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Abstract: Untreated early childhood caries (ECC) is a global public health concern. In the short term, 
untreated ECC can lead to pain, infection, and disrupted sleep, among other issues. In the long term, 
it is associated with poor oral health in later life, increased risk of caries in permanent teeth, and 
adverse effects on physical and psychological development. There may be a link between untreated 
ECC and adverse cognitive and neurodevelopmental outcomes in young children, although the ex-
act pathways are not fully understood. One possible pathway is through the relationship between 
mastication and brain stimulation. Impaired masticatory function due to ECC can affect the hippo-
campus, a key region responsible for memory and learning. Furthermore, untreated ECC can cause 
chronic inflammation, leading to the release of pro-inflammatory cytokines that may damage the 
brain. Sleep disturbances resulting from ECC-related pain and discomfort can also impact brain 
development and cognitive functioning. Additionally, frequent use of antibiotics and analgesics to 
address ECC-related infections can disrupt the gut microbiome, potentially affecting the brain 
through the gut–brain axis. Untreated ECC can cause nutritional deficiencies and elevated nutri-
tional risk, and can further hinder brain development. Addressing ECC comprehensively with early 
childhood health initiatives can help mitigate potential long-term consequences and promote opti-
mal brain development in young children. 
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1. Introduction 
Early childhood caries (ECC) is a prevalent oral health condition that affects children 

worldwide [1]. ECC is characterized by the presence of dental caries in primary teeth [2]. 
This condition has significant implications for children’s physical, mental, and social well-
being. In the short term, untreated ECC results in pain, infection, poor appetite, disturbed 
sleep, hospitalization, loss of school days, reduced ability to learn, poor concentration, 
and eventual premature loss of the tooth [3], which causes poor mastication [4]. In the 
long term, untreated ECC is linked to poor oral health in later life, high risk for caries in 
the permanent dentition, poor physical growth and development, poor psychological de-
velopment, and poor quality of life [3,5]. Although ECC has long been recognized as a 
major public health concern, recent research has highlighted potential links between un-
treated ECC and adverse cognitive and neurodevelopmental outcomes in young children 
[6–10]. This is because ECC occurs in the first few years of life when the brain is undergo-
ing rapid and sensitive development of its neural systems. The exact pathways connecting 
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Abstract: Untreated early childhood caries (ECC) is a global public health concern. In the short term,
untreated ECC can lead to pain, infection, and disrupted sleep, among other issues. In the long term, it
is associated with poor oral health in later life, increased risk of caries in permanent teeth, and adverse
effects on physical and psychological development. There may be a link between untreated ECC and
adverse cognitive and neurodevelopmental outcomes in young children, although the exact pathways
are not fully understood. One possible pathway is through the relationship between mastication
and brain stimulation. Impaired masticatory function due to ECC can affect the hippocampus, a
key region responsible for memory and learning. Furthermore, untreated ECC can cause chronic
inflammation, leading to the release of pro-inflammatory cytokines that may damage the brain. Sleep
disturbances resulting from ECC-related pain and discomfort can also impact brain development and
cognitive functioning. Additionally, frequent use of antibiotics and analgesics to address ECC-related
infections can disrupt the gut microbiome, potentially affecting the brain through the gut–brain axis.
Untreated ECC can cause nutritional deficiencies and elevated nutritional risk, and can further hinder
brain development. Addressing ECC comprehensively with early childhood health initiatives can
help mitigate potential long-term consequences and promote optimal brain development in young
children.

Keywords: dental caries; children; preschooler; cognitive function; nutrition; inflammation;
microbiome

1. Introduction

Early childhood caries (ECC) is a prevalent oral health condition that affects children
worldwide [1]. ECC is characterized by the presence of dental caries in primary teeth [2].
This condition has significant implications for children’s physical, mental, and social well-
being. In the short term, untreated ECC results in pain, infection, poor appetite, disturbed
sleep, hospitalization, loss of school days, reduced ability to learn, poor concentration, and
eventual premature loss of the tooth [3], which causes poor mastication [4]. In the long term,
untreated ECC is linked to poor oral health in later life, high risk for caries in the permanent
dentition, poor physical growth and development, poor psychological development, and
poor quality of life [3,5]. Although ECC has long been recognized as a major public health
concern, recent research has highlighted potential links between untreated ECC and adverse
cognitive and neurodevelopmental outcomes in young children [6–10]. This is because
ECC occurs in the first few years of life when the brain is undergoing rapid and sensitive
development of its neural systems. The exact pathways connecting ECC to poor brain
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development are not yet fully understood. However, the conceptualization of the pathway
is represented in Figure 1.
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poor brain development.

1.1. Mastication and Brain Development

One possible pathway is the relationship between masticatory force and brain stimula-
tion. Animal and human studies have suggested a potential causal link between mastication
and cognitive function [11,12]. Mastication plays a role in maintaining cognitive functions
in the hippocampus by providing peripheral sensory input, which supports and enhances
cognitive function [13]. The hippocampus is the central component of a large neural net-
work involved in memory processes, especially spatial memory and learning in the central
nervous system [14]. Neurons in the hippocampus connect to neural circuits controlling
cognition, memory, and motor functions. A huge percentage of brain development oc-
curs postnatally, a period characterized by the formation of masticatory habits. Therefore,
impaired masticatory function can lead to morphological and functional changes in the
hippocampus, resulting in deficits in hippocampus-dependent spatial memory [15,16].

Unfortunately, untreated ECC can cause pain, which leads to avoidance of using the
affected tooth, resulting in a reduction in masticatory force [3,4]. Moreover, the presence of
untreated ECC can lead to tooth loss, further impairing masticatory function [17]. The loss
of teeth has been associated with specific changes in grey matter volume in various brain
regions. These changes include an increase in grey matter volume in regions responsible for
the fear response, learning, memory consolidation, and the trigeminal spinal tract nucleus.
Conversely, there is a decrease in grey matter volume in regions controlling movement,
motor processing/control, emotions, working memory, problem-solving behavior, and the
trigeminal motor nucleus [18].

One of the possible earliest signs of the impact of tooth loss on the brain is the resultant
speech disorder due to the modification of occlusal forces [19]. Tooth loss, especially
in the anterior region of the oral cavity, can lead to speech distortion and difficulties in
pronouncing certain sounds, known as “labial” or “dental” sounds, that involve the lips as
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active articulators [20]. These “labial”, “bilabial”, and “labio-dental” sounds are produced
when the tongue interacts with or comes close to the upper and/or lower anterior teeth
in a coordinated action with the tongue [21]. Additionally, there are various other types
of speech sounds related to the position and involvement of the teeth and tongue. These
include interdental sounds, where the teeth act as passive articulators; alveolar sounds,
produced just behind the teeth by placing the tip of the tongue against the alveolar ridge;
palatal sounds, formed when the tongue approaches the hard palate; velar sounds, created
when the back of the tongue contacts the soft palate or velum; and glottal sounds, produced
in the region of the glottis. These different types of sounds contribute to the complexity
and diversity of human speech [22] that are developed early in life.

The process of producing these sounds involves intricate neural connections that
coordinate the interactions between the brain and various oral structures, such as the teeth,
tongue, muscles of mastication, lips, and vocal cords [23]. These neural pathways develop
and strengthen during childhood and adolescence, a critical period when language skills
are rapidly evolving [24]. When tooth loss occurs during this crucial phase of brain devel-
opment, the neural connections involved in speech production may face challenges [25].
Consequently, children with missing teeth may experience difficulties in articulating speech
clearly and fluently [26]. In response, the brain may undergo adaptation and reorganization
of its neural pathways to compensate for the altered oral structure and the resulting speech
disorders [27]. This happens because tooth loss causes the modifications of neuronal activity
that can lead to alterations in neurotransmission and synaptic strength known as synaptic
plasticity [28]. The phenomenon brings about adjustments in intracortical microcircuitry,
thereby impacting the organization of cortical maps and cytoarchitecture. These changes
serve as the foundation for long-term modifications in motor performance [29].

1.2. Inflammation and Brain Development

Untreated ECC leads to infection and chronic inflammation resulting in elevated levels
of pro-inflammatory cytokines and a resultant arithmetic progression with the severity of
ECC [30]. The pro-inflammatory cytokines produce free radicals that generate peroxides,
Prostaglandin E2, interleukin 6, tumor necrotizing factor-alpha, and cysteinyl leukotrienes
that are powerful agents in the inflammatory response [31–33]. Infection and agents of
inflammation can damage the brain and ECC may cause the dissemination of bacteria from
distant sources with associated damage to the white brain matter [34,35] whose maturation
is associated with the development of cognitive functions in early childhood [36]. The
released endotoxins can initiate a brain-damaging process, and the inflammatory proteins
released play a role in mediating the damage [37,38]. A corollary potential is that maternal
untreated caries may be a risk factor for chorioamnionitis, a risk factor for intrapartum
brain damage [39–41], which is also associated with host dental caries microbacteria [42].

In addition, pain associated with untreated ECC can contribute to elevated levels of
stress, which may have a negative impact on brain development. Prolonged exposure to
stress hormones, such as cortisol, activates the hypothalamic–pituitary–adrenal axis [43].
Cortisol can disrupt the delicate balance of neurochemicals in the brain and hinder the
growth of neural connections necessary for optimal cognitive functioning [44,45]. The effect
is a decrease in memory and cognitive flexibility, which is reversible in a healthy resilient
brain [46]. Specifically, cortisol impairs the process of memory retrieval in a non-linear
fashion [47,48] and it affects the working memory [49].

Moreover, untreated ECC can result in chronic systemic inflammation, leading to
disruptions in the functional connectivity within the parieto-occipital lobe [50]. This
chronic inflammation causes structural remodeling in brain regions crucial for achieving
developmental milestones [50]. During early years of life, oligodendrocyte progenitor cells
undergo proliferation and differentiation, contributing to the development of astrocytes
and oligodendrocytes. This process plays a vital role in establishing neuronal connections,
ensuring proper neural signaling [51]. Additionally, myelination processes continue in
early childhood, but chronic inflammatory processes can disrupt these processes, affecting
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the number of synapses and the integrity of the myelin sheath [50]. Consequently, ECC-
induced chronic inflammation can lead to issues such as poor memory, impaired functional
connectivity within the brain, and adverse cognitive functions.

1.3. Sleep Disturbances and Brain Development

Untreated dental caries can cause sleep deprivation [3]. The pain and discomfort
resulting from untreated ECC can additionally disturb sleep patterns [52]. Sleep plays a
vital role in the development of the brain and cognitive functioning [52]. Disrupted sleep
can hinder the consolidation of memories, impede attention and concentration, and impair
overall cognitive development [53,54]. Moreover, poor sleep quality may contribute to
behavioral issues and impact a child’s emotional well-being, potentially affecting their
social and cognitive growth [55]. Furthermore, sleep deprivation in children triggers the
release of stress hormones [56]. Conversely, sleep disturbances can predispose children
to the development of ECC; thus, the relationship between sleep disturbances and ECC
can be described as bidirectional. Irregular sleep patterns, inadequate sleep duration, and
going to bed late have been linked to decreased self-regulation of appetite, potentially
leading to late-night eating habits [57–59], which can contribute to the risk of ECC through
increased intake of a sugary diet at bedtime (although increased intake of sugar before
bedtime causes a delay in sleeping [60]) [61] or indirectly through obesity [62]. In addition,
inadequate sleep alters the immune status and may predispose children to carious activity
via Streptococcus mutans [63]. Untreated ECC can also lead to sleep disturbances which can
in turn affect cortisol production [64].

1.4. Gut Microbiome and Brain Development

Moreover, the frequent administration of antibiotics and analgesics to address infec-
tions and pain related to untreated ECC can disrupt the balance of the gut microbiome [65].
The gut microbiome plays a vital role in the development and functioning of the brain,
and emerging research indicates that diverse gut microbiota can have either a positive or a
negative influence on cognitive processes and mental well-being [66].

The brain–gut axis forms a complex, two-way communication network linking the
enteric and central nervous systems [67]. Through this connection, sensory signals from the
gut are transmitted to the central nervous system via the Vagus nerve, influencing reflexes
and impacting mood, cognition, and mental well-being. At the same time, the brain sends
signals that regulate gut anatomy and physiology. This bidirectional communication allows
the gut–brain axis to monitor and integrate gut functions while establishing connections
between the emotional and cognitive centers of the brain. Additionally, gut bacteria have
the capability to produce and release neurotransmitters that can communicate with and
affect the central nervous system via the Vagus nerve [68,69]. The gut microbiome is
sensitive to various factors, including stress and medication usage [70], which can lead to
an imbalance known as dysbiosis [71,72]. Dysbiosis triggers an increase in the secretion of
pro-inflammatory cytokines, which can have a detrimental impact on the brain [73,74].

1.5. Nutritional Implications

Untreated ECC leads to the generation of pro-inflammatory cytokines, which are
strongly linked to an elevated nutritional risk [75] and can hinder brain development [76].
Severe ECC is also connected to challenges in eating, decreased food consumption, and de-
ficiencies in iron, vitamin A, vitamin D, and albumin [77–80]. These nutritional deficiencies
can potentially impede brain development and compromise cognitive capabilities [81–83],
as the developing brain relies on adequate nutrition, especially protein deficiencies, which
facilitate its growth, optimal functioning, and plasticity [84,85].

2. Discussion

Early childhood caries is a preventable condition; however, regrettably, it continues to
be highly prevalent among children [4]. Moreover, the risk of ECC is disproportionately
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higher among individuals with a low socio-economic status [86], who often face various
challenges that can negatively impact their brain health. Children from low socio-economic
backgrounds are more likely to exhibit brain maturation patterns characterized by lower
volume and slower rates of change as they develop [87]. This review suggests that untreated
ECC may compound the risk for poor brain development in children with a low socio-
economic status.

Early intervention and preventive strategies are crucial in mitigating the potential
impact of untreated ECC on brain development. Promoting good oral hygiene practices,
such as regular toothbrushing with fluoride toothpaste, along with limiting sugary foods
and beverages, are essential preventive measures. Regular dental check-ups from an
early age can facilitate early detection and prompt treatment of ECC, reducing the risk of
complications. Country-level policies and regulations with advocacy for the addition of
dental treatment into the National Health Insurance Scheme to assist children from the low
socio-economic class to have access ECC treatment, and an active drive to monitor these
regulations, can facilitate improved ECC management and control.

Currently, many oral healthcare programs targeting children are school-based. How-
ever, it is ironic that a significant number of pre-school children, who are at risk of de-
veloping ECC, are not part of formal school systems [88]. As a result, they are unable to
benefit from these school-based interventions. Nevertheless, there is evidence suggesting
that health promotion efforts among pre-school children can have a lasting impact on their
health behaviors [89], and there are models available for integrating health promotion
programs for this age group [90,91]. Despite this, the process of generating and scaling up
evidence to drive the implementation of ECC prevention programs has been exceedingly
slow. What is lacking is the political willpower to drive the change.

In addition, it is crucial to foster collaboration between oral health professionals,
neurodevelopmental pediatricians, and early childhood educators. Such collaboration can
increase awareness about the significance of oral health in overall development, enable the
implementation of preventive strategies, and provide appropriate care for children affected
by ECC. It is also important to incorporate oral health into programs and interventions
for early childhood development at national and international levels. Educating parents
and caregivers about proper oral hygiene practices, the importance of a balanced diet,
and the potential consequences of untreated ECC can empower them to take proactive
comprehensive and wholistic measures to safeguard their children’s oral health and support
their brain development.

This opinion piece has its limitations. We acknowledge that this was a consensus
review that drew on our expert knowledge of the subject matter, and the evaluation of
research to reach our collective conclusions. However, the main weakness lies in the
potential for bias during article selection as we may have selected articles that confirm own
views and, thereby, unintentionally introduced bias. The information aligns better with
the specifics of the focus of our discussion, and potentially offers more relevant guidance
for further work on the topic of interest. There are no established standards or guidelines
governing the process of generating articles for an opinion piece and thus we share some
insights into the issue of understanding that our thorough grasp of the overall state of the
science concerning the problem is limited and further studies are needed. The group will
build on the conceptual framework from this study to inform our future studies.

3. Conclusions

Untreated ECC may have plausible links with disturbances in brain development,
highlighting the need for early intervention and preventive measures. The chronic inflam-
mation, pain, nutritional implications, and sleep disruptions associated with untreated ECC
can adversely affect neurodevelopmental outcomes in young children. Recognizing the
connections between untreated ECC and disturbances in brain development underscores
the importance of a comprehensive approach that integrates oral health care within early
childhood health and development initiatives. By prioritizing oral health for pre-school
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children and implementing timely interventions, we can strive to mitigate the potential
long-term consequences of untreated ECC and promote optimal brain development in
young children.
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