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Abstract: Caregivers experience lower back pain due to patient transfer. Foot position is an important
and adjustable posture for reducing lumbar loads during patient transfer. Specifically, a suitable
foot position provides the use of the lower limbs instead of the lumbar region in patient handling.
Thus, we have developed a monitoring and feedback system for foot positioning using wearable
sensors to instruct suitable foot positions. However, existing measurement methods require multiple
specific wearable sensors. In addition, the existing method has not been evaluated in patient transfer,
including twisting and lowering. Thus, the objective of this study was to develop and evaluate a
measurement method using only a smartphone-installed inertial sensor for foot position during
patient transfer, including twisting and lowering. The smartphone attached to the trunk measures
the acceleration, angular velocity, and geomagnetic field. The proposed method recognizes antero-
posterior and mediolateral foot positions by machine learning using inertial data. The proposed
method was tested using simulated patient transfer motions, including horizontal rotation. The
results showed that the proposed method could recognize the two foot positions with more than 90%
accuracy. These results indicate that the proposed method can be applied to wearable monitoring
and feedback systems to prevent lower back pain caused by patient transfer.

Keywords: wearable sensors; inertial sensor; smartphone; caregiver; patient transfer; foot position;
posture recognition; machine learning; occupational health

1. Introduction

Caregivers experience lower back pain owing to lumbar loads during patient transfer.
Patient transfer causes lumbar loads due to lowering, twisting, and lifting [1–6]. Thus,
several assistive devices have been developed to avoid musculoskeletal loads during
patient transfer [7]. These devices can reduce lumbar loads and the risk of lower back
pain [7,8]. However, several devices, such as mechanical lifts, require remarkable effort
for operation [7]. In addition, awkward postures related to the risk of lower back pain
remained in several facilities using these assistive devices [8]. From this background, it is
considered that instruction on suitable posture during patient transfer is needed to prevent
lower back pain among caregivers.

The instruction of a suitable posture based on ergonomics and body mechanics is
effective in reducing musculoskeletal loads on caregivers [9–11]. However, these instruc-
tions cannot be applied to real-time and continuous prevention of lower back pain because
they require observation of the posture of the caregiver. Thus, measurement systems using
vison-based systems for posture during patient handling were developed for real-time
and continuous intervention to prevent lower back pain [12,13]. Vision-based systems can
accurately measure human posture [14]; however, the measurement area of these systems
is limited by several factors, such as field of view and occlusion. Wearable sensor-based
systems can measure posture during patient handling without limiting the measurement
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area. These systems could measure and provide feedback on the trunk angle related to
lumbar loads during patient handling by wearable sensors [15–17]. However, a feedback
system of only the trunk angle requires a trainer to observe and instruct the lower limb
posture in the implementation of a suitable posture [17]. Body mechanics recommends
using the lower limb instead of the lumbar region to reduce the lumbar load during patient
handling [18]. From these studies, it is considered that lower limb postures should be
measured and fed back in real time and everywhere by wearable sensor-based systems.

The foot position is an adjustable and effective posture for implementing suitable pa-
tient transfer using lower limb movement [19–21]. A previous study showed the possibility
that foot position with long anteroposterior distance could reduce lumbar load by prompt-
ing the usage of lower limb muscles instead of lumbar [21]. In addition, other previous
studies used commands such as “use legs instead of back” to improve patient handling
motion [17]. Thus, we have been developing a measurement method for foot position using
wearable sensors to determine a suitable foot position [22,23]. Our previous method could
measure foot position during patient lifting motion (assistance for sit-to-stand), which is
part of patient transfer, using inertial sensors and shoe-type force sensors. However, this
method cannot be applied to patient transfer, including twisting and lowering [22,23]. The
posture during twisting and lowering should be measured and monitored because twisting
and lowering cause lumbar loads on caregivers [5,24]. In addition, our previous method
required the preparation of additional devices because this method requires shoe-type force
sensors, which are not common devices [22,23]. On the other hand, inertial sensors can be
used by many caregivers because they are installed on common smartphones. Furthermore,
many previous studies have indicated that the inertial sensors of smartphones could be
applied for the measurement of human movements, such as walking and activities of daily
life [25–31]. Based on these facts, it is considered that a novel measurement method for foot
position using only an inertial smartphone sensor might be useful for preventing lower
back pain due to patient transfer. Thus, the objective of this study was to develop and
evaluate a measurement method for foot position in patient transfer using only an inertial
sensor installed on a smartphone.

2. Materials and Methods
2.1. Proposed Method

Figure 1 presents an overview of the proposed method. The smartphone on the
trunk measures acceleration, angular velocity, and geomagnetic on the 3-axis during
patient transfer motion. These inertial data are known to be effective signals for activity
recognition [28]. The trunk was selected for sensor placement because a previous study
indicated that an inertial sensor on the trunk could measure movement related to lumbar
loads in manual handling [32]. The combination of the proposed method and existing
methods using only a single inertial sensor will measure various kinematic values, such as
trunk movement and foot position, to prevent lower back pain.

The machine learning-based classifier recognizes the anteroposterior (AP) and medi-
olateral (ML) foot positions during patient lifting using inertial data. Our recent study
indicated that the lumbar loads of the AP foot position were lower than those of the ML
foot position in patient lifting [20]. Thus, these foot positions during patient lifting should
be recognized and fed back to caregivers to reduce lumbar loads. This study considers
that the feedback system prompts AP foot position when the proposed method recognizes
ML foot position. The features (maximum, minimum, mean, median, standard deviation,
root-mean-square, variance, kurtosis, and skewness) of the machine learning were calcu-
lated from the time waveform of each sensor signal. These features are effective for activity
recognition using the inertial sensors of smartphones [28]. Previous studies have shown
that an artificial neural network (ANN), decision tree (DT), and support vector machine
(SVM) are common algorithms used for human activity recognition using sensor data [33].
A suitable combination of algorithms and sensor signals depends on the movement or
activity. In this study, a suitable combination of algorithms and sensor signals for the
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proposed method was explored experimentally. In addition, the usefulness of the proposed
method is evaluated experimentally.
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Figure 1. Overview of the proposed method. AP: anteroposterior; ML: mediolateral; ANN: artificial
neural network; DT: decision tree; SVM: support vector machine.

2.2. Experiment

In the experiment, the accuracy of foot position recognition using the proposed method
was evaluated to verify the usefulness of the proposed method. Furthermore, the accuracies
of different combinations of sensor signals (acceleration, angular velocity, and geomagnetic)
and machine learning algorithms (ANN, DT, and SVM) were compared to determine a
suitable combination for the proposed method.

The participants were 10 young males (age 19.4 ± 0.663 years; height, 169 ± 4.98 cm,
weight 64.2 ± 13.3 kg, mean ± standard deviation). The experimental procedures were
conducted in accordance with the Declaration of Helsinki and the Ethics Committee for
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Human Research of the National Institute of Technology, Hachinohe College (approval
number R4-2).

A smartphone (iPhone 8, Apple Inc., Cupertino, CA, USA) for the proposed method
was attached to the trunk of the participant, as shown in Figure 1. iPhone 8 implemented an
inertial sensor (Bosch Sensortec, Reutlingen, Germany). The participants performed patient
transfer motion for 5 trials for both the AP and ML foot positions (a total of 10 trials for
each participant). Figure 2 shows the foot positions and seat placements for patient transfer.
The patient was transferred from seat 1 to seat 2 with horizontal rotation (Figure 2). The
horizontal angle between seat 1 and seat 2 was fixed to 30 degrees. The forefoot (left foot)
of the participants was fixed to the same position in both the AP and ML foot positions
(Figure 2). Foot position was defined by the length and width between the heels of both
feet. The foot angle was not fixed during patient transfer. The doll (height 140 cm, weight
4.8 kg) used as a simulated patient was lighter than humans because the lumbar loads of
participants should be controlled compared to actual patient transfer. The posture of the
simulated patient was kept in a sitting posture during patient transfer. The smartphone
measured 3-axis acceleration, angular velocity, and geomagnetic during patient transfer
with a 100 Hz sampling frequency by the phyphox applications [34]. From these procedures,
100 trials (AP: 50 trials, ML: 50 trials) were measured by all participants.

BioMed 2024, 4, FOR PEER REVIEW  4 
 

 

The participants were 10 young males (age 19.4 ± 0.663 years; height, 169 ± 4.98 cm, 
weight 64.2 ± 13.3 kg, mean ± standard deviation). The experimental procedures were con-
ducted in accordance with the Declaration of Helsinki and the Ethics Committee for Hu-
man Research of the National Institute of Technology, Hachinohe College (approval num-
ber R4-2). 

A smartphone (iPhone 8, Apple Inc., Cupertino, CA, USA) for the proposed method 
was attached to the trunk of the participant, as shown in Figure 1. iPhone 8 implemented 
an inertial sensor (Bosch Sensortec, Reutlingen, Germany). The participants performed 
patient transfer motion for 5 trials for both the AP and ML foot positions (a total of 10 
trials for each participant). Figure 2 shows the foot positions and seat placements for pa-
tient transfer. The patient was transferred from seat 1 to seat 2 with horizontal rotation 
(Figure 2). The horizontal angle between seat 1 and seat 2 was fixed to 30 degrees. The 
forefoot (left foot) of the participants was fixed to the same position in both the AP and 
ML foot positions (Figure 2). Foot position was defined by the length and width between 
the heels of both feet. The foot angle was not fixed during patient transfer. The doll (height 
140 cm, weight 4.8 kg) used as a simulated patient was lighter than humans because the 
lumbar loads of participants should be controlled compared to actual patient transfer. The 
posture of the simulated patient was kept in a sitting posture during patient transfer. The 
smartphone measured 3-axis acceleration, angular velocity, and geomagnetic during pa-
tient transfer with a 100 Hz sampling frequency by the phyphox applications [34]. From 
these procedures, 100 trials (AP: 50 trials, ML: 50 trials) were measured by all participants. 

 
Figure 2. Foot positions of the experiment. AP: anteroposterior; ML: mediolateral. 

2.3. Analysis 
A total of 100 trial data points obtained from the experiment were used for the train-

ing and testing of the proposed method. Features (maximum, minimum, mean, median, 
standard deviation, root-mean-square, variance, kurtosis, and skewness) for machine 
learning were calculated from the time waveform during patient transfer for each sensor 
signal (acceleration, angular velocity, and geomagnetic on each axis). As mentioned pre-
viously, the performances of the proposed method using different combinations of sensor 
signals and machine learning algorithms were compared. The ANN, DT, and SVM were 
selected as machine learning algorithms. Tables 1–3 list the specifications of each algo-
rithm. The sensor signals were trio, pair, or solo acceleration, angular velocity, and geo-
magnetic. 

Figure 2. Foot positions of the experiment. AP: anteroposterior; ML: mediolateral.

2.3. Analysis

A total of 100 trial data points obtained from the experiment were used for the training
and testing of the proposed method. Features (maximum, minimum, mean, median,
standard deviation, root-mean-square, variance, kurtosis, and skewness) for machine
learning were calculated from the time waveform during patient transfer for each sensor
signal (acceleration, angular velocity, and geomagnetic on each axis). As mentioned
previously, the performances of the proposed method using different combinations of
sensor signals and machine learning algorithms were compared. The ANN, DT, and
SVM were selected as machine learning algorithms. Tables 1–3 list the specifications of
each algorithm. The sensor signals were trio, pair, or solo acceleration, angular velocity,
and geomagnetic.
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Table 1. Specifications of the artificial neural network (ANN).

Specifications Values

Number of Layers
Input Layer 1

Hidden Layer 1
Output Layer 1

Number of Nodes/Neurons
(Due to the Number of Signals)

Input Layer 27 to 81
Hidden Layer 27 to 81
Output Layer 1

Activation
Hidden Layer Sigmoid
Output Layer Linear

Training Back Propagation
Loss Function Mean Squared Error
Momentum 0.2

Learning Rate 0.3

Table 2. Specifications of the decision tree (DT).

Specifications Values

Minimum Number of Observations at each Leaf 2
Data to Use for Pruning Tree 1/3 of the Data
Data to Use for Growing Tree 2/3 of the Data

Table 3. Specifications of the support vector machine (SVM).

Specifications Values

Kernel Linear Kernel
Training Sequential Minimal Optimization

Hyperparameter c 1.0

Training and testing of the proposed method were trained and tested via leave-one-out
cross-validation (LOOCV). The accuracy, precision, recall, and F-measure of foot position
recognition as evaluation values were calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F-measure = 2 × Precision × Recall
Precision + Recall

(4)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.
These evaluation values were calculated by training and testing using LOOCV. The LOOCV
for each machine learning algorithm was performed using WEKA [35,36].

3. Results

Tables 4–7 show the accuracy, precision, recall, and F-measure of foot position recogni-
tion. The proposed method using an ANN or SVM with all sensor signals (acceleration,
angular velocity, and geomagnetic) could correctly recognize all foot positions. The pro-
posed method, using two sensor signals, could recognize foot positions with an accuracy of
0.780–0.990.
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Table 4. Accuracy of the proposed method.

Sensor Signal
Accuracy

ANN DT SVM

Acceleration, Angular Velocity, Geomagnetic 1.00 0.890 1.00
Acceleration, Angular Velocity 0.870 0.780 0.860

Acceleration, Geomagnetic 0.960 0.940 0.970
Angular Velocity, Geomagnetic 0.990 0.890 0.980

Acceleration 0.830 0.690 0.710
Angular Velocity 0.880 0.810 0.850

Geomagnetic 0.990 0.900 0.950
ANN: artificial neural network; DT: decision tree; SVM: support vector machine.

Table 5. Precision of the proposed method.

Sensor Signal

Precision

ANN DT SVM

AP ML AP ML AP ML

Acceleration, Angular Velocity, Geomagnetic 1.00 1.00 0.915 0.868 1.00 1.00
Acceleration, Angular Velocity 0.894 0.849 0.818 0.750 0.833 0.891

Acceleration, Geomagnetic 0.942 0.979 0.958 0.923 0.961 0.980
Angular Velocity, Geomagnetic 1.00 0.980 0.933 0.855 0.980 0.980

Acceleration 0.851 0.811 0.667 0.721 0.723 0.698
Angular Velocity 0.880 0.880 0.804 0.816 0.843 0.857

Geomagnetic 0.980 1.00 0.955 0.857 0.941 0.959
AP: anteroposterior; ML: mediolateral; ANN: artificial neural network; DT: decision tree; SVM: support vector machine.

Table 6. Recall of the proposed method.

Sensor Signal

Recall

ANN DT SVM

AP ML AP ML AP ML

Acceleration, Angular Velocity, Geomagnetic 1.00 1.00 0.860 0.920 1.00 1.00
Acceleration, Angular Velocity 0.840 0.900 0.720 0.840 0.900 0.820

Acceleration, Geomagnetic 0.980 0.940 0.920 0.960 0.980 0.960
Angular Velocity, Geomagnetic 0.980 1.00 0.840 0.940 0.980 0.980

Acceleration 0.800 0.860 0.760 0.620 0.680 0.740
Angular Velocity 0.880 0.880 0.820 0.800 0.860 0.840

Geomagnetic 1.00 0.980 0.840 0.960 0.960 0.940
AP: anteroposterior; ML: mediolateral; ANN: artificial neural network; DT: decision tree; SVM: support vector machine.

Table 7. F-measure of the proposed method.

Sensor Signal

F-Measure

ANN DT SVM

AP ML AP ML AP ML

Acceleration, Angular Velocity, Geomagnetic 1.00 1.00 0.887 0.893 1.00 1.00
Acceleration, Angular Velocity 0.866 0.874 0.766 0.792 0.865 0.854

Acceleration, Geomagnetic 0.961 0.959 0.939 0.941 0.970 0.970
Angular Velocity, Geomagnetic 0.990 0.990 0.884 0.895 0.980 0.980

Acceleration 0.825 0.835 0.710 0.667 0.701 0.718
Angular Velocity 0.880 0.880 0.812 0.808 0.851 0.848

Geomagnetic 0.990 0.990 0.894 0.906 0.950 0.949
AP: anteroposterior; ML: mediolateral; ANN: artificial neural network; DT: decision tree; SVM: support vector machine.

The accuracy of all the patterns, including geomagnetic signals, was at least 0.89. The
proposed geomagnetic method tends to be more accurate than the proposed method using
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acceleration or angular velocity. In addition, the accuracy of the decision tree using only
geomagnetic data is greater than that of the decision tree using both angular velocity and
geomagnetic data. The results showed that the accuracies of the proposed methods using
an ANN and SVM were greater than those of the proposed methods using a DT.

The results showed that there were almost no differences in the precision, recall, and
F-measure between the AP and ML foot positions. Furthermore, the precision, recall, and
F-measure of the proposed methods using an ANN and SVM were greater than a DT.

4. Discussion

In this study, we propose and evaluate a foot position recognition method using
a smartphone-installed inertial sensor for patient transfer. The results showed that the
proposed method, using several combinations of multiple sensor signals and machine
learning, could recognize foot positions with an accuracy of more than 0.97. The inter-
observer agreement of lower limb posture recognition by humans was approximately
0.97 in a previous study related to occupational health [37]. These results and reports
suggest the possibility that the accuracy of the proposed method is comparable to that of
human observations. Additionally, the proposed method can be applied for monitoring
and feedback on foot position to prevent lower back pain due to patient transfer.

The results showed that the proposed methods using an ANN or SVM with all sensor
signals (acceleration, angular velocity, and geomagnetic) were the most accurate in all
combinations. If there is no limitation for implementation, combinations of all sensor
signals and an ANN or SVM are recommended for the proposed method.

The results showed that multiple sensor signals contributed to a greater accuracy of
foot position recognition. These results indicate that acceleration, angular velocity, and
geomagnetic are effective for the proposed method. In particular, geomagnetic contributed
the most to accurate recognition compared to the other signals. From these results, it is
considered that geomagnetic is the most effective signal for the proposed method. How-
ever, geomagnetic signals are affected by magnetic disturbances owing to environmental
conditions [38]. Thus, the proposed method should be combined with existing methods
for estimating magnetic disturbances, such as the Kalman filter [39], customized for iner-
tial and geomagnetic data. In addition, the improvement of the proposed method using
only acceleration and angular velocity is considered another solution. In future work, the
proposed method will be applied in various environments through these improvements.

A comparison of machine learning algorithms showed that the accuracies of the ANN
and SVM were greater than those of the DT. From these results, it is considered that the
DT is difficult to use for the proposed method because the DT-based if–then rules are not
flexible for data distributions. Therefore, the ANN and SVM are recommended for use in
the proposed method.

The results of precision, recall, and F-measure showed that there were almost no
differences in the recognition performance between the AP and ML foot positions. These
results show that the proposed method can recognize the two foot positions evenly. From
these results, it is considered that the proposed method is useful for wearable applications
to implement a suitable posture for patient transfer to prevent lower back pain.

As mentioned previously, our previous study suggested the possibility that the AP
foot position contributes to reducing lumbar loads during patient transfer [20]. Thus, the
proposed method can be applied to the recognition of the AP and ML foot positions. When
the proposed method recognizes the ML foot position, the caregiver is informed to use the
AP foot position.

The limitation of this study was that patient transfer was a simulated motion. In
addition, the simulated patient in this study was lighter than the actual human because
patient transfer with an actual patient carries a risk of lumbar loads for participants.
Moreover, further motion analysis is required because motion analysis contributes to
explaining reasons for accuracy or error of activity recognition. Furthermore, the foot
positions of this study were limited to only two positions for the repeatability of the
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experiment. Therefore, various foot positions with different foot distances must be applied
for future evaluations of the proposed method.

The experimental environment and participants were limited to young males and a
laboratory environment. There are differences in patient handling motion between males
and females. For example, the patient handling motion of males is faster than females’
motion [40]. There is a possibility that these differences affect the accuracy of the proposed
method. The results of this study can be generalized for patient transfer for patients who
are sitting. However, the results of this study cannot be applied to other patient handling
motions, such as turning supine patients on the bed. Thus, the proposed method should be
tested for other patient handling motions. In future studies, the proposed method should
be evaluated for various patient handling and actual caregivers or nurses in the clinical
field. Additionally, the feedback system using the proposed method was not implemented
and evaluated. Finally, the effect of intervention using the implemented feedback system
should be investigated in future works.

5. Conclusions

In this study, we proposed and evaluated a foot position recognition method using
a smartphone-installed inertial sensor and a machine learning technique for wearable
applications to implement a suitable posture for patient transfer. The experimental results
showed that the proposed method could recognize foot positions during patient transfer
with high accuracy. These results indicate that the proposed method can be applied for the
monitoring and feedback of foot position to prevent lower back pain due to patient transfer.
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