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Abstract: Atherosclerosis is a pathological condition characterized by the accumulation of plaques
in the arteries, leading to cardiovascular diseases. The deposition of cholesterol in peripheral cells
increases the risk of atherosclerosis. Reverse cholesterol transport (RCT) is essential to reduce the risk
of atherosclerosis because it removes excessive cholesterol from the peripheral tissues. ATP-binding
cassette transporters such as ABCA1, ABCG1, ABCG5, and ABCG8 are involved in the efflux of
cholesterol. The upregulation of these ABC transporters enhances RCT, thereby promoting the
removal of excess cholesterol from the body. The expression and activity of ABC transporters are
regulated by transcriptional and post-transcriptional mechanisms, as well as by post-translational
modifications. In this review, the regulation of ABC transporters by nuclear receptors such as
farnesoid X receptor, liver X receptor, retinoid X receptor, retinoic acid receptor, and peroxisome
proliferator-activated receptors is discussed. Pharmacological and natural compounds serving as
agonists for the nuclear receptors have been identified to elevate the mRNA levels of the transporters.
Consequently, it is anticipated that these compounds will attenuate the development of atherosclerosis
through stimulation of the ABC transporters, thereby enhancing RCT and fecal cholesterol excretion.
Understanding these regulatory processes can aid in the development of therapeutic approaches to
prevent atherosclerosis.
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1. Atherosclerosis

Atherosclerosis is a pathological condition characterized by plaques within arterial
walls, which are formed through the accumulation of lipids, inflammatory cells, and other
substances [1,2]. Over time, plaques consisting of cholesterol, triglyceride, calcium, and
other components grow, causing arteries to narrow and harden. This process can result in
various cardiovascular diseases, including coronary heart disease and stroke.

Cholesterol is essential for the proper functioning of the body because it is a constituent
of cellular membranes and precursors of steroid hormones and bile acids. Cholesterol is
mainly synthesized in the liver and can also be obtained from foods. Lipoproteins, such as
low-density lipoprotein (LDL) and high-density lipoprotein (HDL), transport cholesterol in
the blood. Cholesterol, particularly LDL cholesterol, plays a key role in the development
of atherosclerosis. Studies have shown that high levels of LDL cholesterol in the blood
are associated with an increased risk of developing atherosclerosis and cardiovascular
diseases [3] because it contributes to plaque formation in the arteries. Conversely, higher
levels of HDL cholesterol are associated with a lower risk of cardiovascular disease [4,5]
because HDL helps remove excess cholesterol from the peripheral cells and prevents
plaque formation.

Lifestyle changes, such as a healthy diet, regular exercise, and smoking cessation,
can effectively lower LDL cholesterol levels and increase HDL cholesterol levels, thereby
reducing the risk of atherosclerosis and related diseases. A previous study showed that a
Mediterranean-style diet, which is high in fruits, vegetables, whole grains, and healthy fats,
can reduce the risk of cardiovascular disease by lowering LDL cholesterol levels [6]. In some
cases, medications such as statins may be prescribed to lower cholesterol levels and reduce
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the risk of cardiovascular disease. Statins inhibit cholesterol production in the liver, thereby
reducing LDL cholesterol levels and decreasing the risk of atherosclerosis and related
diseases [3]. Regular physical activity has been shown to increase HDL cholesterol levels
and reduce the risk of cardiovascular disease [7]. Additionally, the removal of accumulated
cholesterol from cells is inversely associated with atherosclerotic events [8–10].

2. Reverse Cholesterol Transport

Reverse cholesterol transport (RCT) is a process by which excess cholesterol is removed
from peripheral tissues, such as the arterial wall, and transported back to the liver for
excretion to the bile and ultimately the feces [11]. The RCT pathway involves multiple
steps and several different cell types, including macrophages, which play critical roles
in this process (Figure 1). Excess cholesterol in cells is excreted by ATP-binding cassette
(ABC) transporters, ABCA1 and ABCG1, and HDL is formed [12–14]. Subsequently, HDL
is delivered to the liver, where it is taken up by hepatocytes through scavenger receptor
class B type I (SR-BI), and cholesterol can either be excreted in the bile or used for bile
acid synthesis. Cholesterol in the liver is excreted into the bile duct by ABC transporters,
ABCG5 and ABCG8 [15,16].
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Figure 1. Cholesterol transport facilitated by ABC transporters. Cholesterol is absorbed in the
intestine and delivered to the liver via chylomicrons. Cholesterol, absorbed in the intestine and
synthesized in the liver, is transferred to peripheral cells via LDL. The accumulation of cholesterol in
peripheral cells, especially in macrophages, contributes to the development of atherosclerosis. The
excess cholesterol is eliminated by ABCA1 and ABCG1, resulting in the formation of HDL. HDL is
then delivered to the liver, where it is taken up by SR-BI. Finally, cholesterol is excreted to bile duct
by ABCG5/ABCG8.

Impaired RCT has been implicated in the development of atherosclerosis, thereby
increasing the risk of coronary heart disease and stroke [11]. Conversely, promoting RCT
by exercise and dietary changes, as well as through pharmacological interventions, has
been shown to prevent the progression of atherosclerosis [6,10,17,18]. Overall, RCT is an
important physiological process for maintaining cholesterol homeostasis and preventing
the development of cardiovascular diseases.

3. ABC Transporters Involved in Reverse Cholesterol Transport

ABC transporters are membrane proteins that consist of transmembrane domains
(TMDs) and nucleotide-binding domains (NBDs) (Figure 2) [13]. ABC transporters trans-
port substrates such as nutrients, metabolites, and xenobiotics using energy obtained from
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ATP hydrolysis. Multiple ABC transporters, including ABCA1, ABCA3, ABCA4, ABCA7,
ABCA12, ABCB4, ABCB11, ABCD1, ABCG1, ABCG4, ABCG5, and ABCG8, are involved in
lipid transport. ABCB4 transports phosphatidylcholine, whereas ABCB11 transports bile
acids. Among them, ABCA1, ABCG1, ABCG4, ABCG5, and ABCG8 transport cholesterol.
ABCA1 has two NBDs and two TMDs in a single molecule, whereas ABCG1, ABCG5, and
ABCG8 are half-type ABC transporters that have one NBD and one TMD and function as
a homodimer or a heterodimer (Figure 2). ABCG1 forms a homodimer [19–22], whereas
ABCG5 and ABCG8 are highly homologous transporters and form a heterodimer [15,16].
ABCA1 and ABCG1 are ubiquitously expressed, but highly expressed in macrophages.
ABCG5/ABCG8 heterodimer is expressed in the intestine and liver. ABCA1 mediates the
efflux of cholesterol and phosphatidylcholine into apoA-I [23,24], whereas ABCG1 mediates
the efflux of cholesterol and sphingomyelin to cholesterol-poor HDL (Figure 2A) [19,25–27].
Mutations in ABCA1 cause Tangier disease, a genetic disorder characterized by low HDL
cholesterol levels and the accumulation of cholesterol in various tissues [28–30]. Studies
have shown that ABCG1 also plays a critical role in macrophage cholesterol efflux and
the prevention of atherosclerosis [31–33]. Mice lacking Abcg1 showed accumulation of
cholesterol and triglyceride in macrophages of liver and lung [32]. Furthermore, mice
lacking both Abca1 and Abcg1 showed greater accumulation of neutral lipids in tissues
than mice lacking Abca1 or Abcg1 alone [34]. ABCA1 and ABCG1 are shown to transport
cholesterol sequentially [26]. This suggests that ABCA1 and ABCG1 play important roles in
the removal of excess cholesterol from peripheral cells, especially from macrophages, and
that ABCA1 and ABCG1 function cooperatively. ABCG5 and ABCG8 mediate the efflux of
cholesterol and plant sterols from the liver and intestines into the bile (Figure 2B) [15,16].
Mutations in either ABCG5 or ABCG8 cause sitosterolemia, a rare genetic disorder char-
acterized by the accumulation of plant sterols and cholesterol in various tissues [35–37],
indicating that ABCG5/ABCG8 suppresses the absorption of sterols in the intestine and
enhances the excretion of sterols in the liver.

Receptors 2023, 2, FOR PEER REVIEW 3 
 

 

3. ABC Transporters Involved in Reverse Cholesterol Transport 
ABC transporters are membrane proteins that consist of transmembrane domains 

(TMDs) and nucleotide-binding domains (NBDs) (Figure 2) [13]. ABC transporters 
transport substrates such as nutrients, metabolites, and xenobiotics using energy obtained 
from ATP hydrolysis. Multiple ABC transporters, including ABCA1, ABCA3, ABCA4, 
ABCA7, ABCA12, ABCB4, ABCB11, ABCD1, ABCG1, ABCG4, ABCG5, and ABCG8, are 
involved in lipid transport. ABCB4 transports phosphatidylcholine, whereas ABCB11 
transports bile acids. Among them, ABCA1, ABCG1, ABCG4, ABCG5, and ABCG8 
transport cholesterol. ABCA1 has two NBDs and two TMDs in a single molecule, whereas 
ABCG1, ABCG5, and ABCG8 are half-type ABC transporters that have one NBD and one 
TMD and function as a homodimer or a heterodimer (Figure 2). ABCG1 forms a homodi-
mer [19–22], whereas ABCG5 and ABCG8 are highly homologous transporters and form 
a heterodimer [15,16]. ABCA1 and ABCG1 are ubiquitously expressed, but highly ex-
pressed in macrophages. ABCG5/ABCG8 heterodimer is expressed in the intestine and 
liver. ABCA1 mediates the efflux of cholesterol and phosphatidylcholine into apoA-I 
[23,24], whereas ABCG1 mediates the efflux of cholesterol and sphingomyelin to choles-
terol-poor HDL (Figure 2A) [19,25–27]. Mutations in ABCA1 cause Tangier disease, a ge-
netic disorder characterized by low HDL cholesterol levels and the accumulation of cho-
lesterol in various tissues [28–30]. Studies have shown that ABCG1 also plays a critical 
role in macrophage cholesterol efflux and the prevention of atherosclerosis [31–33]. Mice 
lacking Abcg1 showed accumulation of cholesterol and triglyceride in macrophages of 
liver and lung [32]. Furthermore, mice lacking both Abca1 and Abcg1 showed greater ac-
cumulation of neutral lipids in tissues than mice lacking Abca1 or Abcg1 alone [34]. 
ABCA1 and ABCG1 are shown to transport cholesterol sequentially [26]. This suggests 
that ABCA1 and ABCG1 play important roles in the removal of excess cholesterol from 
peripheral cells, especially from macrophages, and that ABCA1 and ABCG1 function co-
operatively. ABCG5 and ABCG8 mediate the efflux of cholesterol and plant sterols from 
the liver and intestines into the bile (Figure 2B) [15,16]. Mutations in either ABCG5 or 
ABCG8 cause sitosterolemia, a rare genetic disorder characterized by the accumulation of 
plant sterols and cholesterol in various tissues [35–37], indicating that ABCG5/ABCG8 
suppresses the absorption of sterols in the intestine and enhances the excretion of sterols 
in the liver. 

 
Figure 2. Structures and functions of ABC transporters involved in cholesterol transport. (A) ABCA1 
mediates the efflux of cholesterol (Chol) and phosphatidylcholine (PC) to apoA-I, which initiates 
the formation of nascent HDL (preβ-HDL). ABCG1 forms a homodimer and mediates the efflux of 

Figure 2. Structures and functions of ABC transporters involved in cholesterol transport. (A) ABCA1
mediates the efflux of cholesterol (Chol) and phosphatidylcholine (PC) to apoA-I, which initiates
the formation of nascent HDL (preβ-HDL). ABCG1 forms a homodimer and mediates the efflux
of cholesterol and sphingomyelin (SM) to cholesterol-poor HDL. (B) ABCG5 and ABCG8 form a
heterodimer and mediate the efflux of Chol to bile.

4. Nuclear Receptors Involved in the Regulation of Cholesterol Transporters

Nuclear receptors translate hormonal, metabolic, and nutritional signals into alter-
ations in gene expressions [38]. Most nuclear receptors consist of several domains; N-
terminal activation function 1, DNA-binding, hinge, and ligand-binding domains (Figure 3).
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Multiple nuclear receptors are involved in lipid homeostasis by regulating the expression of
genes related to lipid biosynthesis, absorption, and excretion [38,39]. Expression of ABCA1,
ABCG1, ABCG5, and ABCG8 is regulated by nuclear receptors such as liver X receptor
(LXR; NR1H2/NR1H3), retinoid X receptor (RXR; NR2B1/NR2B2/NR2B3), retinoic acid
receptor (RAR: NR1B1/NR1B2/NR1B3), peroxisome proliferator-activated receptor (PPAR;
NR1C1/NR1C2/NR1C3), and farnesoid X receptor (FXR; NR1H4) [13,40].
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4.1. LXR and RXR

LXR and RXR are members of the nuclear receptor superfamily that regulate vari-
ous physiological processes including metabolism, inflammation, and immunity. LXR is
activated by oxysterols, which are sterol metabolites, such as 22-(R)-hydroxycholesterol,
24-(S)-hydroxy-cholesterol, 25-hydroxycholesterol, 27-hydroxycholesterol, and 24-(S),25-
epoxycholesterol [38,41–43], and it regulates the expression of genes involved in cholesterol
transport and metabolism, as well as genes involved in inflammatory responses. The LXR
is also involved in the regulation of the metabolism of other lipids such as fatty acids and
triglycerides [44]. There are two types of LXR, LXRα (NR1H3) and LXRβ (NR1H2). LXRβ
is ubiquitously expressed, whereas LXRα is expressed in the liver, adipose tissue, adrenal
glands, intestine, lungs, kidneys, and myeloid cells. Human LXRα expression is autoregu-
lated, whereas human LXRβ is stably expressed even in the absence of excess cholesterol.

RXR functions as a heterodimer with other nuclear receptors such as RAR, vitamin
D receptors (VDRs), and PPAR [38,45,46]. There are three types of RXR, RXRα (NR2B1),
RXRβ (NR2B2), and RXRγ (NR2B3). RXR itself can also bind to DNA as a homodimer,
recognizing the RXR response element (RXRE), which is composed of two direct repeats
of the core sequence, such as the DR1 motif, in which the two half-sites are separated
by a single nucleotide. LXR regulates the expression of genes involved in cholesterol
metabolism, whereas RXR regulates the expression of genes involved in cell differentiation
and proliferation.

LXR and RXR form heterodimers that regulate gene expression by binding to the LXR
response elements (LXREs) in the regulatory regions of target genes. The LXREs contain
direct repeats of the core sequence (A/G)GGTCA separated by four nucleotides (DR4 motif).
The binding of LXR to the LXREs leads to the recruitment of coactivator proteins, which
in turn activates the transcription of target genes. The LXR/RXR heterodimer regulates
the expression of genes involved in lipid metabolism, such as ABCA1, ABCG1, and sterol
regulatory element-binding protein (SREBP)-1.

Activation of LXR and RXR has been shown to have beneficial effects on choles-
terol metabolism and inflammation, and LXR agonists have been developed as poten-
tial therapeutic agents for the treatment of various diseases, including atherosclerosis,
whereas they show adverse effects of increased fatty acid levels because of the activation of
SREBP-1 [47,48].

4.2. RAR

RAR plays a crucial role in mediating the biological effects of retinoic acid, a derivative
of vitamin A [45,49]. There are three types of RAR, RARα (NR1B1), RARβ (NR1B2), and
RARγ (NR1B3). Retinoic acid serves as the ligand for RARs. Upon binding, retinoic acid
induces conformational changes in the receptor, leading to the dissociation of corepressors
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and recruitment of coactivators. The activated RAR/RXR heterodimer then binds to retinoic
acid response elements (RAREs) located in the regulatory regions of the target genes. RAR
is involved in various physiological processes, including embryonic development, cell
differentiation, and homeostasis [45,49].

4.3. PPAR

PPAR plays a key role in regulating metabolism, inflammation, and cell differentia-
tion [39,46]. There are three types of PPARs, PPARα (NR1C1), PPARδ (NR1C2), and PPARγ
(NR1C3). PPAR is activated by fatty acids and other lipid molecules and regulates the
expression of genes involved in lipid metabolism and inflammation. PPARα is mainly
expressed in the liver and is involved in the regulation of fatty acid oxidation and ketone
body synthesis. PPARδ is expressed in various tissues and is involved in the regulation of
fatty acid oxidation and glucose metabolism. PPARγ is mainly expressed in the adipose
tissue and is involved in the regulation of adipogenesis and glucose metabolism.

Studies have shown that activation of PPAR can have beneficial effects on metabolism
and inflammation, and PPAR agonists have been developed as drugs for the treatment of
various metabolic disorders, including type 2 diabetes and dyslipidemia [50].

4.4. FXR

FXR plays a crucial role in regulating bile acid metabolism and homeostasis [38,43,51].
FXR is predominantly expressed in the liver and intestine, where it controls bile acid synthe-
sis, transport, and enterohepatic circulation. FXR is activated by bile acids, which serve as
endogenous ligands for FXR. Upon activation, the FXR or FXR/RXR heterodimer binds to
the FXR response elements (FXREs) in the promoter regions of target genes. The activation
of FXR has numerous physiological effects. One of its primary functions is to regulate bile
acid synthesis by suppressing the expression of cholesterol 7α-hydroxylase (CYP7A1), the
rate-limiting enzyme in bile acid biosynthesis, and upregulating the expression of small
heterodimer partner (SHP), a repressor of CYP7A1. By reducing bile acid synthesis, FXR
maintains bile acid homeostasis and prevents the accumulation of toxic levels of bile acids
in the liver.

FXR also regulates the transport of bile acids by modulating the expression of various
transporters, such as organic solute transporter α/β (OSTα/β), bile salt export pump
(BSEP, ABCB4), and ileal bile acid transporter (IBAT). By controlling the expression of these
transporters, FXR ensures efficient bile acid uptake in the intestine, promotes bile acid
secretion into the bile, and limits its reabsorption from the intestine, thereby contributing
to the enterohepatic circulation of bile acids. Furthermore, FXR has been implicated in
various diseases, including cholestasis, non-alcoholic fatty liver disease (NAFLD), and
inflammatory bowel disease (IBD) [51].

5. Transcriptional and Post-Transcriptional Regulation of ABCA1 and ABCG1

ABC transporters that mediate the efflux of cholesterol are regulated by multiple
mechanisms. ABCA1, ABCG1, and ABCG5/ABCG8 are regulated at transcriptional, post-
transcriptional, and post-translational levels.

The expression of ABCA1 and ABCG1 is tightly regulated transcriptionally and post-
transcriptionally because ABCA1 and ABCG1 play important roles in lipid homeostasis in
the body. Transcriptional regulation of ABCA1 and ABCG1 involves multiple transcription
factors and co-regulators, including LXR, PPAR, and RXR (Figure 4A). When intracellular
cholesterol levels rise, oxysterols, oxidized metabolites of cholesterol such as 25-hydroxy
cholesterol, also increase. ABCA1 and ABCG1 expressions are physiologically induced
by oxysterols via the LXR pathway [52–54]. When LXR is activated by oxysterols, the
LXR/RXR heterodimers induce ABCA1 and ABCG1 by binding to the LXRE of promoters
of the genes [55]. Agonists for PPARα and PPARγ also induce the expression of ABCA1 and
ABCG1 via LXR [56–58]. In addition to nuclear receptors, other transcription factors are also
involved in the regulation of ABCA1 expression, including SREBP, activator protein 2 (AP2),
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CCAAT/enhancer-binding protein (C/EBP), and zinc finger protein202 (ZNF202) [59–63].
These factors may bind to specific promoter regions and regulate ABCA1 and ABCG1
expression in response to various stimuli such as cholesterol and inflammatory signals.
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are induced by PPAR, LXR/RXR, and FXR. LRH-1 and HNF4α enhance the expression of ABCG5
and ABCG8, while NFκB suppresses it.

The post-transcriptional regulation of ABCA1 and ABCG1 involves several mecha-
nisms, including mRNA stability, alternative splicing, and microRNA (miRNA) regulation.
The 3’-untranslated regions (UTRs) of ABCA1 and ABCG1 mRNA contain cis-acting el-
ements that regulate mRNA stability and translation efficiency. For example, the RNA-
binding protein human antigen R (HuR) binds to and stabilizes the 3’-UTR of ABCA1
mRNA. Conversely, the stability of ABCA1 and ABCG1 mRNA is negatively regulated by
miRNAs (miR-33a and miR-33b), which exist in the introns of SREBP-2 [64]. Additionally,
other miRNAs such as miR-17, miR-19b, miR-93, miR-101, and miR-144 also downregulate
ABCA1 mRNA [65,66].

6. Post-Translational Regulation of ABCA1 by LXR

In addition to transcriptional regulation of ABCA1 by LXR, ABCA1 is also post-
translationally regulated by LXR [67,68]. The LXRβ/RXR complex directly binds to the
C-terminal region of ABCA1 on the plasma membrane of macrophages and influences
cholesterol secretion [67,68].

Excessive elimination of cholesterol can be detrimental to cells since cholesterol is an
essential component of cell membranes. Hence, ABCA1 protein is degraded by the calpain
and proteasome pathways with a half-life of 1–2 h [12,69]. LXR suppresses the degradation
of ABCA1, and the addition of exogenous LXR ligands, which mimic cholesterol accumula-
tion, results in the dissociation of LXRβ from ABCA1, thereby reversing the effects of LXR
on ABCA1 degradation [67].

Under conditions in which intracellular cholesterol does not accumulate, the ABCA1-
LXRβ complex localizes to the plasma membrane, which makes ABCA1 inactive (Figure 5).
However, when cholesterol accumulates and the intracellular concentration of oxysterols
rises, LXRβ binds oxysterol and dissociates from ABCA1 [68]. This dissociation enables
the restoration of ABCA1 activity and apoA-I-dependent cholesterol efflux, resulting in
an immediate decrease in intracellular cholesterol levels. Therefore, LXR can elicit both a
post-translational response by directly binding to ABCA1 and a transcriptional response to
maintain cholesterol homeostasis (Figure 5).
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Figure 5. Post-translational regulation of ABCA1 by LXR. LXRβ interacts with the C-terminal
region of ABCA1 and inhibits ATP binding at the NBDs and apoA-I binding at the extracellular
domain under cholesterol-depleted conditions. Under cholesterol-accumulated conditions, LXRβ
binds oxysterol and dissociates from ABCA1, enabling ABCA1 to transport cholesterol using energy
derived from ATP hydrolysis.

7. Transcriptional and Post-Transcriptional Regulation of ABCG5/ABCG8

The transcriptional regulation of ABCG5/ABCG8 is complex and involves a variety of
mechanisms, including regulatory factors and genetic polymorphisms (Figure 4B). ABCG5
and ABCG8 possess a shared bidirectional promoter [35,70,71]. LXR and FXR have been
shown to regulate the expression of ABCG5 and ABCG8 [72–75]. LXR binds to the LXREs
within the promoters of ABCG5 and ABCG8 genes and enhances their transcription in
combination with RXR [72,73]. The hepatic and intestinal expression of ABCG5/ABCG8 is
modulated by bile acids via FXR [74,75]. FXR agonists have also been shown to regulate
the mRNA expression of ABCG5 and ABCG8 in cultured hepatocytes [76]. In addition to
nuclear receptors, other transcriptional regulators, including nuclear factor-kappa B (NF-
kB), forkhead box protein O1 (FoxO1), PPARγ, liver receptor homolog-1 (LRH-1; NR5A2),
hepatocyte nuclear factor 4α (HNF4α; NR2A1), and GATA4 have been shown to modulate
ABCG5/ABCG8 expression [77–81]. Regulatory elements for HNF4α, LRH-1, NFκB, and
FoxO1 were found within the intergenic regions of the initiation codons of ABCG5 and
ABCG8 [78,79]. These factors can modulate the activity of LXR or directly interact with the
promoter regions of ABCG5/ABCG8 to enhance or suppress their transcription.

Similar to ABCA1 and ABCG1, ABCG5 and ABCG8 are also post-transcriptionally
regulated. Several miRNAs have been shown to regulate the expression of ABCG5/ABCG8.
For instance, miR-33a downregulates the expression of both ABCG5 and ABCG8 [82].
Similarly, miR-223 has been shown to downregulate the expression of ABCG5/ABCG8 [83].

8. Transcriptional Activation of ABCA1, ABCG1, and ABCG5/ABCG8 by
Pharmacological Compounds

Transcriptional activation of ABCA1, ABCG1, and ABCG5/ABCG8 can be achieved by
various pharmacological compounds (Table 1). Synthetic LXR agonists, such as GW3965 and
T0901317, have been shown to upregulate the expression of ABCA1 and ABCG1 in various
cell types [84–88]. Moreover, these LXR ligands can prevent the development of atheroscle-
rosis in vivo [84]. T0901317 highly induced the expression of ABCA1 and ABCG1, which
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increased cholesterol efflux and prevented the development of atherosclerosis [47,86,89,90].
However, LXR agonists exert adverse effects by enhancing lipogenesis, because they acti-
vate the SREBP-1c pathway [47]. Several PPAR agonists such as pioglitazone, rosiglitazone,
WY14643, and GW501515 have been shown to induce the expression of ABCA1 and ABCG1
in various cell types [57,58,91–93]. Fibrates also induce the expression of ABCA1, ABCG1,
and ABCG5/ABCG8 [91,94]. Statins, which are oral drugs used for the treatment of
atherosclerosis by inhibiting HMG-CoA reductase, have not only demonstrated a reduction
in cholesterol synthesis but also an upregulation of ABCA1 and ABCG1 expression [95,96].
Considering that both statins and fibrates are PPAR-activating compounds, it is plausi-
ble that they upregulate ABCA1 and ABCG1 via the PPAR-LXR pathway [93], although
pitavastatin did not activate LXR but increased ABCA1 by PPARα-dependent protein
stabilization [96] and the effects of statins depend on cellular conditions [97]. Agonists for
RXR and RAR, including all-trans retinoic acid and 9-cis retinoic acid, increased ABCA1
and ABCG1 in a RAR/LXR/RXR pathway [52,98,99].

In the case of ABCG5/ABCG8 transcriptional activation, several pharmacological com-
pounds have been demonstrated to be effective. Because ABCG5/ABCG8 is induced by LXR,
LXR agonists, such as T0901317 and GW3936, increased ABCG5/ABCG8 expression [72,73]. Ad-
ditionally, PPAR agonists, such as pioglitazone and rosiglitazone, have been reported to elevate
ABCG5/ABCG8 expressions [80,81]. Treatment with metformin has also been shown to enhance
ABCG5/ABCG8 expression in hepatocytes, possibly through the suppression of period2 and/or
cryptochrome1, which are transcriptional repressors for ABCG5 and ABCG8 [100].

Table 1. Transcriptional activation of ABCA1, ABCG1, and ABCG5/ABCG8 by pharmacological
compounds.

Pharmacological Compound Mechanism of Action Target Transporters References

LXR agonists (e.g., GW3965, T0901317) Activation of LXR ABCA1, ABCG1, ABCG5, ABCG8 [72,73,84–88]
RXR agonists (e.g., 9-cis retinoic acid) Activation of RXR ABCA1, ABCG1 [99]
RAR agonists (e.g., all-trans retinoic acid
and 9-cis retinoic acid) Activation of RAR ABCA1, ABCG1 [52,98,99]

PPAR agonists (e.g., fibrates, pioglitazone) Activation of PPAR ABCA1, ABCG1, ABCG5, ABCG8 [57,58,80,81,91–93]
Statins (e.g., pitavastatin, atorvastatin) Inhibition of HMG-CoA reductase ABCA1, ABCG1 [95,96]

9. Transcriptional Activation of ABCA1, ABCG1, and ABCG5/ABCG8 by Natural Products

Multiple foods, dietary components, and natural compounds have been reported
to activate transcription of ABCA1, ABCG1, ABCG5, and ABCG8 (Table 2). Cineole, a
terpene oxide and a major constituent of eucalyptus and rosemary oils, increased ABCA1
mRNA levels [101]. 6-Gingerol, the pungent ingredient in ginger, increased ABCA1 mRNA,
possibly by LXRα [102]. 8(R)-Hydroxyeicosapentaenoic acid (8R-HEPE) from North Pacific
krill (Euphausia pacifica) induced ABCA1 and ABCG1 by activation of LXR [103]. Vitamin D
upregulated ABCA1 and ABCG1 mRNA by increasing 27-hydroxycholesterol levels and
activating LXR [104]. Riccardin C, a non-sterol natural product isolated from liverworts
that functions as an LXRα agonist and an LXRβ antagonist, induced ABCA1 and ABCG1
expression [105]. Quercetin, a flavonoid, enhanced ABCA1 expression and cholesterol
efflux through p38- and LXRα-dependent pathways in macrophages [106].

The activation of PPAR by natural products has been reported to upregulate ABCA1
and ABCG1 through the PPAR-LXRα pathway. Leonurine, an alkaloid compound of Herba
leonuri, can prevent the development of atherosclerosis in the PPARγ-LXRα signaling
pathway [107]. Allicin increased ABCA1 mRNA levels in THP-1 cells by acting through the
PPARγ-LXRα pathway [108]. Anthocyanins induced ABCA1 in the PPARγ-LXRα pathway,
which was blocked by the PPAR antagonist GW9662 [109]. Hydroxytyrosol, a phenolic
compound, also enhances ABCA1 expression in a PPARγ-LXRα pathway, resulting in
reduced foam cell formation [110]. Lycopene induced ABCA1 mRNA by the PPARγ-LXRα
pathway in prostate cancer cells, although the induction was slow [111]. Evodiamine,
one of the main alkaloids obtained from the medicinal evodia fruit of the plant Evodia
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rutaecarpa Benth, induced ABCG1 mRNA via the PPARγ-LXRα pathway [112]. Baicalin,
a major flavonoid in Scutellaria baicalensis, induced ABCA1 and ABCG1 expression in the
PPARγ-LXRα pathway [113]. Similarly, curcumin, a polyphenolic compound found in
turmeric, has been shown to induce the expression of ABCA1 and ABCG1 in macrophages
and adipocytes, possibly mediated by the activation of PPARγ and LXR [114,115]. In
macrophages, the binding of 13-hydroxy linoleic acid to PPAR has been shown to induce
the expression of ABCA1 and ABCG1 [116]. Mangiferin, a xanthonoid from Salacia oblonga,
increased ABCA1 and ABCG1 via the PPARα-LXR pathway in macrophage Raw264.7 cells
and decreased atherosclerotic plaque size in apoE knockout mice [117]. Resveratrol, a
polyphenolic compound found in grapes and red wine, has been reported to induce the
expression of ABCA1 and ABCG1 in macrophages [118,119]. These effects are thought
to be mediated by activation of PPARγ and LXRα. While the natural products described
above increased the expression of ABCA1 and ABCG1, unsaturated fatty acids such as
eicosapentaenoic acid and linoleic acid inhibited the LXR/RXR pathway via DR4 and
suppressed the transcription of ABCA1 and ABCG1 [120].

Dietary soy protein induced hepatic ABCG5/ABCG8 mRNA expression and promoted
cholesterol efflux [121]. The cell wall of lactobacillus promoted the expression of ABCG5/ABCG8
protein and mRNA [72]. Marine-derived furanone, 5-hydroxy-3-methoxy-5-methyl-4-butylfuran-
2(5H)-one, isolated from the fungus Setosphaeria increased ABCA1, ABCG1, and ABCG5/ABCG8
in a manner dependent on LXRα and PPARα [122]. Diosgenin, the aglycone form of bioactive
saponin found in wild yam (Dioscorea villosa Linn) increased ABCG5/ABCG8 mRNA possi-
bly through indirect activation of LXRα [123]. In addition to ABCA1 and ABCG1, intestinal
ABCG5/ABCG8 was also induced by resveratrol dependent on the LXRα pathway, but liver
ABCG5/ABCG8 was not upregulated [124]. Plant sterols and stanols, which are commonly
found in foods such as nuts, seeds, and vegetable oils, have been reported to activate the
transcription of ABCA1, ABCG1, and ABCG5/ABCG8 in hepatocytes and enterocytes by the
activation of LXR [125,126]. Taurine (2-aminoethanesulfonic acid), which is abundant in seafood
and traditionally used to treat heart and liver disorders, increased ABCA1 and ABCG1 mRNAs
levels in THP-1 cells and ABCA1, ABCG5, and ABCG8 mRNAs in HepG2 and Caco2 cells by
binding to LXRα [127]. The effects of these natural products on ABCA1, ABCG1, ABCG5, and
ABCG8 expression may vary depending on the specific cell type and experimental conditions
used in the studies, and the mechanisms underlying these effects are likely multifactorial. Since
many natural products targeting LXR, RXR, PPAR, or FXR have been reported [38,128,129],
we expect that increasing numbers of natural products will activate transcription of ABCA1,
ABCG1, ABCG5, and ABCG8 in the future.

Table 2. Transcriptional activation of ABCA1, ABCG1, and ABCG5/ABCG8 by natural compounds.

Natural Compound Mechanism of Action Target Transporters References

Allicin Activation of PPAR and LXR ABCA1 [108]
Anthocyanins Activation of PPAR and LXR ABCA1 [109]
Baicalin Activation of PPAR and LXR ABCA1, ABCG1 [113]
Cineole ? ABCA1 [101]
Curcumin Activation of LXR ABCA1, ABCG1 [114,115]
Diosgenin Activation of LXR ABCG5, ABCG8 [123]
Evodiamine Activation of PPAR and LXR ABCG1 [112]
6-Gingerol Activation of LXR ABCA1 [102]
8(R)-hydroxyeicosapentaenoic acid Activation of LXR ABCA1, ABCG1 [103]
13-hydroxy linoleic acid Activation of PPAR ABCA1, ABCG1 [116]
5-hydroxy-3-methoxy-5-methyl-4-
butylfuran-2(5H)-one Activation of LXR ABCA1, ABCG1, ABCG5, ABCG8 [122].

Lycopene Activation of PPAR and LXR ABCA1 [111]
Mangiferin Activation of PPAR and LXR ABCA1, ABCG1 [117]
Quercetin Activation of LXR ABCA1 [106]
Resveratrol Activation of PPAR and LXR ABCA1, ABCG1, ABCG5, ABCG8 [118,119,124]
Riccardin C Activation of LXR ABCA1, ABCG1 [105]
Soy protein ? ABCG5, ABCG8 [121]
Taurine Activation of LXR ABCA1, ABCG1, ABCG5, ABCG8 [127]
Vitamin D Activation of LXR ABCA1, ABCG1 [104]
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10. Conclusions and Perspectives

ABCA1, ABCG1, and ABCG5/ABCG8, the key players in cholesterol removal from
the body, are good candidates for the prevention of atherosclerosis. The development of
compounds that induce the expression of ABCA1, ABCG1, ABCG5, and ABCG8 by tran-
scriptional regulation is desired. A synthetic ligand for LXR is one of the candidates that can
promote transcription and activate ABCA1 and ABCG1 by increasing their expression lev-
els; however, LXR agonists show an adverse effect due to the induction of SREBP-1c, which
regulates fatty acid synthesis, resulting in elevated serum triglyceride levels [47,101,127].
Consequently, possible candidates are LXR agonists capable of inducing ABCA1, ABCG1,
and ABCG5/ABCG8 without upregulating SREBP-1c [130]. Another possible target is
PPAR, which induces the expression of ABCA1, ABCG1, ABCG5, and ABCG8 without
increasing fatty acid synthesis. Combining PPAR agonists with LXR agonists may serve as
a promising strategy to overcome the aforementioned adverse effects because ABCA1 and
ABCG1 are induced by LXR agonists and PPAR stimulation suppresses triglyceride levels
by increasing β-oxidation and liver lipoprotein lipase [47]. Furthermore, transcription
factors could be therapeutic targets. Compounds that suppress AP-2 or activate LRH-4
and HNF4α are expected to elevate ABCA1, ABCG1, and ABCG5/ABCG8 expression.
Further research is needed to fully understand the molecular mechanisms underlying
this regulation and its potential therapeutic implications. In the future, it is considered
that new strategies to prevent and cure atherosclerosis and cardiovascular diseases using
pharmacological and natural compounds will be developed.
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