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Abstract: As nanoparticle syntheses on a large scale usually yield products with broad size and
shape distributions, the properties of nanoparticle-based products need to be tuned after synthe-
sis by narrowing the size and shape distributions or via the removal of undesired fractions. The
development of property-selective classification processes requires a universal framework for the
quantitative evaluation of multi-dimensional particle fractionation processes. This framework must
be applicable to any property and any particle classification process. We extended the well-known
one-dimensional methodology commonly used for describing particle size distributions and fraction-
ation processes to the multi-dimensional case to account for the higher complexity of the property
distribution and separation functions. In particular, multi-dimensional lognormal distributions are
introduced and applied to diameter and length distributions of gold nanorods. The fractionation of
nanorods via centrifugation and by orthogonal centrifugal and electric forces is modeled. Moreover,
we demonstrate that analytical ultracentrifugation with a multi-wavelength detector (MWL-AUC) is
a fast and very accurate method for the measurement of two-dimensional particle size distributions
in suspension. The MWL-AUC method is widely applicable to any class of nanoparticles with
size-, shape- or composition-dependent optical properties. In addition, we obtained distributions
of the lateral diameter and the number of layers of molybdenum disulfide nanosheets via stepwise
centrifugation and spectroscopic evaluation of the size fractions.

Keywords: multi-dimensional particle size distribution; multi-dimensional separation; analytical
ultracentrifugation with multi-wavelength detector

1. Introduction

The properties of particles are, in general, governed by their distributions in terms of
size, shape, structure, composition, surface and functional properties. A comprehensive
description and characterization of this multi-dimensional property space is currently
not possible. Nevertheless, a clear trend towards increasing complexity of functional
particle systems is evident. For instance, a large number of protocols for size- and shape-
selective nanoparticle synthesis on a small scale exists. However, the scale-up of these
methods inevitably leads to the broadening of the particle size and shape distribution
because the mixing and reaction conditions in larger reactors are less uniform than in
small vessels. Thus, for large-scale nanoparticle syntheses, a subsequent separation step is
necessary for tuning the product’s properties according to the requirements of the specific
product application by narrowing the size and shape distribution or via the removal of
undesired coarse or fine fractions. Traditional methods for size classification of particles on
an industrial scale, like cyclones and deflector wheel classifiers, rely on mass forces acting
on the particles. These methods are limited to particles with dimensions in the micrometer
range, because the mass forces acting on nanoparticles are too weak, so that nanoparticles
simply follow the fluid flow without any separation regarding size and shape.
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Although the separation of nanoparticles is still challenging, highly promising re-
sults for classification regarding size were obtained by using methods like nanoparticle
chromatography [1–8], size-selective precipitation of semiconductor quantum dots [9,10],
electrophoresis [11–14] and field flow fractionation [15–22]. In particular, chromatographic
methods for the classification of nanoparticles are promising because of their high efficiency
and good scalability. Material-independent size classification of spherical nanoparticles
with diameters between 5 and 80 nm using size-exclusion chromatography with a separa-
tion sharpness of up to 0.87 (analytical separation) was demonstrated [4]. ZnS quantum
dots were classified regarding band gap energy via size-exclusion chromatography, with
a separation efficiency of about 0.9 (sharp analytical separation) and a yield of up to
72% for the fine fraction [2]. Anion-exchange chromatography was used to classify gold
clusters < 2 nm, and clusters consisting of 10, 15, 25 and 29 gold atoms, respectively, were
isolated as single components [3]. Centrifuges providing sufficiently high centrifugal forces
(g-value) to separate nanoparticles < 100 nm at a scale of some hundreds of milliliters or
even at liter scale become now available [23–25]. The material-specific classification of
nanoparticles 20–100 nm in diameter can be achieved via magnetic field-assisted methods
like porous ferromagnetic membranes [26] or magnetic field chromatography [27] but
require either magnetic nanoparticles or a selective binding of magnetic particles to the
desired nanoparticle fraction. Shape-selective classification of nanoparticles was realized
in lab-scale via gel electrophoresis (separation of gold nanorods with a length < 70 nm
from spherical gold nanoparticles) [28] and density-gradient ultracentrifugation. Examples
of the latter are the classification of 2D-nanosheets (50 to few hundreds nm in diameter,
thickness few nm) with respect to the layer thickness, where graphene monolayers with a
purity of 80% were obtained [29–31], the separation of gold nanorods with lengths of about
100 nm from about 20 nm spherical and cubic gold nanoparticles [12] and the classification
of single-wall carbon nanotubes regarding length and chirality [32,33].

Promising methods for multi-dimensional particle fractionation regarding size, shape
and other properties were developed by several projects within a national priority program
(PP 2045—highly specific and multi-dimensional fractionation of particle systems with
technical relevance) [34,35] in Germany. At the beginning of PP 2045, it was not clear
how to describe multi-dimensional particle size distributions (PSDs) and fractionation
processes quantitatively. Moreover, highly precise ensemble methods for measuring multi-
dimensional particle size distributions in suspension, i.e., with good statistics, are rare.
The projects of U. Peuker [36,37] and our project within PP 2045 contributed to a deeper
understanding of such complex multi-dimensional separation processes by developing a
uniform mathematical framework for the quantitative description of multi-dimensional
particle property distributions and multi-dimensional fractionations. For that purpose, we
extended the well-known approach for describing one-dimensional PSDs and fractionations
to the multi-dimensional normal distributed case [38–40]. In PP 2045, we further developed
analytical ultracentrifugation with UV/Vis/NIR multi-wavelength detector (MWL-AUC)
as a fast and highly accurate ensemble method for measuring multi-dimensional particle
property distributions in suspension [39–42]. Moreover, in the first funding period of PP
2045, we demonstrated the feasibility of nanoparticle chromatography for plasmonic gold
nanoparticles [1] and semiconducting quantum dots [2].

This paper is the final report of our project in PP 2045. Beyond our already published
results [38–41], in this paper, we extend our uniform framework to higher-dimensional
lognormal distributions and use it, for illustration, to describe the two-dimensional dis-
tribution of gold nanorods. Additionally, we calculate the outcome of one- and two-
dimensional fractionation processes applied to gold nanorods with lognormal distri-
butions of length and diameter. Moreover, we demonstrate the measurement of two-
dimensional PSDs by MWL-AUC exemplary for gold nanorods [39,40,42] and present a
simple method for measuring size distributions of molybdenum disulfide nanosheets based
on preparative centrifugation.
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2. Materials and Methods
2.1. Materials

An aqueous suspension of gold nanorods (product number: A12-25-750-CIT-DIH-
1-25; LOT #: N2294) stabilized by trisodium citrate was purchased from NanopartzTM.
Molybdenum disulfide < 2 µm (purity > 99%) from Sigma-Aldrich (St. Louis, MO, USA)
was used as feed material for the preparation of molybdenum disulfide nanosheets. Sodium
cholate > 99% (Calbiochem Merck, Darmstadt, Germany) was used as a stabilizing agent
for the molybdenum disulfide nanosheets. All materials were used as received. Ultrapure
water was used for the preparation of all suspensions.

2.2. Preparation and Classification of Molybdenum Disulfide Nanosheets

Nanosheets were prepared via stirred media delamination of the layered material
molybdenum disulfide using a lab-scale batch stirred media mill “PE075” (Netzsch Fein-
mahltechnik GmbH, Selb, Germany). This method relies on shear forces, which are induced
due to the interaction of the layered material with delamination beads, to overcome van
der Waals interactions between the layers [43–45]. A total of 200 mL of ultrapure water
containing 1 wt.% of molybdenum disulfide and 0.5 wt.% of sodium cholate was processed
at 15 ◦C for 5 h with a stirrer rotation speed of 1000 rpm. Yttria-stabilized zirconia beads
(100 µm in diameter, total mass 1.5 kg) were used as delamination media. After separating
the molybdenum disulfide suspension from the delamination beads using a sieve with
a mesh width of 64 µm, the sheets were classified regarding size using a preparative
high-speed centrifuge “3-30KS” (Sigma Laborzentrifugen GmbH, Osterode, Germany).
In the first classification step, the suspension was centrifuged to a sphere-equivalent cut
size of 300 nm (4000 rpm/relative centrifugal force (rcf) of 1664× g for 5 min) to separate
the nanosheets from the not-yet-delaminated particles. The supernatant was collected
and labeled as “fraction-300 nm”. To obtain different size fractions of the nanosheets, the
“fraction-300 nm” sample was centrifuged to sphere-equivalent cut sizes of 250 nm, 200 nm,
150 nm, 100 nm, 75 nm and 50 nm, respectively. The mentioned cut sizes correspond
to the following centrifugation conditions: 4800 rpm/2396× g, 6000 rpm/3743× g and
8000 rpm/6654× g for each 5 min and 12,000 rpm/14,972× g for 5 min, 9 min and 20 min,
respectively. The supernatant of each centrifugation step was collected and labeled as
“fraction-250 nm” up to “fraction-50 nm”.

2.3. Analysis of the Two-Dimensional Nanoparticle Distributions

UV/Vis spectra were recorded using a spectrophotometer “Cary-100” (Varian, Palo
Alto, CA, USA) and disposable cuvettes with an optical pathway of 1 cm.

Scanning transmission electron microscopy (STEM) experiments were performed us-
ing a probe-corrected Spectra 200 C-FEG TEM operated in STEM mode (Thermo Fisher Sci-
entific Inc, Waltham, MA, USA) using a high-angle annular dark-field detector (collection-
angle ranging from 56–200 mrad) with an acceleration voltage of 200 kV. Particles were
drop-cast on a carbon film coated on a carrier mesh copper TEM grid from Plano GmbH,
Wetzlar, Germany, with a specification of 200 mesh. The software ImageJ (version 1.43u) [46]
was used for the analysis of the STEM images. Manual measurements using the straight-
line tool on the obtained images were conducted to determine the lengths and diameters of
the particles.

A preparative ultracentrifuge “Optima L-90K” (Beckman Coulter Life Sciences, In-
dianapolis, IN, USA) equipped with UV/Vis/NIR multi-wavelength optics (Nanolytics
Instruments GmbH, Potsdam, Germany) and a “Flame-S-VIS-NIR” spectrometer (Ocean
Optics Germany GmbH, Ostfildern, Germany) was used for the size analysis of two-
dimensional nanoparticles in suspension. The samples were placed in titanium center-
pieces with an optical path length of 12 mm, as well as in sapphire windows (Nanolytics
Instruments GmbH, Potsdam, Germany). The sedimentation of the particles was investi-
gated at 20 ◦C and a constant rotor speed of 3000 rpm using an An-60 Ti analytical rotor
(Beckman Coulter Life Sciences, Indianapolis, IN, USA). The extinction of the suspensions
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was measured at the radial position of 6.9 cm. Details of the setup, as well as the data
acquisition, are described in our previous work [47,48]. Extinction-weighted sedimentation
coefficient distributions were derived using a direct boundary model for dynamic rotor
speed experiments [49].

3. Results
3.1. Introduction of Mathematical Terminology

In the following sections, we will describe various ways to mathematically describe the
PSD one observes in measurement data or models. To prepare for this discussion, we first
introduce the important terminology that we use in our work and explain the reasoning
behind these approaches. It is helpful to distinguish between density and cumulative
representations. PSDs are described with probability density functions (PDFs)—typically
denoted as q

(→
x
)

, where
→
x is the relevant property vector in terms of size, shape and other

properties—which are functions that satisfy the following conditions:

q
(→

x
)
≥ 0 for all

→
x , (1)

∫
q
(→

x
)

d
→
x = 1. (2)

This means that PSDs are normalized such that the area under the density distribution
is equal to one. The integral in Equation (2) is performed over all “relevant properties”,
which, in the most general way, means values between zero and infinity for each relevant
property description (e.g., diameter and length), but it can also have alternative upper and
lower bounds based on the range of values observed in the data.

The second important presentation of PSDs is the cumulative distribution function
(CDF), which describes the proportion of particles below a certain size relative to the total
amount of particles. In the one-dimensional setting, this is defined as

Q(x) =
amount o f particles ≤ x

total amount
=
∫ x

0
q(z)dz (3)

In the two-dimensional setting, the CDF is defined as

Q(x, y) =
∫ x

0

∫ y

0
q(z, w)dzdw. (4)

For higher-dimension particles, the CDF can be defined in a similar manner.
With the CDF, the relative proportion of particles between sizes

→
x and

→
y , where

→
xi <

→
yi in each size component, can be computed in a straightforward manner with the

CDF Q
(→

x
)

given by Equation (5)

Proportion of particles between sizes
→
x and

→
y : ∆Q

(→
x ,
→
y
)
= Q

(→
y
)
−Q

(→
x
)

. (5)

In this work, we will focus on describing particles with a lognormal distribution, since
this distribution has been found to describe a variety of different particulate processes
including the size and velocity distributions of particles in two-phase flows [50], the size
distributions of aerosols [51] and the size distributions of ultrasmall gold nanoparticles [52].
The lognormal distribution in N dimensions is defined as

q
(→

x
)
= (2π)−

N
2 |Σ|−

1
2
(
∏N

i=1 x−1
i

)
exp

[
−1

2

(
ln
(→

x
)
− µ

)T
Σ−1

(
ln
(→

x
)
− µ

)]
, (6)
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where µ is the mean value of ln
(→

x
)

, Σ is the covariance matrix of ln
(→

x
)

and |Σ| indicates
the determinant of the matrix Σ. For details regarding this notation, we refer to the
Supplementary Materials.

The reason that the mean and covariance matrix are defined in terms of the logarithm
of the particle sizes is because the lognormal distribution is defined such that the logarithm
of
→
x follows a normal distribution. The covariance matrix is very similar to the variance of a

one-dimensional distribution, but it also accounts for the correlation between the variables.
Mathematically, this is described with

σxy = E
[
(x− µx)

(
y− µy

)]
, (7)

where µx and µy indicate the mean values of variables x and y, respectively, and E[·]
indicates the mean value of the distribution weighted by the variable or function within
the brackets. When x = y, then Equation (7) is equivalent to the familiar variance σ2

x . It also
follows from Equation (7) that σxy = σyx. The covariance terms σxy indicate the relationship
between variables x and y. If σxy > 0, then an increase in x is correlated with an increase
in y; if σxy < 0, then an increase in x is correlated with a decrease in y; if σxy = 0, then the
values of x and y are uncorrelated. In Figure 1, we show examples of two-dimensional
lognormal distributions with positive, negative and no correlation between the variables to
demonstrate how the covariance matrix affects a PSD.
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multi-dimensional PSDs, we next discuss the details of the mathematical framework used 
to describe these particles. 

Figure 1. Effect of covariance on the lognormal distribution. (a,d) Lognormal distribution when
the variables are uncorrelated. (b,e) Lognormal distribution when the variables have positive
correlation. (c,f) Lognormal distribution when the variables have negative correlation. Plotting
with a logarithmic scale as in (d–f) allows for visually interpreting the lognormal distribution as if it
were a normal distribution.

We see from Figure 1a–c that interpreting a lognormal distribution is not as familiar as
visually interpreting a normal distribution. For example, it is more difficult to immediately
deduce if a correlation is positive, negative or zero when viewing only one of Figure 1a–c.
However, if the lognormal distribution is plotted with a logarithmic scale on the axes such
as in Figure 1d–f, then one identifies the visual properties of a normal distribution. For
example, on the log scale, a vanishing correlation leads to a symmetrical distribution, a
positive correlation tilts the distribution to move from the bottom-left to the top-right,
whereas a negative correlation leads to the distribution moving from the top-left to the
bottom-right.
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Now that we have introduced the fundamental mathematical tools of analyzing multi-
dimensional PSDs, we next discuss the details of the mathematical framework used to
describe these particles.

3.2. Framework for Describing Multi-Dimensional Particle Property Distributions

The properties of particles depend on the distributions of size, shape, composition,
surface and structure. As the PSD is the key parameter for describing a particle ensemble,
here we focus on the mathematical description of multi-dimensional PSDs. It should
be noticed that the framework for describing PSDs, presented in this section, can be
transferred to other distributed particle properties, for example, surface, volume, band gap
and composition. The general definition of a multi-dimensional PSD qr(

→
x ) is defined by

Equation (8) [38–40].

qr

(→
x
)
=

amount o f kind r in interval d
→
x

interval size d
→
x · total amount o f kind r

(8)

The index r in Equation (8) defines the weighting of the PSD (0: number; 2: surface;
3: volume) and is governed by the physical principle of the particle size measurement
method. The parameter

→
x in Equation (8) is the particle property vector and describes the

set of quantities required to characterize a particle completely. Only for spherical particles
can the PSD be described by the distribution of a single size parameter, the particle diameter
x. That means for spherical particles,

→
x = x and the PSD is completely described by a one-

dimensional density distribution of the particle diameter qr(x). For a one-dimensional PSD,
it is well known that a k-weighted PSD can be converted into a r-weighted PSD via the
moment method, Equation (9) [53–55].

qr(x) =
xr−kqk(x)

Mr−k,k
=

xr−kqk(x)∫ xmax
xmin xr−kqk(x)dx

(9)

The extension of Equation (9) to multi-dimensional PSDs results in Equation (10) [38–40]

qr

(→
x
)
=

κ
(→

x
)

qk

(→
x
)

Mr,k
=

κ
(→

x
)

qk

(→
x
)

∫
→
x εRn κ

(→
x
)

qk

(→
x
)

d
→
x

(10)

A k-weighted multi-dimensional PSD is converted into a r-weighted one through the
pointwise multiplication of the k-weighted PSD with a weighting function κ and dividing by
the generalized moment Mr,k. The weighting function κ depends on the property vector

→
x .

In the following, Equation (10) is applied for converting a number-weighted two-
dimensional PSD of cylinders into surface- and volume-weighted ones. In this case, the
property vector

→
x depends on the length l and the diameter d of the cylinder according to

Equation (11).
→
x = (d, l)T (11)

The weighting function κ in Equation (10) is replaced by functions for the surface S(d,l)
and volume V(d,l) of the cylinders, Equations (12) and (13).

S(d, l) =
1
2

πd2 + πdl, (12)

V(d, l) =
π

4
d2l. (13)

If the PSD qk

(→
x
)

follows the lognormal distribution in Equation (6) with parameters
µk and Σk, the weighting function is of the form

κ
(→

x
)
= C∏N

i=1 xbi
i , (14)
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where C is a constant, xi is the components of
→
x , and

→
b = (bi)

T is real numbers such that

each component of µk + Σk
→
b is positive, then the converted PSD qr

(→
x
)

also follows a

lognormal distribution with parameters µr = µk +Σk
→
b and Σr = Σk. Hence, the conversion

is very simple. A derivation of this result is found in the Supplementary Materials.
As an example, if q0 is a number-based lognormal distribution with parameters µ0

and Σ0, then the volume-weighted PSD of cylindrical particles is computed by using
Equation (13) as the weighting function in Equation (10). In this case, Equation (13) satisfies

the general form of Equation (14) with
→
b = (2, 1)T, which means that we immediately

know that q3

(→
x
)

is lognormal with the following parameters:

µ3 = µ0 + Σ0

[
2
1

]
, Σ3 = Σ0. (15)

While the mean size is shifted to larger values, in particular, the covariance is con-
served. However, conversion from q0

(→
x
)

to the surface-weighted distribution q2

(→
x
)

with
Equation (12) does not follow the pattern in Equation (14). Instead, we can decompose
Equation (10) into the sum of two terms:

q2

(→
x
)
=

1
M2,0

(
1
2

πd2q0

(→
x
)
+ πdlq0

(→
x
))

. (16)

With some algebraic manipulations, we can show that Equation (16) can be expressed
as the weighted sum of two lognormal distributions

q2

(→
x
)
= w1LN

(
µ0 + Σ0

[
2
0

]
, Σ0

)
+ w2LN

(
µ0 + Σ0

[
1
1

]
, Σ0

)
, (17)

where LN(µ, Σ) indicates the parametrized lognormal shown in Equation (3), and the
weights w1, w2 can be computed with the following equations:

C1 = exp
[

1
2
[
2 0

](
Σ
[

2
0

]
− 2µ0

)]
, (18)

C2 = exp
[

1
2
[
1 1

](
Σ
[

1
1

]
− 2µ0

)]
, (19)

w1 =
1/2πC1

1/2πC1 + πC2
, (20)

w2 =
πC2

1/2πC1 + πC2
(21)

We again provide this detailed derivation in the Supplementary Materials.
In Figure 2, the number-, surface- and volume-weighted two-dimensional lognormal

PSDs of the cylinders are shown. The stars in Figure 2 represent the mode values of the
PSDs, and the lines are the boundaries containing 95% of the distribution to demonstrate
the shape of the PSDs.

According to Figure 2, the conversion from q0 to q3 shifts the two-dimensional PSD and
its mode (maximum) value significantly to larger values for the diameter d and the length
l. Moreover, the dispersity of lognormal distributions has a multiplicative relationship
between the mean value and covariance, so having µ0 < µ3 and Σ0 = Σ3 results in q3 being
more disperse. This example demonstrates the importance of the weighting for comparing
PSDs of different samples measured with different methods.
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PSDs of the cylinders are shown. The stars in Figure 2 represent the mode values of the 
PSDs, and the lines are the boundaries containing 95% of the distribution to demonstrate 
the shape of the PSDs. 

 

Figure 2. Comparison of a number- (q0), a surface- (q2) and a volume-weighted (q3) two-dimensional
PSD of nanocylinders. The stars represent the mode values (maximum values for q0, q2 and q3,
respectively), and the lines indicate regions enclosing 95% of the probability mass.

For a reduction in the amount of data, arbitrary r-weighted one-dimensional property
functions can be calculated from two-dimensional PSDs by defining a linked variable. For
rod- or plate-like particles, the aspect ratio ν, which is defined as the length/diameter ratio,
can be used as a linked variable [40]. A one-dimensional distribution of ν can be calculated
by Equation (22) [39,40].

q(ν) =
d

dν

∫ ∞

0

∫ dν

0
q0(d, l)dl dd (22)

The application of Equation (22) can be interpreted as the calculation of the cumulative
distribution of the aspect ratio ν with subsequent derivation to convert it into a density
distribution [39,40]. In Figure 3, the application of this procedure is demonstrated to be
exemplary for gold nanorods.

Powders 2024, 3 262 

Figure 2. Comparison of a number- (q0), a surface- (q2) and a volume-weighted (q3) two-dimensional 
PSD of nanocylinders. The stars represent the mode values (maximum values for q0, q2 and q3, 
respectively), and the lines indicate regions enclosing 95% of the probability mass. 

According to Figure 2, the conversion from q0 to q3 shifts the two-dimensional PSD 
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Figure 3. Calculation of the one-dimensional aspect ratio (AR) distribution from a two-dimensional 
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obtained via the derivation of the cumulative distribution. 

Another linked variable that is often interesting is the specific surface area SSA, 
which is the ratio of the surface area to volume (or mass). For the cylindrical gold nano-
rods, this is computed by 
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The cumulative distribution function for the specific surface area 𝜌(𝑆𝑆𝐴)  is com-
puted by integrating over the region (𝑑, 𝑙), such that  
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This integration is more complicated than the aspect ratio distribution. Here, we iso-
late the variable 𝑙 algebraically by observing 

Figure 3. Calculation of the one-dimensional aspect ratio (AR) distribution from a two-dimensional
PSD of nanocylinders: (a) two-dimensional lognormal PSD of cylinders, where the lines indicate
different aspect ratios; (b) cumulative distribution of the aspect ratio distribution calculated via the
integration of the area based on the aspect ratio contours; (c) density distribution of the aspect ratio
obtained via the derivation of the cumulative distribution.

Another linked variable that is often interesting is the specific surface area SSA, which
is the ratio of the surface area to volume (or mass). For the cylindrical gold nanorods, this
is computed by

SSA =
πdl + 1

2 πd2

π
4 d2l

=
4
d
+

2
l

(23)

The cumulative distribution function for the specific surface area ρ(SSA) is computed
by integrating over the region (d, l), such that
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4
d
+

2
l
≤ SSA (24)

This integration is more complicated than the aspect ratio distribution. Here, we
isolate the variable l algebraically by observing

2
l
≤ SSA · d− 4

4
. (25)

If SAA · d− 4 < 0, then we can rearrange Equation (25) to see

l ≤ −2d
4− SSA · d < 0 (26)

which is not physical and, therefore, does not need to be considered. When SAA · d− 4 > 0,
i.e., d > 4

S , we find that

l ≥ 2d
SSA · d− 4

(27)

which is physically reasonable. Then, the one-dimensional distribution of the specific
surface area can be computed with

ρ(SSA) =
d

dSSA

∫ ∞

4/SSA

∫ ∞

2d/(SSA·d−4)
q0(d, l)dl dd (28)

Applying this procedure to the example gold nanorods results in the distribution
shown in Figure 4.
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Figure 4. Calculation of the one-dimensional specific surface area (SSA) distribution in units 1/nm 
from a two-dimensional PSD of nanocylinders: (a) two-dimensional lognormal PSD of cylinders, 
where the lines indicate different specific surface areas; (b) cumulative distribution of the specific 
surface area distribution calculated via the integration of the area based on the specific surface area 
contours; (c) density distribution of the specific surface area obtained via the derivation of the cu-
mulative distribution. 

3.3. Measuring Two-Dimensional Nanoparticle Distributions 
3.3.1. Overview 

Particle systems are intrinsically multi-dimensional. Due to the underlying enormous 
complexity, mostly one-dimensional size distributions were analyzed in the past. The ef-
fective diameter approach was widely applied by assigning the properties of the real and 
often highly complex particle to an effective diameter of a sphere with the same physical 
properties as the non-spherical particle under consideration. This limitation stems from 
the difficulty of measuring multi-dimensional property distributions reliably and effi-
ciently. 

Continuous shape characterization using commercial video imaging systems is state-
of-the-art for particles larger than roughly 10 microns. The particles must be well sepa-
rated in a continuous flow for proper imaging. The recent advent of advanced characteri-
zation methodologies beyond size now also enables a comprehensive description of com-
plex nanoparticle systems, at least in two dimensions. Of course, SEM, TEM or AFM im-
aging is possible, if proper sample preparation is guaranteed and sufficient particles are 
counted for a statistically reliable number of particles. A recently published review on 
multi-dimensional particle characterization describes the current state of the art [39]. 

Figure 4. Calculation of the one-dimensional specific surface area (SSA) distribution in units 1/nm
from a two-dimensional PSD of nanocylinders: (a) two-dimensional lognormal PSD of cylinders,
where the lines indicate different specific surface areas; (b) cumulative distribution of the specific
surface area distribution calculated via the integration of the area based on the specific surface
area contours; (c) density distribution of the specific surface area obtained via the derivation of the
cumulative distribution.

3.3. Measuring Two-Dimensional Nanoparticle Distributions
3.3.1. Overview

Particle systems are intrinsically multi-dimensional. Due to the underlying enormous
complexity, mostly one-dimensional size distributions were analyzed in the past. The
effective diameter approach was widely applied by assigning the properties of the real and
often highly complex particle to an effective diameter of a sphere with the same physical
properties as the non-spherical particle under consideration. This limitation stems from the
difficulty of measuring multi-dimensional property distributions reliably and efficiently.

Continuous shape characterization using commercial video imaging systems is state-
of-the-art for particles larger than roughly 10 microns. The particles must be well separated
in a continuous flow for proper imaging. The recent advent of advanced characterization
methodologies beyond size now also enables a comprehensive description of complex
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nanoparticle systems, at least in two dimensions. Of course, SEM, TEM or AFM imaging is
possible, if proper sample preparation is guaranteed and sufficient particles are counted
for a statistically reliable number of particles. A recently published review on multi-
dimensional particle characterization describes the current state of the art [39].

A particularly useful technique is analytical ultracentrifugation (AUC). AUC is a very
old technique, for which the Nobel Prize was awarded in 1926 to Svedberg. Due to the high
rotor revolutions of up to 60,000 rpm, nanoparticles from below 1 nm up to almost 1 µm
can be analyzed. The technique has been routinely applied in biolabs for protein analysis
since decades, whereas only a few labs widened to the scope to polymers and colloids. One
of the pioneers was Helmut Cölfen, who recently passed away much too early [56,57]. The
development of the new optical multi-wavelength absorption and emission sensors allows
us to now routinely measure two-dimensional nanoparticle ensembles with unprecedented
accuracy, reproducibility and statistically reliability. Separation in a centrifugal field via
the settling particles is combined with their advanced optical characterization. The latter
is particularly useful for particle systems with size-, shape- and composition-dependent
optical properties. Applications include the following:

• Size and shape characterization of noble metal nanorods with specific plasmonic
resonances or 2D materials such as graphene (oxide) [58] or molybdenum disulfide;

• Size and density characterization of alloys [59] or core–shell systems such as nanopar-
ticles covered by adsorbed stabilizing layers [60];

• Size and bandgap characterization of semiconducting nanoparticles, see, for instance, [56].

For the time being, the application of AUC techniques is restricted to a limited number
of advanced labs in academia and industry. Therefore, the question arises to what extent
techniques for one-dimensional characterization can be used to deduce 2D PSDs. Any
1D PSD can be derived from a 2D PSD via the approach discussed above. However, the
opposite, i.e., the reconstruction of 2D PSDs from 1D PSDs, is an ill-posed problem and will,
in general, not lead to a unique 2D PSD. In [61], it is shown how a two-dimensional property
space can be constructed via the combination of two one-dimensional measurements. The
presented reconstruction method allows the estimation of the bivariate distribution of the
lengths and diameters of gold nanorods using solely their particle mass and extinction-
weighted sedimentation coefficient distributions.

3.3.2. Molybdenum Disulfide Nanosheets

Molybdenum disulfide (MoS2) is a semiconductor material with size-dependent opti-
cal properties [62,63]. It exhibits excitonic transitions (A, B, C and D exciton) in the visible
part of the electromagnetic spectrum, which are shifting with the lateral diameter and the
thickness of the nanosheets (see Figure 5a) [63].

C. Backes et al. developed a methodology for extracting mean values of the lateral
diameter L (in µm) and the number of layers per particle N from UV/Vis-spectra via the
following correlations, shown in Equations (29) and (30) [63]:

L =
3.5 µm EB

E345nm
− 0.14 µm

11.5− EB
E345nm

(29)

N = 2.3·1036e−
54,888nm

λA (30)

EB and E345nm in Equation (29) are the extinction values at the B exciton wavelength
and 345 nm, respectively, and λA in Equation (30) is the wavelength of the A exciton in
nm [63]. Equations (29) and (30) are valid for MoS2-nanosheets with lateral diameters from
70 to 350 nm and fewer than 10 layers [63].

Based on the very convenient spectroscopic access to mean values for L and N by
Equations (29) and (30), the question of how to measure distributions for L and N in
suspension arose. To make a rough estimate for distributions, we centrifuged our MoS2-feed
sample “fraction-300 nm” to different sphere-equivalent cut sizes, as described in Section 2.2,
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and evaluated the UV/Vis-spectrum of each size fraction using Equations (29) and (30).
In Figure 5c,d, the obtained values for L and N are presented as a function of the sphere-
equivalent cut size. Thinner and smaller nanosheets are obtained if the sphere-equivalent
cut size becomes smaller (see Figure 5c,d).
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Moreover, the dispersed MoS2-concentration in each size fraction is accessible from 
the extinction value at 345 nm via the Lambert–Beer law (extinction coefficient: 69 L/g cm) 
[63]. According to Figure 5b, the concentration of the sample increases if the centrifugation 
cut size becomes coarser.  

The distributions of the lateral diameter L and the number of layers N were con-
structed from the values for L, N and the MoS2-concentration of each size fraction as fol-
lows: The MoS2-concentration of each fraction was normalized to the concentration value 
for the feed material (“fraction-300 nm”, 0.14 g/L). For each size fraction, the normalized 
MoS2-concentration was plo ed vs. the corresponding values for L and N, respectively. 
The resulting plots are shown in Figure 6 and can be interpreted as estimates for the ex-
tinction-weighted cumulative distributions of the lateral diameter L and the number of 
layers N of the “fraction-300nm” sample. As the extinction of the samples at 345 nm is 
almost independent of the size of the MoS2-nanosheets [63] and, therefore, proportional 
to the mass concentration of MoS2, the extinction-weighted distributions correspond to 
mass-weighted distributions (Q3). The distribution of the number of layers N, shown in 
Figure 6a, is almost linear, and a remarkable amount (about 30%) of very thin MoS2-
nanosheets with N ≤ 2 is visible. The distribution of the lateral diameter L, shown in Figure 
6b, is well described by a sigmoidal Weibull-function in Equation (31), which is shown by 
the curve in Figure 6b. 
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Figure 5. Normalized UV/Vis-spectra of MoS2-nanosheets in water as a function of the size of the
nanosheets, the different colored lines indicate different nanosheet sizes with lateral size decreasing
from 160 nm (black line) to 94 nm (gray line) (a), dispersed MoS2 concentration (b), number of layers
N (c) and lateral diameter L (d) as a function of the sphere-equivalent cut size.

Moreover, the dispersed MoS2-concentration in each size fraction is accessible from the
extinction value at 345 nm via the Lambert–Beer law (extinction coefficient: 69 L/g cm) [63].
According to Figure 5b, the concentration of the sample increases if the centrifugation cut
size becomes coarser.

The distributions of the lateral diameter L and the number of layers N were constructed
from the values for L, N and the MoS2-concentration of each size fraction as follows: The
MoS2-concentration of each fraction was normalized to the concentration value for the
feed material (“fraction-300 nm”, 0.14 g/L). For each size fraction, the normalized MoS2-
concentration was plotted vs. the corresponding values for L and N, respectively. The
resulting plots are shown in Figure 6 and can be interpreted as estimates for the extinction-
weighted cumulative distributions of the lateral diameter L and the number of layers N
of the “fraction-300 nm” sample. As the extinction of the samples at 345 nm is almost
independent of the size of the MoS2-nanosheets [63] and, therefore, proportional to the mass
concentration of MoS2, the extinction-weighted distributions correspond to mass-weighted
distributions (Q3). The distribution of the number of layers N, shown in Figure 6a, is almost
linear, and a remarkable amount (about 30%) of very thin MoS2-nanosheets with N ≤ 2 is
visible. The distribution of the lateral diameter L, shown in Figure 6b, is well described by
a sigmoidal Weibull-function in Equation (31), which is shown by the curve in Figure 6b.

Q = Qmax

[
1− exp

{
−[k(L− Lc)]

f
}]

(31)
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where Qmax is the maximum value of the cumulative distribution, Lc is the location parame-
ter (the threshold value), k is the scale parameter and f is the shape parameter.
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Figure 6. Estimates for the extinction-weighted cumulative distribution of the number of layers N 
(a) and the lateral diameter L (b) for the MoS2 sample “fraction 300 nm”. The datapoints in both
diagrams are the measured values, and the lines are fi ing functions (linear for N and Equation (31)
for L with Qmax = 1, Lc = 70 nm, k = 0.018 and f = 1.47).

It should be noted that the distributions of L and N can be measured more conven-
iently and more precisely via MWL-AUC. A detailed MWL-AUC study on different MoS2 
size fractions classified via preparative centrifugation including separation efficiencies for 
the different platelet dimensions is currently in progress. The powerful in-suspension 
method MWL-AUC for measuring two-dimensional PSDs and its application to gold na-
norods is presented in the next section.  

3.3.3. Gold Nanorods 
The length and diameter distributions of commercial gold nanorods were measured 

via MWL-AUC. This powerful method measures the distribution of the sedimentation co-
efficient s (the sedimentation rate normalized to the centrifugal acceleration) in combina-
tion with the diffusional and optical properties (UV/Vis/NIR-spectrum) of a particle en-
semble in suspension and is considered to be the gold standard for particle characteriza-
tion due to its high precision [47,48,64,65]. The combined information obtained from 
MWL-AUC allows for the determination of multi-dimensional particle property distribu-
tions. The sedimentation coefficient s, which is defined by Equation (32), depends on the 
size (via the mass m and the volume-equivalent diameter xV), the shape (via the frictional 
ratio f/f0, f/f0 = 1 for spheres and larger than 1 for non-spherical particles) and the compo-
sition of the particle (via the particle density particle), as well as on the density solvent and 
viscosity η of the solvent. 
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The measured distribution of the sedimentation coefficient can be subdivided into 
different intervals (Figure 7a), and for each interval, the extinction spectrum can be ex-
tracted using AUC-software (Figure 7b). Gold nanorods exhibit surface plasmon reso-
nance and, therefore, their spectra are strongly dependent on their size and shape, in par-
ticular on their aspect ratio. As the surface plasmon resonance of gold nanorods can be 
described quantitatively using physical models, two-dimensional size distributions are 
accessible from the combined sedimentation data and optical properties. The UV/Vis-
spectra of the gold nanorods were modeled via the classical Gans-theory, which approxi-
mates the gold nanorods as spheroids [66–68]. Additionally, an orientationally averaged 
finite element method (FEM) and an analytical longitudinal polarization model (LP 
model) were used for modeling the spectra [69]. The FEM and the LP methods approxi-
mate the gold nanorods as cylinders with hemispherical endcaps. The la er one takes only 
the longitudinal surface plasmon resonance into account, because it is much stronger than 
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(a) and the lateral diameter L (b) for the MoS2 sample “fraction 300 nm”. The datapoints in both
diagrams are the measured values, and the lines are fitting functions (linear for N and Equation (31)
for L with Qmax = 1, Lc = 70 nm, k = 0.018 and f = 1.47).

It should be noted that the distributions of L and N can be measured more conveniently
and more precisely via MWL-AUC. A detailed MWL-AUC study on different MoS2 size
fractions classified via preparative centrifugation including separation efficiencies for the
different platelet dimensions is currently in progress. The powerful in-suspension method
MWL-AUC for measuring two-dimensional PSDs and its application to gold nanorods is
presented in the next section.

3.3.3. Gold Nanorods

The length and diameter distributions of commercial gold nanorods were measured
via MWL-AUC. This powerful method measures the distribution of the sedimentation coef-
ficient s (the sedimentation rate normalized to the centrifugal acceleration) in combination
with the diffusional and optical properties (UV/Vis/NIR-spectrum) of a particle ensemble
in suspension and is considered to be the gold standard for particle characterization due
to its high precision [47,48,64,65]. The combined information obtained from MWL-AUC
allows for the determination of multi-dimensional particle property distributions. The
sedimentation coefficient s, which is defined by Equation (32), depends on the size (via the
mass m and the volume-equivalent diameter xV), the shape (via the frictional ratio f /f 0,
f /f 0 = 1 for spheres and larger than 1 for non-spherical particles) and the composition of
the particle (via the particle density ρparticle), as well as on the density ρsolvent and viscosity
η of the solvent.

s =
m
(

1− ρsolvent
ρparticle

)
3πηxV

f
f0

(32)

The measured distribution of the sedimentation coefficient can be subdivided into
different intervals (Figure 7a), and for each interval, the extinction spectrum can be extracted
using AUC-software (https://www.aucegypt.edu/digital-transformation/software-solutions,
accessed on 6 February 2024) (Figure 7b). Gold nanorods exhibit surface plasmon resonance
and, therefore, their spectra are strongly dependent on their size and shape, in particular
on their aspect ratio. As the surface plasmon resonance of gold nanorods can be described
quantitatively using physical models, two-dimensional size distributions are accessible
from the combined sedimentation data and optical properties. The UV/Vis-spectra of the
gold nanorods were modeled via the classical Gans-theory, which approximates the gold
nanorods as spheroids [66–68]. Additionally, an orientationally averaged finite element
method (FEM) and an analytical longitudinal polarization model (LP model) were used for
modeling the spectra [69]. The FEM and the LP methods approximate the gold nanorods

https://www.aucegypt.edu/digital-transformation/software-solutions
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as cylinders with hemispherical endcaps. The latter one takes only the longitudinal surface
plasmon resonance into account, because it is much stronger than the transversal surface
plasmon resonance [66]. The Mie–Gans model was used to fit the experimental spectra
under the constraint of the sedimentation coefficient. The deconvolution of the spectrum
yields the distribution of the aspect ratio of the gold nanorods, but it does not determine
the length and diameter values unambiguously, as many length–diameter combinations
result in the same aspect ratio. Rather, as the volume of the particles is fixed and accessible
from the sedimentation coefficient, belonging to the extinction spectrum, the values for
length and diameter of the gold nanorods can be univocally determined.
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Figure 7. Sedimentation coefficient distribution of a gold nanorod sample with marked sedimenta-
tion coefficients (a). Extracted extinction spectra for each marked sedimentation coefficient (b). The 
color of the line/graph in (a,b) marks the sedimentation coefficient-spectrum couples. Typical TEM-
micrograph of the gold nanorod sample (c). Two-dimensional length and diameter distribution of 
the gold nanorod sample measured via the optical back coupling MWL-AUC method (d). The color 
code in (d) indicates number density q0 of a certain length-diameter combination with q0 increasing 
from blue via green to orange. 

This so-called optical back coupling method for measuring two-dimensional size dis-
tributions of gold nanorods was validated via the statistical evaluation of TEM micro-
graphs [69]. A typical TEM micrograph for the herein selected gold nanorod sample is 
shown in Figure 7c. The two-dimensional size distribution (length and diameter) meas-
ured using MWL-AUC via the optical back coupling method is depicted in Figure 7d. 

Spherical gold nanoparticles are a typical side product of gold nanorod synthesis. As 
gold nanorods and spherical gold nanoparticles exhibit distinct extinction-spectra, the 
MWL-AUC optical back coupling method allows the quantitative determination of the 
mass fractions of rods and spheres [42]. In addition, the diameter distribution of the 
spheres fraction and the length and diameter distribution of the rod fraction are accessible 
[42]. In conclusion, this method allows the fast and highly accurate comprehensive char-
acterization of products from nanoparticle syntheses. Recently, the method was extended 
to five-sided double pyramids [41] and the size and composition of Au–Ag alloy nanopar-
ticles [59]. 

Figure 7. Sedimentation coefficient distribution of a gold nanorod sample with marked sedimentation
coefficients (a). Extracted extinction spectra for each marked sedimentation coefficient (b). The color
of the line/graph in (a,b) marks the sedimentation coefficient-spectrum couples. Typical TEM-
micrograph of the gold nanorod sample (c). Two-dimensional length and diameter distribution of the
gold nanorod sample measured via the optical back coupling MWL-AUC method (d). The color code
in (d) indicates number density q0 of a certain length-diameter combination with q0 increasing from
blue via green to orange.

This so-called optical back coupling method for measuring two-dimensional size
distributions of gold nanorods was validated via the statistical evaluation of TEM micro-
graphs [69]. A typical TEM micrograph for the herein selected gold nanorod sample is
shown in Figure 7c. The two-dimensional size distribution (length and diameter) measured
using MWL-AUC via the optical back coupling method is depicted in Figure 7d.

Spherical gold nanoparticles are a typical side product of gold nanorod synthesis.
As gold nanorods and spherical gold nanoparticles exhibit distinct extinction-spectra, the
MWL-AUC optical back coupling method allows the quantitative determination of the
mass fractions of rods and spheres [42]. In addition, the diameter distribution of the spheres
fraction and the length and diameter distribution of the rod fraction are accessible [42]. In
conclusion, this method allows the fast and highly accurate comprehensive characterization
of products from nanoparticle syntheses. Recently, the method was extended to five-sided
double pyramids [41] and the size and composition of Au–Ag alloy nanoparticles [59].
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3.3.4. Fitting of Measured Data to Multi-Dimensional Lognormal Distributions

The analysis methodologies described in Section 3.2 become much simpler when the
data are reasonably described via a normal or lognormal distribution. Thus, it stands to
reason to have strategies to check if experimental data closely follow a normal or lognormal
distribution. When testing if data are lognormally distributed, the best strategy is to
log-transform the data and perform analyses that are relevant to the normal distribution.
Hence, we will only discuss finding parameters of a normal distribution and testing if data
are normally distributed and note that the exact procedure can be applied for lognormal
distributions, with only the additional step of log-transforming the data beforehand.

There are two primary types of data that one can receive for the PSD. First are counts
of individual particles such as in a SEM or TEM measurement. Second are ensemble
techniques, which provide estimates of the probability density for particular sizes.

Let us first address the case of counting data such as those of from TEM. Here, the
parameter estimation is fortunately quite simple. The parameter for the mean value µ is
best estimated with the sample mean

µ ≈ x =
1
N ∑N

i=1
→
xi, (33)

where
→
xi is the measured particles. The covariance matrix Σ is best described by

Σ ≈ 1
N − 1∑N

i=1

(→
xi − x

)T(→
xi − x

)
. (34)

With TEM data, the combination of Equations (33) and (34) is the maximum likelihood
estimator [70] of the parameters of a multi-dimensional (log)normal distribution.

After performing parameter estimation with Equations (33) and (34), the next task
is to determine how well the (log)normal distribution model describes the data. With
multi-dimensional distributions, this task is slightly more complicated than that with
one-dimensional particles. At first, graphical assessment can be performed with a Q-Q
plot. Statistical theory regarding normal distributions shows that the squared Mahalanobis
distance d2

M has the following property [71]:(→
x − µ

)T
Σ−1

(→
x − µ

)
= d2

M ∼ χ2
N (35)

where χ2
N is the chi-squared distribution with N degrees of freedom, where N is the number

of dimensions of the particle. Therefore, with our estimations of µ, Σ and data
→
xi, values of

d2
Mi can be computed for each data point, and then empirical quantiles can be computed [72].

The theoretical quantiles of the chi-squared distribution can then be computed with the
inverse CDF and a scatter plot constructed by pairing the d2

M value of a particular quantile
with the theoretical chi-squared value of the same quantile; this is the so-called Q-Q plot. If
the Q-Q plot indicates a linear relationship, then this is evidence that the data are normally
distributed. In Figure 8, we provide an example of this graphical analysis applied to
the TEM data of gold nanorods presented in [42]. Of course, the Q-Q plots do not show
perfect alignment, but there is still information to be gained by interpreting the results. For
example, in Figure 8b, we see that when d2

M < 5, there appears to be a linear trend, but
for d2

M > 5, the trend is still linear, but the slope is shallower. This behavior provides a
hint that perhaps the sum of two different normal distributions would be a better model.
Similarly, in Figure 8d, we see what appear to be two, separate, linear trends where the
change in slope occurs at d2

M ≈ 6.5, again indicating that two lognormal distributions may
be a more appropriate model.

There are also more rigorous, quantitative assessments that can be used, but their
discussion is out of the scope of this work; see, for example, the review for details [73].
Testing the assumption of a normal distribution is a well-studied field in statistics, and
there are a number of software packages that perform this analysis well. In particular,
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the R programming language has among the most mature software implementations, for
instance, the MVN library [74].
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Figure 8. Graphical assessment of how well normal and lognormal distributions fit example data of 
gold nanorods measured with TEM [42]. (a,c) show the best fit distributions as contours with the 
observed data overlayed with a sca er plot. (b,d) show the empirical versus theoretical quantiles, 
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When the data are estimates of the probability density of the PSD, a more involved 
optimization routine is necessary to estimate the parameters 𝜇 and Σ. A necessity, then, 
is to find a robust way to quantify the difference between two probability distributions. 
One way to accomplish this is to use the Kullback–Leibler divergence (KL-divergence) 
[75] defined as 

𝐷 (𝑃‖𝑄) =  ∫ 𝑝(�⃗�) ln
( ⃗)

( ⃗)
d�⃗�,  (36)

where 𝑃, 𝑄 are the probability distributions being compared, and 𝑝(𝑥), 𝑞(�⃗�) are their as-
sociated probability density functions. Here, the distribution 𝑃 represents the observed 
data, and the distribution 𝑄 represents the theoretical distribution that we wish to use to 
model the data—in this case, a normal distribution. Equation (36) may not be as intuitive 
as functions used when comparing two curves, such as the mean squared error. This is 
because comparing the “distance” between two probability distributions is more abstract 
than comparing the distance between two curves. However, through a field of mathemat-
ics called Information Geometry, one can show that KL-divergence satisfies a generalized 
form of the Pythagorean theorem, and, therefore, Equation (36) may be conceptualized as 
the mean squared error applied to probability distributions [76]. 

Then, our task is to solve the following optimization problem: 

𝜇∗, Σ∗ = argmin
,

𝐷 (Data‖Model) = argmin
,

𝑞data(�⃗�) ln
𝑞data(�⃗�)

𝑞theory(�⃗�)
d�⃗�. (37)

The optimization problem in Equation (37) can then be solved with numerical opti-
mization techniques. The result of solving Equation (37) is the optimal parameters that 
define the (log)normal distribution that best fits the data. This procedure can be performed 
with any other parameterized distribution as well. One would simply need to update 
𝑞theory(𝑥) and the parameters 𝜇, Σ in Equation (37) to reflect the parameters and probabil-
ity density function in the alternative model. If 𝑞data exactly matches 𝑞theory, then the KL-
divergence would be zero. Thus, multiple different parametrizations can be tested for how 
well they fit the data, and the model whose KL-divergence is closest to zero would corre-
spond to the best fit.  

The KL-divergence is difficult to interpret in terms of the computed number. To bet-
ter understand how good a fit the procedure in Equation (37) provides, one can calculate 
the relative amount of mass within a region for the raw data and the fit distribution. For 
example, for a two-dimensional particle, one can compute 

Figure 8. Graphical assessment of how well normal and lognormal distributions fit example data of
gold nanorods measured with TEM [42]. (a,c) show the best fit distributions as contours with the
observed data overlayed with a scatter plot. (b,d) show the empirical versus theoretical quantiles, as
computed using Equation (35). If data are well described by the normal or lognormal distribution,
then the Q-Q plot will show the blue points following the black line closely.

When the data are estimates of the probability density of the PSD, a more involved
optimization routine is necessary to estimate the parameters µ and Σ. A necessity, then,
is to find a robust way to quantify the difference between two probability distributions.
One way to accomplish this is to use the Kullback–Leibler divergence (KL-divergence) [75]
defined as

DKL(P‖Q ) =
∫ ∞

−∞
p
(→

x
)

ln

 p
(→

x
)

q
(→

x
)
d
→
x , (36)

where P, Q are the probability distributions being compared, and p
(→

x
)

, q
(→

x
)

are their
associated probability density functions. Here, the distribution P represents the observed
data, and the distribution Q represents the theoretical distribution that we wish to use to
model the data—in this case, a normal distribution. Equation (36) may not be as intuitive
as functions used when comparing two curves, such as the mean squared error. This is
because comparing the “distance” between two probability distributions is more abstract
than comparing the distance between two curves. However, through a field of mathematics
called Information Geometry, one can show that KL-divergence satisfies a generalized form
of the Pythagorean theorem, and, therefore, Equation (36) may be conceptualized as the
mean squared error applied to probability distributions [76].

Then, our task is to solve the following optimization problem:

µ∗, Σ∗ = argmin
µ,Σ

DKL(Data‖Model) = argmin
µ,Σ

∫ ∞

−∞
qdata

(→
x
)

ln

 qdata

(→
x
)

qtheory

(→
x
)
d
→
x . (37)

The optimization problem in Equation (37) can then be solved with numerical opti-
mization techniques. The result of solving Equation (37) is the optimal parameters that
define the (log)normal distribution that best fits the data. This procedure can be performed
with any other parameterized distribution as well. One would simply need to update
qtheory

(→
x
)

and the parameters µ, Σ in Equation (37) to reflect the parameters and prob-
ability density function in the alternative model. If qdata exactly matches qtheory, then the
KL-divergence would be zero. Thus, multiple different parametrizations can be tested for
how well they fit the data, and the model whose KL-divergence is closest to zero would
correspond to the best fit.

The KL-divergence is difficult to interpret in terms of the computed number. To better
understand how good a fit the procedure in Equation (37) provides, one can calculate
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the relative amount of mass within a region for the raw data and the fit distribution. For
example, for a two-dimensional particle, one can compute

Mdata =
∫ xmax

1

xmin
1

∫ xmax
2

xmin
2

Volume(x1, x2)× qdata(x1, x2)dx2dx1, (38)

Mtheory =
∫ xmax

1

xmin
1

∫ xmax
2

xmin
2

Volume(x1, x2)× qtheory(x1, x2)dx2dx1, (39)

Relative mass difference =
Mdata −Mtheory

Mtheory
× 100%, (40)

in order to calculate a percentage difference in the particle mass contained within the
rectangle spanning xmin

1 ≤ x1 ≤ xmax
1 and xmin

2 ≤ x2 ≤ xmax
2 . A large number of small

rectangles would provide a fine-grained analysis of where a fewer or greater number
of particles are located in the fit (log)normal distribution as compared to the data; a
small number of large rectangles would provide information on how well the (log)normal
distribution describes the data.

In some cases, a measured PSD displays multimodal behavior (i.e., two or more
defined peaks). When this occurs, fitting a single (log)normal distribution is no longer the
best approach. An alternative is to suggest a mixture model where two or more (log)normal
distributions are assumed to compose the total PSD. Then, the parameters of the mixture
model would be estimated numerically to determine the underlying distributions that
make up the PSD. This parameter estimation turns out to be more difficult than what we
have described thus far—mathematically and statistically speaking—and is, therefore, out
of the scope of this work. However, we note that the so-called expectation maximization
algorithm is often what is used to solve these sorts of problems [77].

3.4. Describing Particle Separation Processes—From the One-Dimensional to the
Multi-Dimensional Case

In the simplest case, one separation process is applied to a one-dimensional particle
ensemble with the PSD qfeed(x). One separating force acts on the particles and drags them,
depending on their size, to different positions in the separation device [53,55]. This leads to
the classification of the particle ensemble in a coarse fraction with the relative amount c and
the PSD qcoarse(x), as well as in a fine fraction with the relative amount f and the PSD qfine(x).
Between feed, coarse and fine fractions, the balances defined by Equations (41) and (42)
have to be fulfilled:

c + f = 1 (41)

q f eed(x) = c·qcoarse(x) + f ·q f ine(x) (42)

The one-dimensional separation process is quantitatively described via the separation
efficiency curve T(x), which is defined by Equation (43) and gives the probability of finding
a particle with a size in the interval dx in the coarse fraction.

T(x) =
amount of particles in the coarse in size interval dx
amount of particles in the feed in size interval dx

= c· qcoarse(x)
q f eed(x)

= 1−
f ·q f ine(x)
q f eed(x)

(43)

The particle size that is found in the coarse and fine fraction with the same probability
is called cut size xcut with T(xcut) = 0.5. If T(x) and the feed PSD qfeed(x) are known, c,
qcoarse(x), f and qfine(x) can be calculated by Equations (44)–(47), and, therefore, the outcome
of the separation process can be predicted.

qcoarse(x) =
1
c
·T(x)·q f eed(x) (44)
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c =
∫

T(x)·q f eed(x)dx (45)

q f ine(x) =
1
f
·(1− T(x))·q f eed(x) (46)

f =
∫
(1− T(x))·q f eed(x)dx (47)

We extended this traditional approach for one-dimensional separations to the multi-
dimensional case [38–40]. In the general view, m separation processes are applied to a
multi-dimensional particle ensemble with the PSD qfeed(

→
x ). Each single separation step

leads to the fractionation of the feed particle ensemble into a coarse and a fine fraction.
The total number of fractions B depends on the separation techniques used. In the multi-
dimensional case, the separation curve is a function of the property vector (in Equation (41),
the particle size x has to be replaced by the property vector

→
x ). For each of the m separation

processes, there is one multi-dimensional separation efficiency curve Ti(
→
x ) (with i = 1. . .m).

All separations that classify particles into the fraction j can be divided into two sets: Kj

(i = 1. . .m) if Ti(
→
x ) classifies the particles into the coarse and Pj (i = 1. . .m) if Ti(

→
x ) classifies

the particles into the fines. Using these sets, the PSD in fraction j qj(
→
x ) (with j = 1. . .B) can

be calculated by Equation (48).

qj

(→
x
)
=

1
γj

∏Kj
Ti

(→
x
)
·∏Pj

(
1− Ti

(→
x
))
·q f eed

(→
x
)

(48)

The parameter γj in Equation (48) is the relative amount of particles in the fraction j
and can be calculated by Equation (49).

γj =
∫

∏Kj
Ti

(→
x
)
·∏Pj

(
1− Ti

(→
x
))
·q f eed

(→
x
)

d
→
x (49)

If the feed PSD qfeed(
→
x ) and the separation efficiency curves for each separation Ti(

→
x )

(with i = 1. . .m) are known, the outcome of any multi-dimensional separation process can
be predicted, as the relative amounts of particles γj and the PSD of each fraction qj(

→
x ) can

be reconstructed using Equations (48) and (49).
In the following, this general approach for describing multi-dimensional separation

processes is applied to different examples of the fractionation of gold nanorods to make it
more demonstrative. In the first example, an ensemble of gold nanorods with lognormal
distributions of the length l and the diameter d is fractionated regarding the volume (for
example, via centrifugation). In this case, one separating force acts on a two-dimensional
particle ensemble and classifies it into two two-dimensionally distributed fractions (coarse
and fines). A linear separation efficiency curve is assumed for the volume T(V) (see
Figure 9a). The black line in Figure 9a marks the cut volume Vcut with T(Vcut) = 0.5,
and the red and the green lines mark the lower and upper separation boundaries for the
volume. Figure 9b shows the two-dimensional separation efficiency curve T(l,d), which
was constructed from T(V), assuming cylinder geometry for the gold nanorods.

The application of the general Equations (48) and (49) to this separation task results in
the following equations for calculating the relative amounts of coarse and fine fractions c
and f and their PSDs:

qcoarse(l, d) =
1
c
·T(l, d)·q f eed(l, d), (50)

c =
∫

T(l, d)·q f eed(l, d) dl dd, (51)
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q f ine(l, d) =
1
f
·(1− T(l, d))·q f eed(l, d), (52)

f =
∫

(1− T(l, d))·q f eed dl dd. (53)

The PSDs of the feed, the coarse and the fine fractions are shown in Figure 10. The cut
size T(Vcut) = 0.5 (black line) goes through the mean feed particle size and splits the PSD in
a coarse and fine fraction. The red lines mark the lower and upper separation boundaries.
Figure 10b,c show that the separation is not ideally sharp as not each particle with V < Vcut
is sorted into the fine fraction and vice versa. Misplaced particles are visible as contribution
to the PSD below the black line for the coarse and above the black line for the fines.
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Figure 9. Separation efficiency curve for the volume of gold nanorods. (a) The red and green lines 
mark the lower and upper separation boundaries for the volume, and the black line indicates the 
cut volume T(Vcut) = 0.5. Two-dimensional separation efficiency curve T(l,d) constructed from T(V) 
approximating the gold nanorods as cylinders. (b) The lines mark isolines with same volume for the 

Figure 9. Separation efficiency curve for the volume of gold nanorods. (a) The red and green
lines mark the lower and upper separation boundaries for the volume, and the black line indicates
the cut volume T(Vcut) = 0.5. Two-dimensional separation efficiency curve T(l,d) constructed from
T(V) approximating the gold nanorods as cylinders. (b) The lines mark isolines with same vol-
ume for the lower and upper boundary and the cut size. Reproduced with permission from [38],
copyright 2023, MDPI.
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lower and upper boundary and the cut size. Reproduced with permission from [38], copyright 2023, 
MDPI. 

The application of the general Equations (48) and (49) to this separation task results 
in the following equations for calculating the relative amounts of coarse and fine fractions 
c and f and their PSDs: 

𝑞 (𝑙, 𝑑) =
1

𝑐
∙ 𝑇(𝑙, 𝑑) ∙ 𝑞 (𝑙, 𝑑), (50)

𝑐 = ∫ 𝑇(𝑙, 𝑑) ∙ 𝑞 (𝑙, 𝑑) 𝑑𝑙 𝑑𝑑, (51)

𝑞 (𝑙, 𝑑) =
1

𝑓
∙ 1 − 𝑇(𝑙, 𝑑) ∙ 𝑞 (𝑙, 𝑑), (52)

𝑓 = ∫ 1 − 𝑇(𝑙, 𝑑) ∙ 𝑞  𝑑𝑙 𝑑𝑑. (53)

The PSDs of the feed, the coarse and the fine fractions are shown in Figure 10. The 
cut size T(Vcut) = 0.5 (black line) goes through the mean feed particle size and splits the 
PSD in a coarse and fine fraction. The red lines mark the lower and upper separation 
boundaries. Figure 10b,c show that the separation is not ideally sharp as not each particle 
with V < Vcut is sorted into the fine fraction and vice versa. Misplaced particles are visible 
as contribution to the PSD below the black line for the coarse and above the black line for 
the fines. 

Figure 10. (a) Lognormal PSD of the gold nanorod feed sample; (b) PSD of the coarse fraction; (c) 
PSD of the fine fraction. The black line indicates the cut volume T(Vcut) = 0.5. The red lines mark 
isolines with same volume for the lower and upper separation boundaries. 

In the next example, two orthogonal separations are applied to the gold nanorod en-
semble [38]. The particles are classified regarding their sedimentation coefficient s by the 
centrifugal force Fs and regarding their electrophoretic mobility µM by the electrical field 
Fel acting orthogonally to the centrifugal field. The sedimentation coefficient is calculated 
with Equation (32), and the electrophoretic mobility is computed with Equation (54) 

𝜇 =
𝐴𝜌

3𝜋𝜂𝑥 𝑓/𝑓  
, (54)

where 𝐴 is the surface area of the particle, 𝜌  is the surface charge density and the de-
nominator is the same as described in Equation (32). 

The result of this combined separation process is four fractions, which are defined as 
follows: 
 Fraction I: s ≥ scut and 𝜇  ≥ µM,cut ≥→ coarse with respect to s and µ;
 Fraction II: s ≥ scut and 𝜇  < µM,cut → coarse with respect to s but fine with respect to

µ;
 Fraction III: s < scut and 𝜇  ≥ µM,cut → fine with respect to s but coarse with respect to

µM;
 Fraction IV: s < scut and 𝜇  < µM,cut → fine with respect to s and µM.

Figure 10. (a) Lognormal PSD of the gold nanorod feed sample; (b) PSD of the coarse fraction; (c) PSD
of the fine fraction. The black line indicates the cut volume T(Vcut) = 0.5. The red lines mark isolines
with same volume for the lower and upper separation boundaries.

In the next example, two orthogonal separations are applied to the gold nanorod
ensemble [38]. The particles are classified regarding their sedimentation coefficient s by the
centrifugal force Fs and regarding their electrophoretic mobility µM by the electrical field
Fel acting orthogonally to the centrifugal field. The sedimentation coefficient is calculated
with Equation (32), and the electrophoretic mobility is computed with Equation (54)

µM =
Aρch

3πηxV f / f0
, (54)
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where A is the surface area of the particle, ρch is the surface charge density and the denomi-
nator is the same as described in Equation (32).

The result of this combined separation process is four fractions, which are defined as
follows:

• Fraction I: s ≥ scut and µM ≥ µM,cut ≥→ coarse with respect to s and µ;
• Fraction II: s ≥ scut and µM < µM,cut → coarse with respect to s but fine with respect

to µ;
• Fraction III: s < scut and µM ≥ µM,cut → fine with respect to s but coarse with respect

to µM;
• Fraction IV: s < scut and µM < µM,cut → fine with respect to s and µM.

The multi-dimensional separation efficiency can be defined for each of these regions
as follows:

• Fraction I: TI(s, µM) = TSed(s)× TMobility(µM);

• Fraction II: TI I(s, µM) = TSed(s)×
(

1− TMobility(µM)
)

;

• Fraction III: TI I I(s, µM) = (1− TSed(s))× TMobility(µM);

• Fraction IV: TIV(s, µM) = (1− TSed(s))×
(

1− TMobility(µM)
)

.

For the separation efficiency curves TSed(s) and TMobility(µM), linear functions between
some pre-defined upper and lower bounds are again assumed.

Through Equations (48) and (49), the PSDs in each separation fraction I–IV can be
computed. Often, the desired outcome of a separation process is to optimize the PSD area
that is captured in one of the fractionation regions. Therefore, an optimization problem
can be formulated based on Equation (49). As a demonstrative example, we formulate the
following optimization problem.

Suppose our goal is for Z% of the feed to be separated into fraction II. Assume that
the upper and lower boundaries of the separation efficiency curves described by TSed(s)
and TMobility(µM) can be experimentally modified independently of one another, but the
width of each efficiency is restricted by some minimum values swidth and µM,width. Let the
lower boundaries of each separation curve be denoted slower and µlower, respectively, and
the upper boundaries be supper and µupper. Define

θ =
(
slower supper µM,lower µM,upper

)T (55)

as the optimization parameters. Then, we want to solve

θ∗ = argmin
θ

(γI I − Z)2, (56)

where γI I is the area of region II, as defined in Equation (49). Equation (56) is subject to the
constraints

slower − supper ≤ −swidth, (57)

µM,lower − µM,upper ≤ −µM,width, (58)

and perhaps upper and lower bounds on the parameters θ. We set Z = 0.25 and suggest
that the minimum attainable width is half an order of magnitude for both the sedimentation
coefficient and electrophoretic mobility. Figure 11 shows the PSDs of the fractions I-IV after
solving the constrained optimization problem defined by Equations (56)–(58). The fraction
in region II is, indeed, found to be 25% after the optimization procedure is applied.
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The multi-dimensional separation efficiency can be defined for each of these regions 
as follows: 
 Fraction I: 𝑇 (𝑠, 𝜇 ) = 𝑇 (𝑠) × 𝑇 (𝜇 );
 Fraction II: 𝑇 (𝑠, 𝜇 ) = 𝑇 (𝑠) × 1 − 𝑇 (𝜇 ) ;
 Fraction III: 𝑇 (𝑠, 𝜇 ) = 1 − 𝑇 (𝑠) × 𝑇 (𝜇 );
 Fraction IV: 𝑇 (𝑠, 𝜇 ) = 1 − 𝑇 (𝑠) × 1 − 𝑇 (𝜇 ) .

For the separation efficiency curves 𝑇 (𝑠)  and 𝑇 (𝜇 ) , linear functions be-
tween some pre-defined upper and lower bounds are again assumed. 

Through Equations (48) and (49), the PSDs in each separation fraction I–IV can be 
computed. Often, the desired outcome of a separation process is to optimize the PSD area 
that is captured in one of the fractionation regions. Therefore, an optimization problem 
can be formulated based on Equation (49). As a demonstrative example, we formulate the 
following optimization problem. 

Suppose our goal is for 𝑍% of the feed to be separated into fraction II. Assume that 
the upper and lower boundaries of the separation efficiency curves described by 𝑇 (𝑠) 
and 𝑇 (𝜇 ) can be experimentally modified independently of one another, but the 
width of each efficiency is restricted by some minimum values 𝑠width and 𝜇M,width. Let the 
lower boundaries of each separation curve be denoted 𝑠lower and 𝜇lower, respectively, and 
the upper boundaries be 𝑠upper and 𝜇upper. Define 

𝜃 = (𝑠lower 𝑠upper   𝜇M,lower 𝜇M,upper)T (55)

as the optimization parameters. Then, we want to solve 

𝜃∗ = argmin(𝛾 − 𝑍) , (56)

where 𝛾  is the area of region II, as defined in Equation (49). Equation (56) is subject to 
the constraints 

𝑠 − 𝑠 ≤ −𝑠width, (57)

𝜇M,lower − 𝜇M,upper ≤ −𝜇M,width, (58)

and perhaps upper and lower bounds on the parameters 𝜃. We set 𝑍 = 0.25 and suggest 
that the minimum a ainable width is half an order of magnitude for both the sedimenta-
tion coefficient and electrophoretic mobility. Figure 11 shows the PSDs of the fractions I-
IV after solving the constrained optimization problem defined by Equations (56)–(58). The 
fraction in region II is, indeed, found to be 25% after the optimization procedure is ap-
plied.  

Figure 11. (a) The feed PSD with optimized cuts based on the sedimentation coefficient and elec-
trophoretic mobility. The dashed line indicates the midpoint of the efficiency curve, and the shaded
regions indicate the widths of the efficiency curve extending from the lower to the upper boundaries.
(b) The coarse-coarse PSD after separation. (c) The coarse-fine PSD after separation. The separation
efficiency curves were optimized such that this area was close to 25% of the original feed PSD, as
calculated by Equation (49). Indeed, upon optimization, Equation (49), for this region, equals 25%.
(d) The fine-coarse PSD after separation. (e) The fine-fine PSD after separation.

4. Discussion

The development of methods for multi-dimensional classification of (nano)particles
requires a uniform mathematical framework for the quantitative evaluation of fractionation
processes of particles of any size, shape and property. Moreover, this general frame-
work needs to be applicable to any classification process. In our project within PP 2045,
we developed such a universal mathematical framework by extending the traditional
approach for describing one-dimensional PSDs and separation processes to the general
multi-dimensional case. Key parameters of our multi-dimensional approach are a particle
property vector

→
x and multi-dimensional separation efficiency functions depending on

→
x . The particle property vector is a function of the particle dimensions and, therefore,
accounts for the more complex properties of non-spherical particles.

→
x is not restricted to

the particle dimensions, as it can be applied to quantify the distribution of any property of
a particle ensemble (for example, composition and size distributions of alloys and minerals
and property distributions like band gap, electric or thermal conductivity).

To make the mathematical framework more illustrative, we applied it to the frac-
tionation of gold nanorods with lognormal distribution in length and diameter using the
following separation processes:

1. A one-dimensional separation regarding the volume (for example, via centrifugation),
which splits the feed PSD into two fractions (coarse and fine), each with a two-
dimensional PSD;

2. Separation regarding sedimentation properties and electrophoretic mobility via two
orthogonal processes, which results in four two-dimensional size fractions.

For both cases, we demonstrated that the PSDs of the size fractions and the relative
amounts of particles in each fraction are accessible from the feed PSD and the separation
efficiency functions. Thus, if the feed PSD and separation efficiency functions are known,
the outcome of multi-dimensional fractionation processes can be calculated. For example,
in our previous work, we showed that a Rietema hydrocyclone should enable shape-
classification of spherical (2–7 µm in diameter) and plate-like silica particles of the same
volume [38,78]. As plate-like particles exhibit a larger projection area than spheres, the
plates experience higher drag forces. Therefore, it is expected that the plate-like silica
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particles are enriched in the coarse fraction of the hydrocyclone, whereas the spherical silica
particles are expected in the fine fraction [38]. Moreover, we modeled the classification
regarding particle size and density in a disk separator and expected to find the small and
low-density particles in the fine fraction [38].

Another important precondition for establishing multi-dimensional particle separation
processes is fast and accurate methods for measuring multi-dimensional particle size and
property distributions. Traditional image analysis of micrographs from optical or electron
microscopy provides data regarding size and shape but is very tedious as some hundreds
or even thousands of particles have to be evaluated to provide the sufficient statistical
significance of the result. Thus, fast ensemble methods for measuring the particle size and
property distributions in suspension are required as they provide better statistics than imag-
ing methods. We demonstrated that MWL-AUC is the gold standard for multi-dimensional
nanoparticle characterization in suspension as it provides the sedimentation and diffusional
properties of a settling particle in combination with its UV/Vis/NIR-spectrum [42,47,48,64].
For the case that the UV/Vis/NIR-spectra can be simulated using a physical model under
consideration of the sedimentation properties of the settling species, two-dimensional
particle size/property distributions are accessible from MWL-AUC data using the optical
back coupling method [38–40,42]. As physical models for describing the surface plasmon
resonance of gold nanoparticles are available, we were able to measure the length and
diameter distribution of different commercial gold nanorod samples via the MWL-AUC
optical back coupling method [38–40,42]. We found the measured two-dimensional size
distributions to be in excellent agreement with the PSDs derived from statistical TEM image
analysis, giving evidence for the high accuracy of the optical back coupling method. More-
over, we compared the performance of different physical models for the surface plasmon
resonance of gold nanorods (classical Gans theory, FEM simulations and a longitudinal
polarization model) with each other and found that the three models give almost identical
distributions for the lengths and diameters of the gold nanorods [38–40,42]. The optical
back coupling method is not limited to gold nanorods. We applied it for measuring the
size distribution of gold bipyramids from the group of Liz-Marzan [41] and for the quanti-
tative analysis of mixtures of differently shaped gold nanoparticles (gold nanorods and
spherical nanoparticles) [42]. For the latter, we were able to quantify the relative amounts
of gold nanorods and spherical gold nanoparticles and measure simultaneously the PSDs
of the spheres and the length and diameter distributions of the gold nanorods [42]. In
addition, the optical back coupling method is well established for measuring the PSD and
composition distribution of spherical gold/silver alloy nanoparticles [59,79].

For MoS2 nanosheets, mean values for the lateral diameter L and the number of layers
N are accessible from the UV/Vis-spectra [63]. We estimated distributions for L and N
for a MoS2-nanosheet sample via the size classification of the sample via the preparative
centrifugation and spectroscopic evaluation of each size fraction. The obtained distributions
reveal that few-layer structures with lateral diameters around 100 nm were formed. The
MoS2-nanosheet dimensions are comparable with the dimensions of few-layer-graphene
particles from stirred media delamination [44,45]. It should be noted that the preparative
centrifugation method gave estimates for the L and N distributions of the feed sample.
In future work, we will determine the two-dimensional PSDs of MoS2-nanosheets more
precisely via MWL-AUC.

5. Conclusions

We developed a universal framework for describing multi-dimensional PSDs and the
quantitative evaluation of multi-dimensional particle classification processes by extending
the traditional one-dimensional approaches. We show how multi-dimensional distributions
can be converted into each other. Examples are given for the important case of lognormal
PSDs. If the conversion is multiplicative (in the case of nanorods from number-based to
volume-based PSDs), the PSDs remain lognormal with the covariance conserved. If the
conversion is additive (in the case of nanorods from number-based to surface-based PSDs),
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the conversion leads to the sum of lognormal PSDs. This framework was used to predict
the outcomes of one-dimensional and two orthogonal separation processes applied to
gold nanorods.

MWL-AUC in general, and in particular the optical back coupling method, provides
a fast and highly accurate ensemble method for measuring two-dimensional PSDs in
suspension. The optical back coupling method has versatile application under the precon-
dition that physical models for the simulation of the UV/Vis-spectra of the settling species
exist. We demonstrated this method for plasmonic gold nanorods. The framework for
describing multi-dimensional PSDs and separation processes is the basis for developing
multi-dimensional separation processes for nanoparticles. Fast and reliable measurement
techniques such as MWL-AUC are a key requirement for the understanding, design and
scale-up of procedures to produce and formulate multivariate particle systems.
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