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Abstract: Novel psychoactive substances (NPSs) are compounds plotted to modify the chemical
structures of prohibited substances, offering alternatives for consumption and evading legislation.
The prompt emergence of these substances presents challenges in health concerns and forensic assess-
ment because of the lack of analytical standards. A viable alternative for establishing these standards
involves leveraging in silico methods to acquire spectroscopic data. This study assesses the efficacy of
utilizing infrared spectroscopy (IRS) data derived from density functional theory (DFT) for analyzing
NPSs. Various functionals were employed to generate infrared spectra for five distinct NPS categories
including the following: amphetamines, benzodiazepines, synthetic cannabinoids, cathinones, and
fentanyls. PRISMA software was conceived to rationalize data management. Unsupervised learning
techniques, including Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA),
and t-distributed stochastic neighbor embedding (t-SNE), were utilized to refine the assessment pro-
cess. Our findings reveal no significant disparities among the different functionals used to generate
infrared spectra data. Additionally, the application of unsupervised learning demonstrated adequate
segregation of NPSs within their respective groups. In conclusion, integrating theoretical data and
dimension reduction techniques proves to be a powerful strategy for evaluating the spectroscopic
characteristics of NPSs. This underscores the potential of this combined methodology as a diagnostic
tool for distinguishing IR spectra across various NPS groups, facilitating the evaluation of newly
unknown compounds.

Keywords: new psychoactive substances; density functional theory; unsupervised machine learning;
forensic science

1. Introduction

New drugs have been developed through chemical modifications to structures origi-
nally prohibited to circumvent prohibitions and legislation. These substances are referred
to as NPSs (new psychoactive substances), also known as designer drugs, legal highs,
and bath salts, among other terms. NPSs belong to various chemical groups, including
cannabinoids, benzodiazepines, cathinones, fentanyls, and amphetamines, which rank
among the most consumed drugs [1].

Understanding the pharmacological properties, risk factors, side effects, prevalence,
and use of NPSs (new psychoactive substances) is essential.

Amphetamines, popular for their stimulating effects, are synthetic drugs that boost
neurotransmitter release, including dopamine, norepinephrine, and serotonin, leading to
alertness, energy, euphoria, and cognitive enhancement. Their chemical structure allows for
various analogs, contributing to novel psychoactive substances (NPSs). However, their ex-
cessive or prolonged use poses significant health risks, including increased heart rate, high
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blood pressure, insomnia, anxiety, psychosis, tolerance, dependence, cardiovascular issues,
neurological damage, and psychiatric disorders. Concerns also arise regarding impurities,
potency variations, and contamination in clandestinely produced NPS amphetamines,
exacerbating risks. The consumption of NPS amphetamines has risen because of factors
such as online availability, perceived legality, and novelty appeal. The clandestine nature of
production and distribution complicates regulatory efforts, making monitoring and control
challenging and highlighting the need for proactive measures to address evolving drug
landscapes and mitigate the associated harm [2–4].

Benzodiazepines are gaining attention as novel psychoactive substances (NPSs) be-
cause of their easy availability, recreational use, and potential for misuse [5,6]. They
are central nervous system depressants that enhance gamma-aminobutyric acid (GABA)
effects, resulting in sedative, anxiolytic, muscle relaxant, and anticonvulsant effects [7].
Despite their therapeutic benefits, benzodiazepine misuse can cause drowsiness, dizzi-
ness, confusion, impaired coordination, and memory issues. Prolonged or high-dose
use may lead to tolerance, dependence, withdrawal symptoms, respiratory depression,
coma, and even death, especially when combined with other depressants. Concerns about
counterfeit production raise worries about purity, dosage variability, and contamination,
increasing consumption risks. Benzodiazepines have become popular among recreational
users seeking relaxation, euphoria, or relief from anxiety or insomnia symptoms [8,9].
Their accessibility through illicit online markets and counterfeit production contributes to
their rising prevalence in the NPS market. Concurrent use of other substances presents
additional risks and challenges for harm reduction efforts and clinical management [6].

Synthetic cannabinoids have emerged as a class of novel psychoactive substances
(NPSs) that mimic the effects of herbal cannabinoids present in cannabis. Recreational drug
customers are increasingly attracted to these drugs for alternative reports or to circumvent
drug legal guidelines. These chemically engineered compounds interact with cannabi-
noid receptors within the mind and body, concentrating on CB1 and CB2 receptors. By
imitating the properties of delta-9-tetrahydrocannabinol (THC), the primary psychoactive
aspect of hashish, synthetic cannabinoids activate cannabinoid receptors and modulate
neurotransmitter release. However, they often display extra potency and affinity for recep-
tors as compared with natural cannabinoids, resulting in unpredictable and doubtlessly
harmful outcomes [10,11]. The use of these cannabinoids has significant risks because of
their pharmacological consequences and variability in chemical composition. Short-term
consequences can also encompass altered belief, euphoria, rest, impaired coordination,
and anxiety, with common damaging reactions together with agitation, paranoia, hallu-
cinations, seizures, and psychosis, especially with high doses or extended use. Synthetic
cannabinoids have been associated with numerous emergency department visits, acute
toxicities, and fatalities, underscoring their ability to damage [12]. Marketed as “legal
highs”, natural blends, or incense merchandise under diverse brand names, they may be
effectively available online, contributing to their massive use amongst susceptible popula-
tions. Various consumption patterns in the NPS market consist of smoking, vaporization,
oral ingestion, and even intravenous administration. The online accessibility and per-
ceived legality of synthetic cannabinoids have fueled their adoption among numerous
demographics, which includes children, teens, and individuals on probation or parole.
Furthermore, the anonymity supplied by online markets enables discreet purchasing and
consumption, enhancing their attraction. Notably, artificial cannabinoids are increasingly
being included in eaten products, which include infused sweets or baked goods, and it is
difficult to understand their psychoactive results. This trend provides significant challenges
for regulatory government and public fitness organizations in monitoring and controlling
the distribution and consumption of these substances [13].

Synthetic cathinones, often marketed under diverse brand names such as “bath salts”,
“plant food”, or “research chemicals” constitute a considerable subset of novel psychoactive
substances (NPSs), imitating the consequences of natural cathinone determined in the khat
plant [14]. These synthetic derivatives of cathinone, a stimulant compound located in the
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leaves of the Catha edulis plant, act as monoamine reuptake inhibitors. They decorate
neurotransmitter release and inhibit reuptake, mainly affecting dopamine, norepinephrine,
and serotonin degrees inside the brain. This pharmacological profile mirrors that of am-
phetamines and MDMA, leading to elevated energy, euphoria, alertness, and sociability [15].
They pose significant risks because of their strong stimulant effects and capacity for unfa-
vorable reactions. Interim consequences may consist of accelerated coronary heart price,
extended blood stress, hyperthermia, agitation, hallucinations, paranoia, and psychosis.
Prolonged use or excessive doses can bring about tolerance, dependence, cardiovascular
complications, seizures, renal failure, or even death. The unpredictable nature of synthetic
cathinones, compounded with variability in chemical composition and efficiency, provides
demanding situations for clinical control and damage discount efforts [16]. Consumption of
synthetic cathinones may additionally occur through various routes, such as oral ingestion,
insufflation, smoking, or intravenous administration, reflecting diverse use styles within
the NPS market. However, the clandestine nature of manufacturing and distribution, on
the side of the non-stop emergence of the latest synthetic cathinone analogs, offers big
demanding situations for regulatory efforts and public health interventions to mitigate
the associated harms. They are readily available online and through illicit distribution
channels. This accessibility, coupled with perceived legality and simplicity of acquisition,
has fueled their sizable use, particularly among vulnerable populations, young people, and
young adults [17,18].

Fentanyl, a potent synthetic opioid far more powerful than morphine, has led to a sharp
rise in opioid overdoses and deaths. Fentanyl analogs and synthetic opioids have become
a significant concern for public health and law enforcement agencies worldwide. There
is a severe opioid crisis in the United States, and fentanyl plays a significant role [19,20].
Illegally produced fentanyl, often mixed with heroin or sold, flooded the illicit drug market,
exacerbating the epidemic. Fentanyl analogs are popular among opioid users seeking
more potent effects or in combination with other drugs. It is available online and in
illegal markets, contributing to widespread use. Efforts are needed to address the growing
phenomenon of fentanyl synonyms and synthetic opioids, including regulation, education,
and harm reduction. Fentanyl characterization of products can be addressed early, resulting
in potent chemical analogs that evade regulatory action. The availability and lethality of
fentanyl have stressed healthcare systems, regulators, and communities, underscoring
the need for immediate action to manage supply and demand. Fentanyl-like systems
have a profound effect on opioid receptors in the brain and spinal cord for pain relief,
sedation, and euphoria. They have a high risk of overdose, even in small doses, and
the changes in potency make medical application difficult. There are serious risks for
users, including respiratory depression and overdose. The manufacture and distribution
of fentanyl analogs in counterfeit pharmaceutical forms add risk and challenge to the
public health response [21,22]. The emergence of carfentanil, an even more potent fentanyl
analog, poses an unprecedented risk to public health. Its power is so great, even in small
doses [23,24].

Grasping these factors is crucial for health professionals and healthcare providers
to analyze potential outcomes and interactions effectively. Comprehending the structure
of these substances is necessary to know them precisely. It can offer an additional un-
derstanding of their effects and intoxication [25]. Knowledge of the associated risks and
side effects is essential for developing effective intervention and treatment strategies. By
analyzing trends and usage patterns, public health and law enforcement agencies can
empower themselves to conduct prevention and education efforts, thus minimizing harm
to the public. Providing this information to the public enhances awareness of the risks
linked to psychoactive substance use, dispels misconceptions and stigma, and promotes
informed discussion. Moreover, beyond being aware of health-related properties, it is
imperative to verify conditions to detect and uncover the structure of these substances.

A consequence of drug trafficking is that forensic assessment faces challenges beyond
the detection of compounds, involving strategies for collecting and disseminating data.
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Forensic scientists must be informed to confront new challenges through new method-
ologies and technologies [26]. The main difficulty that drug analysts encounter is finding
appropriate methods to extract parameters or characteristics considered crucial for the
treatment and contextualization of drug profile data. It results in difficulties in identifying
NPSs, which is crucial for understanding these substances’ chemical structure and proper-
ties, requiring significant time, financial, and technological resources. This identification
is essential for determining the chemical structure and underlying properties. Only after
a substance is detected and identified can its appearance be monitored by disseminating
national and international records [26]. Intelligence tools play the role of organized memory
to provide accurate, timely, helpful, and meaningful information [27].

Increasing technological and scientific development has underscored the importance
of science in the legal world. Legal systems have evolved toward a reality increasingly
reliant on the natural sciences to aid investigative mechanisms and enforce the law [2–5]. In
this context, chemical analysis tools are essential in providing accurate, timely, helpful, and
meaningful information that can unveil the characteristics of these substances’ properties [6].
Scientific and technological tools strive to enhance the transparency and expediency of
judicial decisions [28–33].

Spectroscopic methods are widely used in chemistry. Infrared spectroscopy (IRS) is
vital in forensics, aiding in identifying and characterizing substances. It uses molecular
vibration principles to reveal chemical structures, assisting in identifying illicit drugs and
explosives. IRS’s precision allows for detailed analysis without compromising evidence
integrity, which is crucial in legal proceedings. Its speed and simplicity make it worth-
while for on-site investigations, enhancing law enforcement capabilities. It complements
methods like mass spectrometry and chromatography, providing comprehensive forensic
information. IRS also helps trace evidence origins and manufacturing processes, linking
evidence to suspects or criminal groups. IRS is indispensable in forensic analysis but poses
challenges without comparison standards [34].

For the evaluation of psychoactive substances, many forensic laboratories follow the
international recommendations of the Scientific Working Group for the Analysis of Seized
Drugs (SWGDRUG). There are categories of recommended techniques for spectroscopic
characterizations, as per the indicative framework, according to Figure 1. The use of meth-
ods follows recommendations to ensure the correct identification of these substances [35].
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Figure 1. Categories for drug analysis as suggested for SWGDRUG [36]. * when used with a
wavelength range.

When a validated technique from Category A is used, at least another method from
any other category should also be employed. When a Category A technique cannot be used,
at least three different techniques should be employed, with two being from Category B
(and not correlated with each other).
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The primary objective of this study was to employ computational chemistry techniques
alongside machine learning methodologies to enhance spectroscopic data on novel psy-
choactive substances (NPSs). We studied different groups of NPSs among amphetamines,
benzodiazepines, synthetic cannabinoids, cathinones, and fentanyls [36]. We performed
Density Functional Theory calculations to obtain infrared spectra for these molecules. We in-
tend to evaluate and assess the reproducibility of Density Functional Theory (DFT) method-
ologies. By applying unsupervised learning algorithms to the obtained outcomes, insights
into potential patterns within distinct groups of substances can be elucidated [37–51].

2. Materials and Methods
2.1. Studied System

Table 1 shows the studied system, which contains five groups of different categories of
NPSs [52,53] including the following: 16 molecules derived from amphetamines [3,4,15,54,55],
13 benzodiazepines derivatives [5–9,56,57], 15 synthetic cannabinoid compounds [10,12,13,58–61],
16 cathinones [14–16,62], and 15 fentanyls [2,14,20–22,63–65], selected from SWGDRUG [66] spec-
troscopic data. The total number of studied molecules was 75, and they are shown in the
Supplementary Materials (Tables S1–S5).

Table 1. The most straightforward structures for each group of NPSs.

Amphetamines [15,37,55,67,68] Cathinones [39,53,54,69–72]
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2.2. Computational Procedure
2.2.1. Structural and Spectroscopical Analyses

Starting with the crystallographic structure obtained from the PubChem database
(https://pubchem.ncbi.nlm.nih.gov) [6,78], the geometry optimization calculation for all
molecules was conducted using the MMFF94 method (Merck Molecular Force Field 94)
within Avogadro®software (1.2.0, University of Pittsburgh Department of Chemistry,
Pittsburgh, PA, USA) [79–81]. The MMFF94 force field, tailored to experimental parameters,
is adept at handling numerous combinations of functional groups [79,82], making it optimal
for energy minimization calculations.

Utilizing the obtained coordinates for each molecule, input files were generated to per-
form calculations in ORCA software (5.0.2, Max-Planck-Institut für Kohlenforschung, Mül-
heim an der Ruhr, Germany) [83]. Four DFT (Density Functional Theory) methods—B3LYP,
M06-2X, B3PW91, and PBE0—were selected with the TZVP base [84–88], along with other
parameters necessary for vibrational spectrum calculations, including correction factors
and size of calculation matrices, among others [89,90].

For all NPS groups, we determined the minimum energy structure and calculated its
vibrational frequencies to confirm whether the structure was indeed at its minimum energy.
We multiplied the vibrational frequencies by a scaling factor to better align them with the
experimental spectrum. This adjustment aimed to address the following two issues: the
approximation inherent in the electronic structure calculation and the non-harmonic nature
of the potential energy surface. The scaling factors for the vibrational frequency calculation
method were as follows: (a) B3LYP: 0.9654; (b) B3PW91: 0.9643; (c) M062X: 0.9462; and
(d) PBE0: 0.9596. All data were set to transmittance, and a Gaussian transformation was
applied to fit the data to the same dimension [89,90]. The resulting matrix has 75 lines
(samples) and 3600 columns (variables), indicating each peak in intervals of 1 cm−1, to
account for all possible signals. These data can be obtained by contacting the authors.

The spectroscopic data were evaluated by multivariate statistical analysis to elucidate
the main characteristics of each group. Figure 2 outlines a flowchart depicting the sequential
steps involved in the computational procedure.
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Because of the substantial number of molecules involved in this study, we created
PRISMA 2.0 software (dos Santos, C. São Carlos, Brazil) [91,92]) to automate various tasks.
Its implementation facilitated swift analysis of ORCA output, the generation and normaliza-
tion of IR spectra, and the identification of potential errors. In negative frequencies, input
parameters (geometry and precision) were adjusted, and the DFT calculation was repeated
with the new atomic coordinates. This process was iterated until no negative vibrational
frequencies were present in the results. Molecular similarity (RMSD—Root Mean Square
Deviation) [93,94] was calculated between the original and optimized structures using the
VMD (Visual Molecular Dynamics) program [95]. Furthermore, it played a pivotal role in
minimizing errors during the creation of input files. The data generated in ORCA were
then utilized in the PRISMA program to produce the infrared spectrum. Developed in the

https://pubchem.ncbi.nlm.nih.gov
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Python™ language [96] with the PyQt5 graphical API [97–102], PRISMA employs a layered
architecture [103] and encompasses modules for the following:

• Generating input files for different DFT methods.
• Analyzing vibrational frequency results in the ORCA results file.
• Generating a.csv file of the spectrum normalized by the ORCA file.
• Batch generating.csv files to process chosen folders with ORCA results: each file is

analyzed individually, and the output includes the molecule identification data, the
DFT method, and the spectral data (frequency range and intensities).

A PRISMA interface example is provided in Figures S1 and S2 in the
Supplementary Materials Section.

2.2.2. Unsupervised Learning Evaluation

The resulting matrix with all IR spectra was submitted to multivariate analysis. We
performed Hierarchical Cluster Analysis (HCA), Principal Component Analysis (PCA), and
T-Distributed Stochastic Neighbor Embedding (t-NSE) to evaluate the data [104–107]. We
performed these analyses by means of the R® package (4.3.2, Posit Software, Boston, TX,
USA) [108]. The links to Github codes are available in the Supplementary Materials Section.

3. Results
3.1. Structural and Spectroscopical Analyses

Tables 2–6 present the Root Mean Square Deviation (RMSD) values [95] for all molecules
within each group, corresponding to the different functionals utilized. Each set of NPSs in-
cludes an illustrative example of the obtained infrared spectra, showcased in Figures 3–7. Com-
prehensive infrared spectra for all molecules can be found in the Supplementary Materials
(Figures S3–S77).

Table 2. RMSD for the molecules in the amphetamines group.

Molecule
RMSD/Å

B3LYP B3PW91 M062X PBE0

Amphetamine 0.121 0.126 0.131 0.128
2-FA 0.224 0.192 0.318 0.220
3-FA 0.167 0.179 0.125 0.191
4-FA 0.108 0.112 0.130 0.112

2-FMA 0.241 0.221 0.257 0.241
3-FMA 0.113 0.118 0.312 0.109
4-FMA 0.156 0.154 0.146 0.156

Metamphetamine 0.140 0.140 0.139 0.140
4-MA 0.116 0.116 0.256 0.120

3,4 MDA 0.121 0.130 0.237 0.126
DMA 0.149 0.148 0.178 0.152

2,5-DMA 0.275 0.257 0.389 0.264
MDMA 0.153 0.159 0.175 0.156
P-MMA 0.150 0.151 0.186 0.150
P-MA 0.227 0.237 0.216 0.233
2C-C 0.063 0.058 0.108 0.059

Average 0.158 0.156 0.206 0.160

Table 3. RMSD for the molecules in the benzodiazepines group.

Molecule
RMSD/Å

B3LYP B3PW91 M062X PBE0

Adinazolam 0.240 0.237 0.333 0.231
Alprazolam 0.184 0.185 0.239 0.179
Bromazolam 0.184 0.184 0.251 0.179
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Table 3. Cont.

Molecule
RMSD/Å

B3LYP B3PW91 M062X PBE0

Clonazolam 0.447 0.455 0.471 0.456
Diazepam 0.120 0.115 0.146 0.117

Diclazepam 0.503 0.513 0.534 0.511
Flualprazolam 0.260 0.250 0.266 0.228

Flubromazepam 0.221 0.210 0.186 0.205
Flubromazolam 0.248 0.246 0.319 0.255
Flunitrazepam 0.210 0.197 0.170 0.193
Flunitrazolam 0.243 0.240 0.302 0.254

Midazolam 0.263 0.256 0.254 0.243
Oxazepam 0.085 0.085 0.099 0.088

Average 0.247 0.244 0.275 0.241

Table 4. RMSD for the molecules in the cannabinoids group.

Molecule
RMSD/Å

B3LYP B3PW91 M062X PBE0

AM-1220 0.542 0.565 0.532 0.510
AM-1248 1.469 1.056 1.553 1.098

Cannabidiol 0.249 0.261 0.300 0.254
Cannabinol 0.155 0.168 0.210 0.164
Delta9-THC 0.139 0.150 0.162 0.150

JWH-018 0.581 0.448 0.737 0.421
JWH-019 0.528 0.540 0.755 0.514
JWH-022 0.615 0.640 0.688 0.606
JWH-073 0.486 0.533 0.471 0.511
JWH-081 0.624 0.647 1.019 0.625
JWH-122 0.528 0.534 0.651 0.516
JWH-203 2.030 2.110 0.453 0.473
JWH-210 0.531 0.544 0.672 0.529
JWH-250 0.543 0.549 0.911 0.532
JWH-307 0.678 0.685 0.709 0.700
Average 0.647 0.629 0.655 0.507

Table 5. RMSD for the molecules in the cathinones group.

Molecule
RMSD/Å

B3LYP B3PW91 M062X PBE0

2-FEC 0.475 0.497 0.401 0.471
2-FMC 0.323 0.319 0.877 0.375
2-MEC 0.398 0.384 0.457 0.386
3-FEC 0.720 0.729 0.737 0.717
3-FMC 0.638 0.649 0.629 0.641
3-MEC 0.690 0.703 0.709 0.754
4-FEC 0.759 0.767 0.777 0.758
4-FMC 0.587 0.598 0.574 0.586
4-MEC 0.780 0.787 0.693 0.781

23-DMMC 0.314 0.302 0.419 0.313
24-DMMC 0.436 0.426 0.605 0.441
25-DMMC 0.481 0.475 0.193 0.495
34-DMMC 0.686 0.690 0.673 0.686
Cathinone 0.959 0.958 0.943 0.954

Diethylcathinone 0.260 0.278 0.214 0.253
Methcathinone 0.481 0.489 0.450 0.478

Average 0.562 0.566 0.584 0.568
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Table 6. RMSD for the molecules in the opioids group.

Molecule
RMSD/Å

B3LYP B3PW91 M062X PBE0

2-Furanylbenzyl 0.689 0.708 0.649 0.702
2-Thiophenoyl 0.338 0.322 0.495 0.333

3-Furanyl 0.545 0.554 0.586 0.558
ACETILFEN 0.520 0.449 0.570 0.491

Benzoylbenzyl 0.464 0.471 0.577 0.895
Butyryl 0.296 0.192 0.586 0.276

Crotonyl-fentanyl 0.330 0.346 0.529 0.337
Cyclopentanoyl 0.245 0.301 0.341 0.351

Cyclopropyl-Fentanyl 0.745 0.776 0.662 0.804
Fentanyl 0.262 0.171 2.650 0.259

Furanylfentanyl 0.508 0.515 0.785 0.520
Isobutyryl-Fentanyl 0.247 0.240 0.760 0.222

P-F-ACETILFEN 0.425 0.410 2.123 0.420
Tetrahydrofuranfentanyl 0.696 0.724 0.803 0.759

Valerylfentanyl 0.513 0.508 0.481 0.512
Average 0.455 0.446 0.840 0.496
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0.3 angstroms from those obtained from the crystallographic structure. The DFT M062X
showed the highest average deviation, while the other methods showed lower, equivalent
deviations. Regarding the infrared spectra, Figure 3 shows the overlap of the results
obtained for amphetamine. The main bands are highlighted. Visually, a slight shift in the
results relative to M062X is observed.

3.1.2. Results for the Studied Benzodiazepines

Table 3 shows that the results for benzodiazepines were also less than 0.3 angstroms
on average. However, a greater deviation is observed for the Diclazepam molecule, but still,
this deviation is around 0.5 angstroms. Once again, the M062X method showed the highest
deviations. Figure 4 shows the spectra obtained for each DFT for diazepam molecules. In this
case, it is observed that the signals are not perfectly overlapped but are within the same region.

3.1.3. Results for the Studied Synthetic Cannabinoids

Table 4 shows the results of the RMSD for synthetic cannabinoids. For the JWH-203
molecule, the B3LYP and B3PW91 methods showed a value above 2.0 angstroms for RMSD,
in contrast to the M062X and PBE0 methods, whose values were less than 0.5 angstroms.
The molecule AM-1248 also showed a value greater than 1.0 angstroms in relation to the
crystallographic structure for all methods, with the B3LYP and M062X methods showing the
highest deviations. On average, the PBE0 method showed the lowest deviations. Figure 5
presents the spectrum for the cannabinol molecule. It is observed that the bands appear in
the same regions for all methods, with slight displacement between them.

3.1.4. Results for the Studied Cathinones

The results of the structural deviations between the calculated minimum energy and
X-ray structures for cathinones are presented in Table 5. In this case, all functionals returned
approximately the same average value, with the M062X method showing a slightly higher
value, and cathinone having the highest individual deviation, around 0.95 angstroms.
Figure 6, which presents the spectra for cathinone, shows that there is no significant
disparity between the simulations of the bands in all methods.

3.1.5. Results for the Studied Opioids

Table 6 presents the results for fentanyls. In this case, a significant disparity is observed
for the M062X method for some molecules, such as fentanyl and P-F-acetylfentanyl. The
other methods show similar results for obtaining minimum energy structures, indicating
equivalent deviations from the crystallographic structure. Figure 7 also shows that the
M062X method presents a different shift for the fentanyl bands, while the other methods
are more reproducible.

3.2. Unsupervised Machine Learning Evaluation
3.2.1. Results of Hierarchical Cluster Analysis (HCA)

Figure 8 shows the results of the Hierarchical Cluster Analysis with an accuracy of
0.95 and confidence intervals of 95%: (0.9189, 0.9717). Table 7 presents the results of the
exploratory analysis in each class, while Table 8 displays the confusion matrix results
of the HCA modeling. This analysis enables the validation of qualitative methods and
ensures excellent reliability of the statistical procedure applied to the samples of interest.
Thus, this evaluation makes it possible to indicate the probability of a new sample, with
characteristics like those used to create the model, belonging or not to classes with greater
confidence [109,110].
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Table 7. Results of the HCA distribution of the samples in each class.

Amphetamines Benzodiazepines Cannabinoids Cathinones Fentanyls

Amphetamines 64 3 4 0 4
Benzodiazepines 0 49 0 0 0
Cannabinoids 0 0 52 0 0
Cathinones 0 0 4 60 0
Fentanyls 0 0 0 0 60

No Information Rate: 0.2133; p-Value [Acc > NIR]: <2.2 × 10−16; Kappa: 0.9374.

Table 8. Confusion matrix.

Amphetamines Benzodiazepines Cannabinoids Cathinones Fentanyls

Sensitivity 1.0000 0.9423 0.8667 1.0000 0.9375
Specificity 0.9534 1.0000 1.0000 0.9833 1.0000
Precision 0.8533 1.0000 1.0000 0.9375 1.0000
Accuracy 0.9767 0.9712 0.9333 0.9917 0.9688

False Positive (FP), False Negative (FN), True Negative (TN)m True Positive (TP); Sensitivity STP/(TP + FN);
Specificity TN/(TN + FP); Precision TP/(TP + FP); Accuracy (TN + TP)/(TN + FP + TP + FN).

3.2.2. Results of Principal Component Analysis (PCA)

Table 9 presents the results for variance from the Principal Component Analysis. The
explained and cumulated variance until the fifth principal component is presented. Figure 9
presents score plots for the three first principal components, in a 2D view combining them.
Figure 10 shows a 3D view of scores, and the ellipses represent the 95% confidence interval.



Psychoactives 2024, 3 277

Table 9. Principal Component Analysis results for variance.

Variance PC1 PC2 PC3 PC4 PC5

Explained 98.96463 0.1226452 0.1007295 0.0897553 0.0597139
Cumulated 98.96463 99.08727 99.18800 99.27776 99.33747
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To verify the quality of the PCA, the variance explained in each principal component
shows that more than 99% of all the original information is contained in just two compo-
nents. Assessing the residual chart in Figure 11 is also a way to verify the quality of the
PCA model. It revealed a random scatter pattern around zero, indicating a satisfactory
fit of the model to the data. This observation suggests that the principal components
adequately capture the variability present in the dataset without any systematic bias or
unexplained patterns. The absence of discernible trends or deviations in the residuals plot
provides confidence in the reliability of the PCA results and the validity of the underlying
assumptions coming from the PCA [111,112].



Psychoactives 2024, 3 278

Psychoactives 2024, 3, FOR PEER REVIEW 14 
 

 

 
(b) 

Figure 9. Principal Component Analysis: Score 2D view for (a) PC1 × PC2 and for (b) PC2 × PC3. 

 

Figure 10. Principal Component Analysis: Score 3D view for PC1 × PC2 × PC3. 

To verify the quality of the PCA, the variance explained in each principal component 
shows that more than 99% of all the original information is contained in just two compo-
nents. Assessing the residual chart in Figure 11 is also a way to verify the quality of the 
PCA model. It revealed a random scatter pattern around zero, indicating a satisfactory fit 
of the model to the data. This observation suggests that the principal components ade-
quately capture the variability present in the dataset without any systematic bias or unex-
plained patterns. The absence of discernible trends or deviations in the residuals plot pro-
vides confidence in the reliability of the PCA results and the validity of the underlying 
assumptions coming from the PCA [111,112]. 

Figure 10. Principal Component Analysis: Score 3D view for PC1 × PC2 × PC3.

Psychoactives 2024, 3, FOR PEER REVIEW 15 
 

 

Figure 11. PCA residuals of the 3 PC model used. 

Figure 12 shows the results of the t-SNE analysis. The best separation was obtained 
with three dimensions. 

 
Figure 12. t-SNE result with 3 components. 

4. Discussion 
In this work, we have evaluated the feasibility of raising spectroscopic information 

for NPS through DFT calculation. According to the results from Section 3.1, all functionals 
were similar in predicting both the structure and the infrared spectra. However, the 
M062X showed the highest bias for all groups of molecules.  

Regarding Section 3.2, a clear separation among the different groups in the dendro-
gram was obtained from HCA. Numerical values in Tables 7 and 8 confirm our findings, 
as the values in the confusion matrix indicate that our model is highly sensitive and spe-
cific. Additionally, HCA also revealed that both precision and accuracy exhibit favorable 
values. The No Information Rate assesses whether our classifier outperforms random as-
signment, but we observed that the accuracy significantly surpasses this benchmark, af-
firming the adequacy of the classifier. The Kappa statistic serves as a measure of how clas-
sification results compare to values assigned by chance. With a value of 0.9374, the 

Wavenumber/cm−1 

Figure 11. PCA residuals of the 3 PC model used.

Figure 12 shows the results of the t-SNE analysis. The best separation was obtained
with three dimensions.

Psychoactives 2024, 3, FOR PEER REVIEW 15 
 

 

Figure 11. PCA residuals of the 3 PC model used. 

Figure 12 shows the results of the t-SNE analysis. The best separation was obtained 
with three dimensions. 

 
Figure 12. t-SNE result with 3 components. 

4. Discussion 
In this work, we have evaluated the feasibility of raising spectroscopic information 

for NPS through DFT calculation. According to the results from Section 3.1, all functionals 
were similar in predicting both the structure and the infrared spectra. However, the 
M062X showed the highest bias for all groups of molecules.  

Regarding Section 3.2, a clear separation among the different groups in the dendro-
gram was obtained from HCA. Numerical values in Tables 7 and 8 confirm our findings, 
as the values in the confusion matrix indicate that our model is highly sensitive and spe-
cific. Additionally, HCA also revealed that both precision and accuracy exhibit favorable 
values. The No Information Rate assesses whether our classifier outperforms random as-
signment, but we observed that the accuracy significantly surpasses this benchmark, af-
firming the adequacy of the classifier. The Kappa statistic serves as a measure of how clas-
sification results compare to values assigned by chance. With a value of 0.9374, the 

Wavenumber/cm−1 

Figure 12. t-SNE result with 3 components.



Psychoactives 2024, 3 279

4. Discussion

In this work, we have evaluated the feasibility of raising spectroscopic information
for NPS through DFT calculation. According to the results from Section 3.1, all functionals
were similar in predicting both the structure and the infrared spectra. However, the M062X
showed the highest bias for all groups of molecules.

Regarding Section 3.2, a clear separation among the different groups in the dendrogram
was obtained from HCA. Numerical values in Tables 7 and 8 confirm our findings, as the
values in the confusion matrix indicate that our model is highly sensitive and specific. Addi-
tionally, HCA also revealed that both precision and accuracy exhibit favorable values. The
No Information Rate assesses whether our classifier outperforms random assignment, but we
observed that the accuracy significantly surpasses this benchmark, affirming the adequacy of
the classifier. The Kappa statistic serves as a measure of how classification results compare to
values assigned by chance. With a value of 0.9374, the agreement can be considered high, as
values exceeding 0.8 are typically deemed very good. In this case, we can assert that the deal
is excellent [113]. Principal Component Analysis further corroborated the practical separation
of groups, validating our observations from HCA. Table 9 indicates that only two principal
components account for more than 99% of the variance.

The application of the t-SNE algorithm resulted in excellent separation of the five sub-
stance categories in the reduced three-dimensional space, as illustrated in Figure 12. Each
category formed distinct clusters, demonstrating the effectiveness of t-SNE for classification
tasks. This outcome underscores the efficacy of t-SNE in effectively delineating the distinct
characteristics and underlying patterns present within the complex multi-dimensional
space of NPS data. Such precise clustering enables enhanced comprehension and classi-
fication of these substances, contributing to the advancement of our understanding and
management of NPS-related phenomena. In comparison, PCA also provided reasonable
separation; however, t-SNE exhibited superior performance in preserving local structures
and capturing nonlinear relationships among the data points.

Considering the lack of information about these substances and the costs of analysis,
structure, and human resources involved in obtaining spectroscopic data, DFT methods
linked to unsupervised analysis were able to give insights about each group’s spectroscopic
behavior, providing a viable alternative to acquiring data and improving the knowledge
for NPSs [90,114].

5. Conclusions

This research used computational methods to extract spectroscopic details about dif-
ferent new psychoactive substance (NPS) groups. We tested four different functionals to
carry out the calculations. Interestingly, our analysis revealed that the M062X functional
showed slightly higher discrepancies in determining structures and infrared spectra. How-
ever, these differences were not considered significant in numerical terms. We found that
these distinct NPS groups could still be effectively distinguished through an unsupervised
approach. There was a clear separation among the clusters, indicating the robustness of
our strategy. Our results underscore the value of combining quantum chemistry with
multivariate statistics. By employing Density Functional Theory (DFT) to simulate and
predict infrared spectra, researchers can gain insights into molecular structures, detect
chemical compositions, and discern subtle differences between compounds with remark-
able accuracy. Integrating experimental data with computational modeling strengthens
the precision and reliability of forensic analyses, aiding in identifying and characterizing
unknown substances. By raising infrared data with DFT calculations, forensic chemists
gain a potent tool to untangle complex chemical puzzles, embedding information regarding
NPSs and providing substantive contributions to unveil their properties.
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