that a vast majority of commonly employed chemother-
apeutic medications have the potential to induce adverse neurological reactions [43].
Cancer-related cognitive impairment (CRCI), encompassing problems such as cognitive
decline, memory challenges, and difficulties with concentration, is a common complication
observed in individuals undergoing systemic chemotherapy [44,45]. Research investiga-
tions have linked high-dose chemotherapy (HDC) to alterations in brain structure, such
as decreased regional brain volume, degeneration of gray matter, and demyelination of
white matter [46]. Examining CRCI, also known as chemo brain, has until recently been
limited to research using clinical neuropsychological methods designed to detect localized
brain lesions [46]. However, [18F]FDG is capable of detecting alterations in brain activity
post-treatment, as it visualizes and quantifies changes in glucose metabolism [46].

In a recent study, the aim was to compare the effects of treatment—specifically, con-
ventional standard-dose chemotherapy (CDC) versus HDC followed by autologous stem
cell transplantation (HDC/ASCT)—on the overall brain glucose metabolism of MM pa-
tients [46]. The researchers employed a comprehensive brain [18F]FDG PET measurement
approach for this purpose, providing an evaluation of changes in 18FDG metabolism
throughout the whole brain (Figure 9) [46]. After treatment, a notable reduction in the GSU-
Vmean (global standardized uptake value mean) was observed in the supratentorial brain
and cerebellum of patients who underwent HDC/ASCT (p-values < 0.05) (Figure 9) [46].
Conversely, there were no statistically significant GSUVmean changes after treatment in
patients who received CDC (Figure 9). The scientists concluded that a significant decrease
in [18F]FDG uptake in the brain after treatment was only observed in patients who received
HDC/ASCT [46]. This observation might suggest a tendency for chemo brain to be more
prevalent in cases involving HDT [46].
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pratentorial region from the cerebellum was achieved using the tentorium cerebelli as a reference 
point. Patients (a) and (b) received high-dose therapy, whereas patient (c) received conventional 
chemotherapy, resulting in fewer changes in brain [18F]FDG uptake compared to patients (a) and 
(b). 
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[18F]FDG avidity, whereas standardized uptake values (SUV) are employed in semi-quan-
titative analysis to measure the extent of [18F]FDG uptake [47]. Lesion-based techniques 
were largely used in earlier studies to assess the overall illness and therapy response in 
myeloma patients [23]. The maximum standardized uptake value (SUVmax), the main 
quantitative measure obtained from PET, has been the main metric used for this goal [8]. 
However, SUVmax captures uptake in a single voxel within a specific lesion, which makes 
it less comprehensive in representing the overall uptake [48]. Moreover, as SUVmax quan-
tifies uptake in a confined area, it is more susceptible to alterations caused by factors like 
noise and motion [49]. McDonald et al. [50] introduced a model that aggregates [18F]FDG 
avidity from focal lesions into a unified value termed the total lesion glycolysis score. The 
presence of numerous osteolytic lesions can pose challenges to the utilization of the afore-
mentioned methods in patients with myeloma [23,49]. Moreover, the individual assess-
ment of minor osteolytic or malignant lesions is complicated due to the partial volume 
effect (PVE), which leads to a reduction in the estimation of focal lesion uptake and neces-
sitates correction to obtain precise values [23,49]. Whereas imaging techniques such as CT 
and MRI possess spatial resolutions under one millimeter, the spatial resolution of PET is 
between 8 and 10 mm [49]. The restricted spatial resolution presents a significant hurdle 
in the interpretation and measurement of PET results [49]. 

Certain research teams have recently proposed using CT-based segmentation to an-
alyze the uptake of radiotracers in the bone marrow and the overall bone structure of 
myeloma patients as an alternative to concentrating solely on specific osteolytic lesions 
[23] (Figures 10 and 11). These approaches have demonstrated a high level of 

Figure 9. The left figures depict the use of designated regions of interest (ROIs) for the supratentorial
and cerebellum areas within the brain of a multiple myeloma patient. The separation of the supra-
tentorial region from the cerebellum was achieved using the tentorium cerebelli as a reference point.
Patients (a,b) received high-dose therapy, whereas patient (c) received conventional chemotherapy,
resulting in fewer changes in brain [18F]FDG uptake compared to patients (a,b).

10. [18F]FDG PET Quantification

Qualitative PET image analysis requires visual detection of lesions that exhibit [18F]FDG
avidity, whereas standardized uptake values (SUV) are employed in semi-quantitative
analysis to measure the extent of [18F]FDG uptake [47]. Lesion-based techniques were
largely used in earlier studies to assess the overall illness and therapy response in myeloma
patients [23]. The maximum standardized uptake value (SUVmax), the main quantitative
measure obtained from PET, has been the main metric used for this goal [8]. However,
SUVmax captures uptake in a single voxel within a specific lesion, which makes it less
comprehensive in representing the overall uptake [48]. Moreover, as SUVmax quantifies
uptake in a confined area, it is more susceptible to alterations caused by factors like noise
and motion [49]. McDonald et al. [50] introduced a model that aggregates [18F]FDG avidity
from focal lesions into a unified value termed the total lesion glycolysis score. The presence
of numerous osteolytic lesions can pose challenges to the utilization of the aforementioned
methods in patients with myeloma [23,49]. Moreover, the individual assessment of minor
osteolytic or malignant lesions is complicated due to the partial volume effect (PVE), which
leads to a reduction in the estimation of focal lesion uptake and necessitates correction
to obtain precise values [23,49]. Whereas imaging techniques such as CT and MRI pos-
sess spatial resolutions under one millimeter, the spatial resolution of PET is between
8 and 10 mm [49]. The restricted spatial resolution presents a significant hurdle in the
interpretation and measurement of PET results [49].

Certain research teams have recently proposed using CT-based segmentation to an-
alyze the uptake of radiotracers in the bone marrow and the overall bone structure of
myeloma patients as an alternative to concentrating solely on specific osteolytic lesions [23]
(Figures 10 and 11). These approaches have demonstrated a high level of reproducibil-
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ity [23] (Table 1). However, the clinical significance of these methods still needs to be
investigated further [23]. This method has recently been used by the Penn–Odense group
to assess the uptake of [18F]FDG in the context of dual-time-point imaging (Figure 12) [35].
Pre-treatment [18F]FDG PET/CT scans from 36 patients with MM were collected [35]. These
scans were conducted at 1 and 3 h after the injection of the tracer. A segmentation and
quantification of whole-bone marrow (WBM) [18F]FDG uptake was performed using a
threshold algorithm utilizing Hounsfield units obtained from CT data [35]. The patients
were split into two treatment groups: one received non-HDT, and the other received HDT
with ASCT. The international response criteria were utilized to assess the treatment out-
comes for each multiple myeloma patient. In the group that underwent HDT, there was
a notable increase in WBM [18F]FDG uptake among patients who responded poorly to
treatment (Figure 12) [35]. The median value escalated from 1.31 (with an interquartile
range, IQR, of 1.13–1.64) after one hour to 1.85 (IQR: 1.45–2.10) at the three-hour mark,
illustrating this increase [35]. The calculated median percentage alteration ranged from
6.10% to 50.73% (IQR: 23.47–46.4; p = 0.003). In contrast, there was no apparent change in
uptake for patients exhibiting a complete response (p = 0.24) (Figure 12). A similar pattern
was observed in the non-HDT group [35].
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Figure 10. This figure demonstrates the potential role of global disease assessment by PET in MM. It
shows changes in [18F]FDG uptake in MM lesions before (A) and after treatment (B). High diffuse
[18F]FDG uptake is visible across the entire spine before treatment (A), whereas a substantial reduction
in [18F]FDG uptake can be visually observed after treatment (B). Segmentation of the entire skeleton
followed by a closing algorithm allows for a global disease assessment (C,D). The pre-treatment
global average SUVmean (C) was 3.1 and decreased to 1.8 after the completion of the treatment (D).
The image was sourced from PMID: 31084774 (Figure 4), and permission was granted for its use.

Table 1. Intra-class correlation (ICC) analysis for inter-observer reliability for CT-based segmentation
in myeloma disease. Obtained from PMID: 32246208, with permission.

Parameter ICC 95% CI

Whole bone (pre-treatment) 0.983 0.965–0.992
Whole bone (post-treatment) 0.989 0.978–0.995
Whole pelvis (pre-treatment) 0.998 0.996–0.999
Whole pelvis (post-treatment) 0.996 0.991–0.998
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Figure 11. This presents the whole-body [18F]FDG PET and combined [18F]FDG PET-CT images
of a 60-year-old man diagnosed with multiple myeloma. The entire skeleton was segmented by
employing an iterative threshold algorithm based on Hounsfield units, followed by a smoothing and
closing procedure. This method yields the global SUVmean (GSUVmean), which represents the total
bone marrow involvement in patients with multiple myeloma. (A) Prior to treatment commencement,
the GSUVmean was 2.02. However, (B) upon completing the treatment, the GSUVmean significantly
decreased to 1.10. The image was sourced from PMID: 30420215 (Figure 6), and permission was
granted for its use.
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taken at 1 h (F) and 3 h (G). In this patient, there was a slight reduction in the overall bone marrow 
[18F]FDG uptake, dropping from 0.83 (F) to 0.82 (G), with a percentage change of −0.79%. Note that 
the second decimal number is rounded up. PMID: 33224622, PMCID: PMC7675111, Free Access. 
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for evaluating myeloma (Figure 13) [51]. The ambit of the IMPeTUs approach encom-
passes the assessment of the intensity of osteolytic bone disease and the quantification of 
metabolic activity within the bone marrow, extramedullary regions, and paramedullary 

Figure 12. The upper row of images includes a PET scan (A), a merged PET/CT scan (B), and a
combined PET/CT scan with a region of interest (ROI) applied before the use of the morphological
closing algorithm (C) in a patient with multiple myeloma (MM). In the bottom row, the left-hand
side images display PET scans of an MM patient classified in the poor response to treatment group,
captured at 1 h (D) and 3 h (E). In this patient, the overall bone marrow [18F]FDG uptake escalated
from 0.89 (D) to 2.31 (E), reflecting a percentage change of 158.15%. On the right-hand side of the
bottom row, the images present PET scans of an MM patient from the complete response group,
taken at 1 h (F) and 3 h (G). In this patient, there was a slight reduction in the overall bone marrow
[18F]FDG uptake, dropping from 0.83 (F) to 0.82 (G), with a percentage change of −0.79%. Note that
the second decimal number is rounded up. PMID: 33224622, PMCID: PMC7675111, Free Access.
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11. Italian Myeloma Criteria for Pet Use: IMPeTUs

A team of Italian researchers has proposed an extensive set of PET criteria, IMPeTUs,
for evaluating myeloma (Figure 13) [51]. The ambit of the IMPeTUs approach encom-
passes the assessment of the intensity of osteolytic bone disease and the quantification of
metabolic activity within the bone marrow, extramedullary regions, and paramedullary
areas (Figure 13) [51]. Moreover, this method includes the ranking of the top three signifi-
cant focal lesions in the body. IMPeTUs appears to cover essential and separate risk factors
in myeloma [51]. However, the detection of these aspects visually is dependent on the
observer’s proficiency and expertise [49]. The lack of substantial experience among junior
radiologists and nuclear medicine physicians could potentially undermine the repeatability
and consistency of this approach [49]. Despite this obstacle, the authors were able to show
a positive consensus in the interpretation of results, with a minimum rate of 75% for bone
marrow (BM), 76% for the focal score, 95% for extramedullary disease, 76% for the tally of
focal lesions, 77% for the number of lytic lesions, and 92% for the detection of fractures [51].
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Figure 13. IMPeTUs. (A) Maximum intensity projection (MIP); (B) sagittal cut of the PET scan; (C) 
sagittal cut of the CT scan. This shows a widespread and intense bone marrow uptake in the limbs, 
pelvis, and spine. This patient exhibits diffused enhanced bone marrow uptake, which also involves 
the limbs, with a fracture in T10 (the tenth thoracic vertebra). In this case, the Identified Myeloma 
PET Uptake Score (IMPeTUs) is BM4 A (indicating increased bone marrow uptake extending into 
the limbs) and Fr (one fracture identified on CT scan), Cancers 2020, 12(4), 1030; 
https://doi.org/10.3390/cancers12041030, OPEN ACCESS [52]. 

12. Novel PET Radiotracers 
The studies are summarized in Table 2. Figure 14 illustrates the use of 

[68Ga]Pentixafor PET in the evaluation of myeloma. 

Table 2. Novel PET radiotracers in assessment of multiple myeloma. 

 Examples Why? Outcome 

Amino Acid Radiotracers 

[11C]methionine 
18F-fluoroethyl- 

tyrosine ([18F]FET) 
fluciclovine F18 
([18F]-FACBC) 

Amino acid tracers are a promising biomarker in MM 
due to their likely absorption via the mechanism re-

sponsible for generating immunoglobulins in myeloma 
cells [53]. 

In general, amino acid radiotracers have demonstrated 
equal or superior efficacy in evaluating patients with 

myeloma compared to [18F]FDG. However, the relative 
uptake of [18F]FET has been shown to be significantly 
lower in cell line data when compared to [11C]methio-
nine and [18F]FDG. The latter two outperform [18F]FET 

by 7 to 20-fold and 3.5 to 5-fold, respectively [54]. 

Lipid Radiotracers 
[11C]choline, and 
[18F]fluorocholine 

([18F]FCH) 

Choline is an essential nutrient necessary for all cells 
due to its role in the creation of phospholipid compo-

nents that form cell membranes [55]. Several 

All of these radiotracers have been demonstrated to be 
superior or at least equivalent to [18F]FDG for the eval-

uation of MM. 

Figure 13. IMPeTUs. (A) Maximum intensity projection (MIP); (B) sagittal cut of the PET scan;
(C) sagittal cut of the CT scan. This shows a widespread and intense bone marrow uptake in the limbs,
pelvis, and spine. This patient exhibits diffused enhanced bone marrow uptake, which also involves
the limbs, with a fracture in T10 (the tenth thoracic vertebra). In this case, the Identified Myeloma
PET Uptake Score (IMPeTUs) is BM4 A (indicating increased bone marrow uptake extending into the
limbs) and Fr (one fracture identified on CT scan), Cancers 2020, 12(4), 1030; https://doi.org/10.339
0/cancers12041030, OPEN ACCESS [52].

12. Novel PET Radiotracers

The studies are summarized in Table 2. Figure 14 illustrates the use of [68Ga]Pentixafor
PET in the evaluation of myeloma.

https://doi.org/10.3390/cancers12041030
https://doi.org/10.3390/cancers12041030
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Table 2. Novel PET radiotracers in assessment of multiple myeloma.

Examples Why? Outcome

Amino Acid
Radiotracers

[11C]methionine
18F-fluoroethyl-

tyrosine ([18F]FET)
fluciclovine F18
([18F]-FACBC)

Amino acid tracers are a promising
biomarker in MM due to their likely

absorption via the mechanism
responsible for generating

immunoglobulins in myeloma cells [53].

In general, amino acid
radiotracers have demonstrated

equal or superior efficacy in
evaluating patients with myeloma
compared to [18F]FDG. However,

the relative uptake of [18F]FET
has been shown to be significantly

lower in cell line data when
compared to [11C]methionine and

[18F]FDG. The latter two
outperform [18F]FET by 7 to

20-fold and 3.5 to 5-fold,
respectively [54].

Lipid Radiotracers
[11C]choline, and
[18F]fluorocholine

([18F]FCH)

Choline is an essential nutrient necessary
for all cells due to its role in the creation
of phospholipid components that form

cell membranes [55]. Several radiotracers
have been synthesized for choline

imaging, including [11C]choline, and
[18F]fluorocholine ([18F]FCH).

All of these radiotracers have
been demonstrated to be superior
or at least equivalent to [18F]FDG

for the evaluation of MM.

CXCR4-targeting
Radiotracers [68Ga]Pentixafor

Many oncology studies have recognized
C-X-C motif chemokine receptor 4

(CXCR4) as a potential target and an
integral part of cancer progression,

including aspects such as angiogenesis or
other involvement leading to resistance

to therapy [56,57]. An important
observation from ex vivo research is the

broad spectrum of solid tumors and
hematological malignancies that increase

the expression of CXCR4 on the tumor
cell surface. This makes this G-protein

coupled receptor an attractive target for
both imaging and therapy [57].

The majority of studies to date
have indicated that

[68Ga]Pentixafor PET/CT is equal
to or superior to [18F]FDG in

detecting osteolytic lesions and
managing patients with MM.

Immuno-PET
Radiotracers

[89Zr] DFO-daratumumab
[89Zr]DFO-YS5 (anti-CD46
PET radiopharmaceutical)

Immuno-PET could set a new treatment
standard for MM patients by merging the
specificity of a radiolabeled monoclonal

antibody with the high sensitivity of
PET [58]. The transmembrane

glycoprotein CD38, which is the specific
target of the immunotherapy drug

daratumumab, is present in all myeloma
cells [59,60].

Thus far, most of the outcomes
have been shown to be superior

or at least equivalent to those
achieved with [18F]FDG PET/CT.

Proliferative PET
Radiotracer

3′-Deoxy-3′-[18F]
fluorothymidine

([18F]FLT)

Researchers have been focusing on
studying the uptake of nucleosides as an

accurate technique to assess cell
growth [61].

However, researchers from a
recent study disclosed that
[18F]FLT alone might not be

sufficient as a PET tracer for the
diagnosis of MM [62].

FAPI PET:
Fibroblast

Activation Protein
Inhibitor

[68Ga]FAPI PET

FAPI PET operates by specifically
targeting fibroblast activation protein

(FAP), a protein that is highly expressed
in tumor stromal cells, also known as

cancer-associated fibroblasts [63].

Superior to [18F]FDG.
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Figure 14. This figure illustrates a patient diagnosed with multiple myeloma (MM) of the Ig A λ 
type, and with increasing free serum light chains. The [68Ga]Pentixafor PET scan displays intense 
tracer uptake in various locations, including multiple intramedullary lesions (indicated by stars) 
and extramedullary lesions (indicated by arrows). Copyright © Ivyspring International Publisher. 
Reproduction is permitted for personal, non-commercial use, provided that the article is in whole, 
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13. AI for PET Quantification 
The consistency between different observers when interpreting PET/CT scans could 

be impacted by the diverse patterns of bone marrow infiltration typical of the disease [65]. 
To tackle this issue, a group of scientists aimed to validate a new three-dimensional deep 
learning tool [65]. The proposed automated method for evaluating bone marrow 

Figure 14. This figure illustrates a patient diagnosed with multiple myeloma (MM) of the Ig A λ

type, and with increasing free serum light chains. The [68Ga]Pentixafor PET scan displays intense
tracer uptake in various locations, including multiple intramedullary lesions (indicated by stars)
and extramedullary lesions (indicated by arrows). Copyright © Ivyspring International Publisher.
Reproduction is permitted for personal, non-commercial use, provided that the article is in whole,
unmodified, and properly cited. PMCID: PMC5196897, PMID: 28042328 [64].

13. AI for PET Quantification

The consistency between different observers when interpreting PET/CT scans could be
impacted by the diverse patterns of bone marrow infiltration typical of the disease [65]. To
tackle this issue, a group of scientists aimed to validate a new three-dimensional deep learn-
ing tool [65]. The proposed automated method for evaluating bone marrow metabolism
begins with the segmentation of the skeleton, which is based on CT data (Figure 15) [65].
This segmentation is then implemented on the SUV PET images, followed by the use of spe-
cific SUV thresholds [65]. The areas derived from this procedure were subsequently refined
through post-processing methods. The deep learning instrument was effectively utilized in
all patients for segmenting the bone marrow and computing MTV and TLG (Figure 15) [65].
Notably, there was a substantial positive association (p < 0.05) discovered between the
outcomes of the visual PET/CT scan analysis across the three groups of patients and the
MTV and TLG measurements secured from all six [18F]FDG uptake thresholds [65]. Addi-
tionally, the researchers were able to identify a modest positive relationship between the
infiltration of plasma cells into the bone marrow and the levels of plasma β2-microglobulin,
in conjunction with the automated quantitative measurements of MTV and TLG derived
from the PET/CT scans [65].
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Figure 15. This example showcases an automated measurement method employing six distinct
standardized uptake value (SUV) thresholds to identify abnormal tracer absorption in the skeletal
system. It employs an AI-driven, automated process to calculate the metabolic tumor volume
(MTV) and total lesion glycolysis (TLG) values in a patient diagnosed with multiple myeloma (MM),
featuring numerous focal [18F]FDG-avid lesions. PMID: 37493665, Figure 3, open access.

14. Atherosclerosis (Limited Data Available)

Cardiovascular disease (CVD) and cancer stand as the top two contributors to global
mortality [66]. They have numerous shared risk factors and seem to arise from a similar
underlying cause [67,68]. In the first study exploring the role of imaging in assessing
atherosclerosis in myeloma, the investigators from the University of Pennsylvania, Odense
University Hospital, and Norway evaluated the uptake of Na[18F]F in the thoracic aorta
(TA) and the entire heart of myeloma patients as an early marker of atherosclerosis [69]. The
obtained results were compared with those of a healthy control (HC) group. Notably, there
existed a substantial disparity in Na[18F]F uptake within the TA between the myeloma and
HC groups (p-values < 0.001) [69]. Furthermore, there was a significant difference in whole-
heart Na[18F]F uptake between the two groups (p < 0.001) [69]. As noted in the study’s
limitations, the absence of specific individual cardiovascular risk factor history assessment
for each patient could be considered one of the drawbacks of the study. Therefore, the
authors suggested conducting further studies in the future to explore the relationship
between myeloma and atherosclerosis utilizing imaging modalities.

15. [18F]FDG and PET Limitations

Due to its low spatial resolution, PET may miss smaller osteolytic lesions. One
potential solution to this is to combine PET with MRI, which could be particularly useful in
areas like the spine. Recent research has demonstrated that WBMRI significantly improves
detection rates for focal lesions at all anatomical locations (excluding ribs, scapulae, and
clavicles) and for diffuse disease across all regions [70]. Despite its potential, PET/MRI
has a limited accessibility compared to other imaging modalities such as PET or PET/CT.
[18F]FDG is also a non-specific radiotracer that can lead to false positive results under
different circumstances for patients with MM, like cases involving fractures, inflammation,
and prior surgical procedures [23]. Therefore, as underlined previously in this article, there
is a definitive need for more specialized radiotracers to accurately assess patients with
myeloma.

16. Summary Statements

Summary statements are summarized in Table 3.
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Table 3. Summary Statement.

Assessment of Bone Disease
in Multiple Myeloma

Clinical and Research * [18F]FDG PET/CT demonstrates high sensitivity in detecting
osteolytic lesions. The sensitivity of PET can be enhanced with

delayed imaging. However, the waiting time interval between the
two scans (early and delayed) presents a significant challenge.

Prediction of Prognosis Mostly Research [18F]FDG PET stands out as one of the top imaging modalities for
forecasting outcomes in various cancers because it delivers

quantitative parameters.

Effectiveness of Therapy
and Assessment of Residual

Disease

Clinical and Research In comparison to anatomical imaging methods such as CT and MRI,
[18F]FDG PET stands out for these purposes because it offers

molecular insights detectable prior to visible structural alterations.
As a result, many guidelines recommend PET as the preferred

imaging method for these specific areas.

Assessment of Pathologic
Fractures

Research An Na[18F]F radiotracer, indicative of osteoblastic activity, is the
appropriate choice for this task, not [18F]FDG.

PET for Assessment of Bone
Turnover in Myeloma

Patients

Research In a recent study by Zirakchian Zadeh and colleagues, Na[18F]F
PET was demonstrated to effectively evaluate bone activity in

myeloma patients post-treatment.

Chemo Brain Research [18F]FDG PET is capable of measuring alterations in brain glucose
metabolism using quantitative analysis. Thus, it is suitable for

examining the effects of “chemo brain.”

FDG PET Quantification Mostly Research Quantification using [18F]FDG PET in MM is generally challenging.
While SUVmax has proven to be more effective than other PET

metrics for this application, it only reflects metabolic activity in a
limited region. Although MTV and TLG are employed as

volumetric PET metrics, their effectiveness can be reduced due to
the presence of numerous lesions in some cases. Some institutions
are now leaning toward CT-based segmentations; these techniques
are consistently reproducible, yet their clinical patient assessment

merits further study. The IMPetus approach offers another
perspective, primarily visual-based. While this method is thorough,
its effectiveness can be influenced by the expertise of the individual

interpreting the results.

Novel PET Radiotracers Mostly Research [18F]FDG, being a non-specific radiotracer, is susceptible to both
false positive and negative outcomes. This underscores the need to

research more targeted radiotracers for evaluating myeloma
disease. Many of these newer PET radiotracers have demonstrated
results that are either on par with or superior to [18F]FDG PET in

identifying osteolytic lesions.

AI for PET Quantification Research The AI approach to evaluate PET results in myeloma using this new
concept has shown encouraging outcomes thus far. The

investigators argue that this method can address the challenges
associated with inconsistent evaluations of PET results in patients

with myeloma.

Atherosclerosis Research (limited data
available)

Typically, Na[18F]F, rather than [18F]FDG, is suggested for
examining atherosclerosis. Recent research indicates that Na[18F]F

PET might be an effective imaging technique for evaluating
atherosclerosis in individuals with myeloma. Further studies are
recommended by the authors to assess the correlation between

myeloma and atherosclerosis.

PET Limitation N/A The lower spatial resolution of PET compared to anatomical
imaging might impede the evaluation of tiny lesions. Additional
challenges include patient preparation and radiation exposure.

* The second column indicates whether this role of PET pertains to clinical, research, or both aspects in myeloma
assessment. For further details, please refer to the reference [71].
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17. Conclusions

[18F]FDG PET/CT is highly accurate in assessing myeloma osteolytic lesions, treat-
ment response, and residual disease, and is utilized in both research and clinical settings.
Pathological fractures, a notable complication of myeloma bone disease, can be better
assessed using the Na[18F]F radiotracer, given its ability to detect osteoblastic activity.
Likewise, Na[18F]F effectively visualizes calcification in atherosclerosis; however, further
research is needed before its clinical application in the assessment of myeloma. PET is
promising in evaluating bone turnover post-high-dose chemotherapy and the brain’s re-
sponse to chemotherapy drugs, though these are currently research-focused areas. PET
quantification, particularly SUVmax, has applications in both research and clinical domains.
Recent proposals suggest using CT-threshold methodology for whole-bone marrow and
bone radiotracer assessment, rather than just focusing on osteolytic lesions, especially in
patients with numerous myeloma lesions. Despite the high reproducibility of CT threshold
methodologies, they require further investigations. Given the non-specificity of [18F]FDG,
several alternative radiotracers are being investigated for myeloma across different re-
search phases. Additionally, AI’s application in cancer research, including myeloma, shows
promising preliminary outcomes.
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