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Abstract: We address the problem of finding a unique graph embedding that best describes a graph’s
“topology” i.e., a canonical embedding (spatial graph). This question is of particular interest in the
chemistry of materials. Graphs that admit a tiling in 3-dimensional Euclidean space are termed
tessellate, those that do not decussate. We give examples of decussate and tessellate graphs that are
finite and 3-periodic. We conjecture that a graph has at most one tessellate embedding. We give
reasons for considering this the default “topology” of periodic graphs.
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1. Introduction
1.1. General

When referring to structures based on a periodic graph, such as the diamond graph,
it is common to state that the structure has the “diamond topology”. However, a recent
article [1] showed that a graph may have many embeddings of distinct topology. The
question arises: “What is the best (default) graph embedding?”. This is the question we
address here.

We remind the reader of the generally accepted meanings of topology and graph.
From the Oxford Dictionary of Mathematics [2]:

Topology: The area of mathematics concerned with the general properties of shapes
and space, and in particular with the study of properties that are not changed by continu-
ous distortions.

Graph: A number of vertices, some of which are joined by edges.
It is a common practice to analyze the structures of chemical compounds in terms

of underlying graphs that describe the linking of components. Such analysis usually in-
volves the determination of graph invariants such as coordination sequences and vertex
symbols [3,4]. Although not rigorously unique identifiers, in practice, these are reliable
when used by programs like ToposPro [5]. For most 2- and 3-periodic graphs, the pro-
gram Systre [6] definitively identifies the graph given crystallographic definitions of edges.
Graphs can be identified by a 3-letter lower-case-bold symbol such as dia for the graph of
the diamond structure. So far, so good; but the trouble comes when, as almost invariably,
the result is reported as “a structure” having “the dia topology”.

As a graph may have many embeddings with different topologies, what do we mean
when we refer to “the dia topology”? The 3-letter lower-case-bold symbols originate in the
Reticular Chemistry Structure Resource (RCSR) [7]. The RCSR is a collection of embedded
graphs and includes interwoven (interlinked) nets, knots, links, and alternative embeddings
of a given graph—all with different topologies.

The problem is that the “diamond graph”, for example, can have embeddings with
different topologies (belonging to different ambient isotopies). One such alternative em-
bedding in actual materials is known to the RCSR as dia-z. If ToposPro or Systre analyzes
a structure based on that topology, the graph is again reported correctly as the dia graph.
Still, its structure and that of the diamond are not ambient isotopes—they have different
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topologies. Other examples of alternative embeddings of 3-periodic graphs were given in
the earlier paper [1]. Here, we attempt to clarify the ambiguity in terminology.

1.2. Terminology and Definitions

We are concerned with tilings that fill space with generalized polyhedral cages, which
may have 2-coordinated vertices but never 1-coordinated (leaves) or 0-coordinated vertices
(isolated vertices). A face symbol Mm.Nn . . .. indicates that the tile has m M-sided faces,
n N-sided faces, etc. Tiles with 2-coordinated vertices are called cages. They are often
extended polyhedra in which 2-coordinated vertices are inserted in some or all edges of the
polyhedron. Figure 1 shows examples of cages that are relevant to what follows. An n-theta
graph is a graph of just two vertices joined by n edges. The extended 4-theta graph is an
important space-filling solid, as is the tile of the net, bcu, of the body-centered cubic lattice.
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Figure 1. Examples of cages. All but the extended 3-theta (left) are space-filling. The tile of the dia
graph is an extended tetrahedron. The blue spheres represent vertices; the orange sticks represent
piecewise-linear edges; the inset green volumes show the shape of the tile.

If a tiling has p kinds of symmetry-related vertices, q kinds of edges, r kinds of faces,
and s kinds of tiles, the transitivity [8], four integers, is expressed as [p q r s]. For a graph,
we similarly express the number of types of vertices and edges by [p q]. Vertex-transitive
structures (p = 1) are termed isogonal. Tilings with the full symmetry of the graph they
carry are termed proper tilings [9].

All our structures are 3-dimensional and exist in Euclidean space. They may be 0-, 1-,
2-, or 3-periodic. Their symmetries are the point, rod, plane, layer, or space groups—best
expressed in the Hermann–Mauguin (International) symbolism [1]. Structures whose graph
admits a tiling are called tessellate, and those that do not are termed decussate, a word that
comes from the Latin word for 10 (symbol X) and means having crossings (as in weaving).
The vertices of graphs can be assigned barycentric coordinates in which the coordinates of
a vertex are the mean of the coordinates of its connected neighbors. The graph is said to
have collisions if two or more vertices have the same barycentric coordinates. A significant
result [6] is that for a periodic graph without collisions, the full symmetry of the graph is a
crystallographic space group, and Systre can always identify that “maximum symmetry”
group. Graphs with collisions are of minor importance in the chemistry of materials; for
examples, see our earlier paper [1].

An adjacency matrix readily specifies a finite graph. However, showing that two
graphs are the same requires identifying a vertex numbering that is the same in both matri-
ces. Since there are N! ways to number a graph with N vertices, this becomes practically
impossible for large N. This issue is at the heart of the so-called “graph isomorphism
problem”. The quotient graph can be given [6] for periodic graphs. In this case, a unique
vertex numbering can be found for graphs where all vertices have non-identical barycentric
coordinates. Such graphs are termed “crystallographic” as their symmetries are crystallo-
graphic space groups. The program Systre [6] unambiguously determines the identity and
symmetry of such graphs.

For a given straight-edge (piecewise-linear) graph embedding, we define girth as
the ratio of the shortest distance between edges to the length of the longest edge. Girth
is, in effect, a measure of the maximum stoutness of the sticks with which the edges of
the structure can be built without any stick overlap. For many embeddings, sticks are
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slender (low girth). The larger-girth embeddings are particularly interesting to us as they
represent structures that are easier to build as molecules. In finding possible embeddings
of graphs for a given symmetry, we first identify edges between vertices i and j, xi, yi, zi
to xj, yj, zj. We then search coordinate space for the local maximum girth by a gradient-
descent method. Generally, to go from one maximum girth to another, some edges must
cross, forcing the girth to pass through zero, transforming the structure to a topologically
different embedding—to a different ambient isotopy. Occasionally, two or more local
(ambient isotopic) maxima arise corresponding to the same topology but separated by
“logjams”; that is, the girth must decrease momentarily to unjam the structure, thereby
allowing the ambient isotopic maximum girth to be reached without any stick intersections.
In crucial cases, we can visually inspect different embeddings to verify they are different
topologies. We give examples below.

2. Embeddings of Finite Graphs

Finite graphs have long been classified as planar or nonplanar. A planar graph has a 2-
dimensional embedding without intersecting edges. If a planar graph is 3-connected—meaning
that at least three vertices and their incident edges must be deleted to separate the graph
into disjoint components—the graph is then the graph of a polyhedron. A 2-dimensional
embedding of the graph of a polyhedron is known as a Schlegel diagram. Note that the
perimeter of the Schlegel diagram is a face of the polyhedron. Figure 2 shows two simple
examples of Schlegel diagrams. These are clearly tessellate embeddings. In our earlier
paper [1], we showed alternative embeddings of the cube graph. These all contained links
or knots as subgraphs, and those alternative embeddings are therefore decussate. This leads
to the, perhaps obvious, conclusion that the unique tessellate embedding of a polyhedron
graph can be interpreted as the canonical embedding.
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Figure 2. Examples of Schlegel diagrams for 3-dimensional polyhedra.

A well-established result is that every nonplanar graph contains, as a subgraph, either
the complete graph on five vertices, K5, or the complete bipartite graph on two sets of three
vertices, K33. It is instructive to examine complete and bipartite graphs further. It was
shown [10] for complete graphs that every embedding of K6 in 3-dimensional Euclidean
space contains two linked triangles, and every embedding of K7 contains a knot. As noted
earlier [1], Kn has an automorphism group, the permutation group Sn of order n!. S4 is
isomorphic with the tetrahedral group, but no symmetry group in 3-D Euclidean space
contains Sn for n > 4.

Figure 3 shows embeddings of K5, K6, and K7. For K5, there is a tessellate embedding
of four tetrahedra inside an envelope of a fifth tetrahedron. This is the Schlegel diagram
of the 4-dimensional simplex and seems clearly to be the canonical embedding in 3-D;
the symmetry is 43m. For K6 the situation is less clear. In one embedding shown, with
symmetry 42m, the transitivity is [2 4] and contains the predicted link of two triangles (light
blue edges). However, we also show an embedding in symmetry 32, with transitivity [1 4],
which is now “more tangled” as it also contains a trefoil knot (light blue edges). These two
embeddings of the same graph are not ambient isotopic, and this leaves the question of a
canonical embedding of “the topology” of the graph moot since neither is tessellate. An
embedding is found for K7 by adding an extra vertex to the 32 embedding of K6, which
includes the predicted knot. The transitivity of the embedding is now [2 5]. We remark that
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a graph of transitivity [1 1], and an automorphism group of order 7! = 8040, has a “best”
embedding in 3-D with symmetry of order 6 and transitivity [2 5], albeit still decussate.
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tiles of a tiling may be polyhedra or cages, or both. We deal with simple periodic structures 
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lographic graphs [1]. For such a structure, a maximum-symmetry tiling is a proper tiling 
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Figure 3. Embeddings of finite complete graphs. The embedding of K5 is tessellate—four tetrahedra
inside a larger tetrahedron, and the Schlegel diagram of the 4-dimensional simplex. For clarity, these
are not depicted at maximum girth.

Turning to the bipartite graphs Knn: One, K33, is known as a “Möbius ladder graph” [11]
and has been recognized in a chemical structure [12]. This embedding, with symmetry 32,
and transitivity [1 3], is shown in Figure 4; this is decussate as it contains a trefoil knot as a
subgraph. We also show a second embedding with symmetry 6m2, and transitivity [3 2].
This is now tessellate, the tiling consisting of two extended 3-theta cages inside an envelope
that is also an extended 3-theta cage. The situation is similar for K44. There is an isogonal
decussate embedding with symmetry 422, and transitivity [1 4] that contains the 8-crossing
torus knot 819. There is also an embedding with symmetry 4/mmm, and transitivity [3 2],
that is tessellate with tiles that are extended 4-theta cages. Generalizing for Knn, there are
isogonal decussate embeddings with symmetry n2 (n odd) or n22 (n even) and a second
tessellate embedding with symmetry (2n)m2 (n odd) or n/mmm (n even). The tessellate
embedding has n extended n-theta cages as tiles. The best or “canonical” embedding is a
choice between an isogonal decussate embedding or a non-isogonal tessellate embedding.
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Figure 4. Embeddings of complete bipartite graphs. (a) A decussate embedding of K33. (b) A
tessellate embedding of K33. (c) A decussate embedding of K44. (d) A tessellate embedding of K44. In
the tessellate embedding of K33, (b), two extended 3-theta tiles (black lines) inside a larger extended
3-theta tile are indicated.

3. Embeddings of Periodic Graphs

We note first that 3-periodic graphs may be tessellate, decussate, or both and that
the tiles of a tiling may be polyhedra or cages, or both. We deal with simple periodic
structures for which the intrinsic symmetry is a crystallographic space group: the so-called
crystallographic graphs [1]. For such a structure, a maximum-symmetry tiling is a proper
tiling [9]. There may be more than one proper tiling, but they all carry the same embedding
of the net. There also may be possibilities for lower symmetry tilings of a net. In Figure 5, we
show examples of lower-symmetry embeddings of pcu. These carry the same embedding
of the pcu graph. This leads to the following claim: if a graph admits tilings, each tiling
carries an ambient isotopic embedding of that graph.
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Figure 5. Examples of tilings of the pcu graph.

We turn now to embeddings in general. Changing the unit cell parameters of an
embedding of a periodic graph affects the scale (uniform compression or expansion) or
shear but not the topology. To get different topologies, the free coordinates must be varied.
The RCSR presently contains data for 1250 3-periodic structures with cubic symmetry. Of
these, 141 have fixed coordinates and thus have a unique full symmetry embedding. These
include basic nets like srs, the unique 3-coordinated net with transitivity [1 1], the dia net
of the diamond structure, and pcu, the net of the primitive cubic lattice. These, therefore,
have a unique full symmetry embedding. However, we showed earlier [1] that these all
have topologically distinct lower symmetry embeddings.

3.1. ana and rhr

Further examination of the RCSR shows that, of the cubic graphs, 210 have just one
free coordinate, and of these, just two, ana and rhr, have transitivity [1 1]. For rhr, the edge
is specified as having symmetry Im3m, with edges given by connecting vertices x, x, 0 to
1/2 − x, 1/2, 1/2 − x, where x is the free parameter. Examination of the girths for a wide
range of x (−3 ≤ x ≤ 3) shows that there is just one embedding (i.e., one ambient isotopy).
This embedding is tessellate, as illustrated in the RCSR.

For ana, the edge is specified by space group Ia3d, with edges between vertices
1/8, y, 1/4 − y to y, 3/4 − y,−1/8. Now, 32 embeddings are found for the free parameter y
in the range (−3 ≤ y ≤ 3). There is one large girth (1.0) embedding which admits a tiling.
Two tiles are shown in Figure 6: an expanded trigonal prism

[
62.83]; the “two-headed

fish”,
[
42.82], is an expanded version of the 4-vertex trivalent graph shown. All the other

embeddings are intricately tangled, have much lower girth (all with slender edges), and
are decussate. In Figure 6, we show a fragment of the largest-girth decussate structure
(girth = 0.034); this has linked 4-rings inhibiting the formation of a tiling.

Int. J. Topol. 2024, 1, FOR PEER REVIEW 6 
 

 

 
Figure 6. (Top): [4 . 8 ] and [6 .8 ] tiles of the tessellate embedding of the ana graph. (Bottom): A 
fragment of the largest-girth decussate embedding of the ana graph; linked 4-rings are shown. 

3.2. bmn 
Turning to cubic graphs with one coordinate degree of freedom and transitivity [1 2], 

the RCSR contains 42 entries. We examined just one in detail: bmn. This graph has sym-
metry 𝐼4 32 , and edges are from 𝑥, 0,1/4  to 1/4 − 𝑥, 0,1/4 , and to 0,1/4,1/4 − 𝑥 . The 
largest-girth structure (girth = 1) is tessellate with a single space-filling cage [6 . 14 ], an 
extended trigonal prism. There are just three other embeddings with 𝑥 in the range −3 ≤𝑥 3. All three are topologically distinct and decussate, as demonstrated in Figure 7. The 
largest-girth (0.175) decussate structure has a knotted 6-ring (trefoil) and an unknotted 14-
ring. In the second decussate structure, with girth 0.082, neither ring is knotted, but the 
14-rings are linked. In the third structure, with girth 0.070, the 6-ring and 14-ring are knot-
ted and interlinked. 

 

Figure 6. (Top):
[
42.82] and [62.83] tiles of the tessellate embedding of the ana graph. (Bottom): A

fragment of the largest-girth decussate embedding of the ana graph; linked 4-rings are shown.



Int. J. Topol. 2024, 1 6

3.2. bmn

Turning to cubic graphs with one coordinate degree of freedom and transitivity [1 2],
the RCSR contains 42 entries. We examined just one in detail: bmn. This graph has
symmetry I4132, and edges are from x, 0, 1/4 to 1/4 − x, 0, 1/4, and to 0, 1/4, 1/4 − x.
The largest-girth structure (girth = 1) is tessellate with a single space-filling cage

[
62.143],

an extended trigonal prism. There are just three other embeddings with x in the range
−3 ≤ x < 3. All three are topologically distinct and decussate, as demonstrated in Figure 7.
The largest-girth (0.175) decussate structure has a knotted 6-ring (trefoil) and an unknotted
14-ring. In the second decussate structure, with girth 0.082, neither ring is knotted, but
the 14-rings are linked. In the third structure, with girth 0.070, the 6-ring and 14-ring are
knotted and interlinked.
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3.3. mok

The mok graph was introduced initially [13] as a simple example of a self-entangled
periodic graph. Figure 8 shows that mok comprises interlinked layers of interpenetrating
honeycomb (hcb) graphs. It contains four cycles (strong rings) that are not the sum of
smaller cycles, two 6-ring, an 8-ring, and a 10-ring. The 6-rings of the hcb layers are linked,
but a tiling can be constructed from the other three unlinked strong rings, as shown in
Figure 8. The transitivity is [1 3 3 2]. Thus, perhaps surprisingly, the interlinking of the
hcb-type layers does not proscribe a tessellate structure.

Vertex coordinates for the mok graph are of the form x, y, 0. The three symmetry-
inequivalent edges are formed by connecting that vertex to its images at: −x,−y, 0;
1/2 − x, 1/2 − y, 0; and 1 − x, y,−1/2. We find ten topologically distinct embeddings
for the free-parameter ranges −1 ≤ x, y < 1. The one tessellate embedding has the largest
girth (0.816). The next-largest embedding, with girth 0.349, is clearly decussate as both
types of 6-rings are linked with other rings of the same kind, as shown in the figure.
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3.4. jcy

A second graph was adduced [14] as being self-entangled, jcy. This graph, observed as
the underlying graph of a crystal structure, has transitivity [3 3] and four coordinate degrees
of freedom. The structure contains, as substructures, three sets of hcb nets interwoven, with
an additional vertex linking triplets of hcb graphs. For a full symmetry

(
P62c

)
and vertex

range ±1, we find 34 embeddings of the underlying graph, each with a different girth. We
examined the two largest-girth examples, shown in Figure 9. Both are decussate, with linked
6-rings and linked 8-rings (these are the shortest cycles in the graph). As shown in the figure,
the topological difference between the two embeddings is subtle, highlighting the need for a
general method of distinguishing topologies. No tessellate embedding was found.
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Figure 9. The two largest-girth embeddings of the graph jcy. (Top): the interlinking of honeycomb
(hcb) nets, colored red, green, and blue. (Bottom): the pattern of rods of 83 cages, colored red and green.
Blue edges show the links between adjacent rods. In the larger-girth structure, the links (blue) between
adjacent rods of 8-ring cages go outside the cages; in the smaller-girth structure, they go inside the cages.
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3.5. fau

Zeolite structures are distinguished by a bold upper-case three-letter symbol, such as
FAU, for the faujasite structure. These are recognized by the International Union of Pure
and Applied Chemistry (IUPAC) to indicate “framework type” [15]. The simpler of these
are in the RCSR with lower-case symbols, such as fau. FAU materials are of exceptional
economic importance, so we have examined the full symmetry (Fd3m) embeddings of
the fau graph, which has transitivity [1 4] and three variable coordinates. We find just
three embeddings for a coordinate range of −1 ≤ x, y, z < 1. As depicted in Figure 10, the
girth = 1 structure is tessellate, the well-known structural form adopted by the alumino-
silicate zeolite. The other two are distinct decussate embeddings. We cannot resist adding
that their girths are exactly 1/

(√
2 + 1

)
and 1/

(√
6 + 1

)
.
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Figure 10. Embeddings of the fau graph. Top row: showing the conformation of the
[
418.64.124]

cage. Second row: conformations of two connected sodalite cages
([

46.68]) linked by a hexagonal
prism. Bottom row left: the pattern of tiles in zeolite structure type FAU. Bottom, center, and right:
the linking of rings in the decussate structures.

4. Conclusions

We present some observations that we feel are relevant to the following unanswered
questions: (a) is there a preferred embedding of a graph that can unambiguously be called
the “topology”? and (b) how do we identify and distinguish between different graph
embeddings (topologies)?

For planar finite graphs, general usage is clear, and we take the unique tessellate
embedding, particularly for polyhedra. All other embeddings are decussate as they contain
knots and/or links and are referred to as tangles [16]. What is needed is a system for
identifying each embedding in the same way as has been developed for knots and links. In
this context, we remark that knots are just different embeddings of the graph of the unknot
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(a simple loop). There is an infinite number of knots, which by definition are decussate, but
only one planar embedding—the unknot loop.

Tessellate embeddings may exist for nonplanar finite graphs, but as we have re-
marked for the case of K33, an embedding with lower transitivity may be preferred as the
default “topology”.

Turning to periodic graphs: for a small number (some 3000) of particular interest in
chemistry and materials science, an RCSR symbol leads to a specific embedding of that
graph. But many more graphs have been identified. The Topos Topological Database has
200,000 “hypothetical and real nets that have been observed” [17]. This suggests a pressing
need for methods of distinguishing between various embeddings of these structures. As
shown here, a periodic graph may have many embeddings, even at full symmetry.

The embeddings of graphs in the RCSR, as reported by Systre, are obtained by finding
the minimum density subject to the constraint of fixed equal-edge lengths. This approach
was inspired by the observation [18] that such constrained maximum-volume configu-
rations are often close approximations of the actual structure of simple ionic crystals.
In our experience, this is also the maximum-girth embedding and, when it exists, the
tessellate embedding.

We have made the claim:
Conjecture 1: if a graph admits tilings, each tiling carries an ambient isotopic embed-

ding of that graph.
This raises an open question, leading to an additional claim:
Conjecture 2: there is, at most, only one tessellate ambient isotopy of a periodic graph.
We know of no counterexamples of graphs with two or more tessellate ambient

isotopies (embeddings). Further, our observations indicate that the tessellate embedding is
always the maximum-girth embedding—the structure built with the stoutest sticks.

To the authors’ knowledge, no software tool is available that reliably explores the iso-
topic spaces of a graph to identify whether a tessellate embedding is accessible. In general,
too many degrees of freedom are involved, except for the simplest graphs. It would be
useful to identify an intrinsic property that makes a graph tessellate, apart from maximum
volume and maximum girth, which do not definitively define the tessellate embedding.

The term decussate was inspired by Samuel Johnson’s definition of “network” [19]:
“Anything reticulated or decussated, at equal distances, with interstices between the inter-
sections.” This led, in turn, to the description of the science of linking together symmetric
modules into (generally tessellate) periodic framework structures as reticular chemistry [20].
Recently, there has been a rapid increase in interest in synthesizing structures based on
knots, periodic and finite links, tangles, weaving, knitting, and other decussate structures.
The systematics of this might well be considered as decussate chemistry.

Author Contributions: Conceptualization, M.O.; methodology, M.O. and M.M.J.T.; formal analysis,
M.O. and M.M.J.T.; software, M.M.J.T.; writing—original draft preparation, M.O.; writing—review
and editing, M.O. and M.M.J.T.; visualization, M.O. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The RCSR database is openly available at http://rcsr.net. Contact the
authors for additional details of the structures discussed.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. O’Keeffe, M.; Treacy, M.M.J. The Symmetry and Topology of Finite and Periodic Graphs and Their Embeddings in Three-

Dimensional Euclidean Space. Symmetry 2022, 14, 822. [CrossRef]
2. Earl, R.; Nicholson, J. The Concise Oxford Dictionary of Mathematics; Oxford University Press: Oxford, UK, 2021.
3. O’Keeffe, M. Coordination sequences for lattices. Z. Krist.-Cryst. Mater. 1995, 210, 905–908. [CrossRef]

http://rcsr.net
https://doi.org/10.3390/sym14040822
https://doi.org/10.1524/zkri.1995.210.12.905


Int. J. Topol. 2024, 1 10

4. O’Keeffe, M.; Hyde, S. Vertex symbols for zeolite nets. Zeolites 1997, 5, 370–374. [CrossRef]
5. Blatov, V.A.; Shevchenko, A.P.; Proserpio, D.M. Applied Topological Analysis of Crystal Structures with the Program Package

ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586. [CrossRef]
6. Delgado-Friedrichs, O.; O’Keeffe, M. Identification of and symmetry computation for crystal nets. Acta Cryst. 2003, A59, 351–360.

[CrossRef] [PubMed]
7. O’Keeffe, M.; Peskov, M.A.; Ramsden, S.J.; Yaghi, O.M. The Reticular Chemistry Structure Resource (RCSR) database of, and

symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782–1789. [CrossRef] [PubMed]
8. Delgado-Friedrichs, O.; Huson, D.H. 4-Regular Vertex-Transitive Tilings of E3. Discret. Comput. Geom. 2000, 24, 279–292.

[CrossRef]
9. Blatov, V.A.; Delgado-Friedrichs, O.; O’Keeffe, M.; Proserpio, D.M. Three-periodic nets and tilings: Natural tilings for nets. Acta

Cryst. 2007, A63, 418–425. [CrossRef] [PubMed]
10. Conway, J.H.; Gordon, C.M. Knots and links in spatial graphs. J. Graph Theory 1983, 7, 445–453. [CrossRef]
11. O’Keeffe, M.; Treacy, M.M.J. Tangled piecewise-linear embeddings of trivalent graphs. Acta Crystallogr. 2022, A78, 128–138.

[CrossRef] [PubMed]
12. Flapan, E. (Ed.) Möbius Ladders and Related Molecular Graphs. In When Topology Meets Chemistry: A Topological Look at Molecular

Chirality; Cambridge University Press: Cambridge, UK, 2000; pp. 69–109. [CrossRef]
13. O’Keeffe, M. Dense and rare four-connected nets. Z. Krist.—Cryst. Mater. 1991, 196, 21–38. [CrossRef]
14. Bonneau, C.; O’Keeffe, M. Intermetallic Crystal Structures as Foams. Beyond Frank–Kasper. Inorg. Chem. 2015, 54, 808–814.

[CrossRef] [PubMed]
15. Baerlocher, C.; McCusker, L.B.; Olson, D.H. Atlas of Zeolite Framework Types, 6th ed.; Elsevier Science: Amsterdam, The Netherlands,

2007. Available online: http://www.iza-structure.org (accessed on 25 February 2024).
16. Hyde, S.T.; Schröder-Turk, G.E. Tangled (up in) cubes. Acta Cryst. A 2007, 63, 186–197. [CrossRef] [PubMed]
17. Alexandrov, E.V.; Shevchenko, A.P.; Blatov, V.A. Topological databases: Why do we need them for design of coordination

polymers? Cryst. Growth Des. 2019, 19, 2604–2614. [CrossRef]
18. O’Keeffe, M. On the arrangements of ions in crystals. Acta Crystallogr. 1977, A33, 924–927. [CrossRef]
19. Johnson, S. Johnson’s Dictionary Online. 2023. Available online: https://johnsonsdictionaryonline.com (accessed on 25

February 2024).
20. Yaghi, O.M.; O’Keeffe, M.; Ockwig, N.W.; Chae, H.K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials.

Nature 2003, 423, 705–714. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/S0144-2449(97)00133-4
https://doi.org/10.1021/cg500498k
https://doi.org/10.1107/S0108767303012017
https://www.ncbi.nlm.nih.gov/pubmed/12832814
https://doi.org/10.1021/ar800124u
https://www.ncbi.nlm.nih.gov/pubmed/18834152
https://doi.org/10.1007/s004540010035
https://doi.org/10.1107/S0108767307038287
https://www.ncbi.nlm.nih.gov/pubmed/17703076
https://doi.org/10.1002/jgt.3190070410
https://doi.org/10.1107/S2053273322000560
https://www.ncbi.nlm.nih.gov/pubmed/35230268
https://doi.org/10.1017/CBO9780511626272.004
https://doi.org/10.1524/zkri.1991.196.1-4.21
https://doi.org/10.1021/ic5017966
https://www.ncbi.nlm.nih.gov/pubmed/25247234
http://www.iza-structure.org
https://doi.org/10.1107/S0108767306052421
https://www.ncbi.nlm.nih.gov/pubmed/17301480
https://doi.org/10.1021/acs.cgd.8b01721
https://doi.org/10.1107/S056773947700223X
https://johnsonsdictionaryonline.com
https://doi.org/10.1038/nature01650
https://www.ncbi.nlm.nih.gov/pubmed/12802325

	Introduction 
	General 
	Terminology and Definitions 

	Embeddings of Finite Graphs 
	Embeddings of Periodic Graphs 
	ana and rhr 
	bmn 
	mok 
	jcy 
	fau 

	Conclusions 
	References

