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Abstract: Antibodies play a central role in the adaptive immune response of vertebrates through the
specific recognition of exogenous or endogenous antigens. The rational design of antibodies has a
wide range of biotechnological and medical applications, such as in disease diagnosis and treatment.
However, there are currently no reliable methods for predicting the antibodies that recognize a
specific antigen region (or epitope) and, conversely, epitopes that recognize the binding region of a
given antibody (or paratope). To fill this gap, we developed ImaPEp, a machine learning-based tool
for predicting the binding probability of paratope–epitope pairs, where the epitope and paratope
patches were simplified into interacting two-dimensional patches, which were colored according
to the values of selected features, and pixelated. The specific recognition of an epitope image by a
paratope image was achieved by using a convolutional neural network-based model, which was
trained on a set of two-dimensional paratope–epitope images derived from experimental structures of
antibody–antigen complexes. Our method achieves good performances in terms of cross-validation
with a balanced accuracy of 0.8. Finally, we showcase examples of application of ImaPep, including
extensive screening of large libraries to identify paratope candidates that bind to a selected epitope,
and rescoring and refining antibody–antigen docking poses.

Keywords: antibody design; antibody–antigen complex structures; machine learning

1. Introduction

Antibodies (Ab) are key proteins that play a central role in the immune system. They
bind to immunogenic molecules known as antigens (Ag) with high levels of specificity and
affinity and trigger different mechanisms of immunity. Their ability to specifically bind
antigens (Ag), especially proteins, has made them widely applicable in the diagnosis and
treatment of diseases. In particular, the use of monoclonal Abs (mAbs) as therapeutic drugs
against cancer and other fatal diseases has increased rapidly in the last two decades and is
expected to continue to grow in the coming years [1,2]. Thus, there is an urgent need to
develop new and efficient Ab design methods.

An Ab is typically a Y-shaped homodimer of heterodimers, each composed of a heavy
(H) and a light (L) chain. The light chain contains a variable and a constant domain (VL and
CL), and the heavy chain containing one variable and three heavy domains (VH, CH1, CH2,
and CH3). These domains can be divided into two parts. One is the fragment crystallizable
(Fc) region that includes CH2 and CH3 domains, which interact with receptors on the
surface of phagocytes such as macrophages, neutrophils, and dendritic cells. The other
part is the fragment Ag-binding (Fab) region, which is composed of the variable Fv region
containing the two variable domains VH and VL, which recognize and bind to antigens,
and the constant CL and CH1 domains that structurally support the Fab.

Each Fv region contains six regions with hyper-variable sequences: three in the L-chain
and three in the H-chain. They are referred to as complementarity-determining regions
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(CDRs). As indicated by their names, they contribute to the formation of immune complexes.
Despite the sequence variations between the CDRs of different Abs, not all CDR residues
participate in Ab-Ag binding, and some residues outside the CDRs were also observed in
binding interfaces [3–6]. Ab residues that are part of the Ab-Ag interface constitute the
paratope, and the Ag residues of this interface form the epitope. An Ab can have multiple
paratopes, which bind to different epitopes in the same or another Ag [7–9].

Several high-throughput screening-based experimental methods for designing Abs
against a given Ag have been proposed [10–15], but they are time- and resource-consuming.
Computer-aided antibody design appears to be a good alternative. Generally speaking,
a computational pipeline for Ab design starts by modeling the three-dimensional (3D)
structure of complete Abs or Ab fragments, followed by predicting their binding affinity
for the target Ag (using, e.g., docking [16,17] and energy functions [18]). Then, selected Abs
are optimized in terms of stability, solubility, and binding affinity, either experimentally or
computationally [19,20]. The majority of computational methods can be grouped into three
categories: (1) designing a complete Ab from scratch [20]; (2) designing parts of an Ab that
mainly contribute to its binding with the antigen (usually the paratope or CDR), followed
by CDR or paratope grafting onto an Ab scaffold to construct a complete Ab [18,21,22]; and
(3) engineering an existing Ab to improve its specificity and affinity or to generate new
functions [23,24]. Despite advances in computational Ab design methods, pipelines with a
high level of accuracy are not yet available. Besides, tools for paratope design are rare in
comparison with complete Ab or CDR design.

We focused on the prediction of paratope–epitope binding. So far, a series of char-
acteristics of paratopes have been identified, such as the over-representation of aromatic
residues, especially tyrosine, their tendency to form hydrogen bonds, cation-π, and π-π
interactions with the epitope, and a lower propensity to form hydrophobic interactions
compared with general protein–protein interfaces [25–27]. It was also discovered that
paratopes, instead of being rigid interfaces, are characterized by a certain level of flexibility
and are able to modify their conformation to some extent during the interaction with
Ags [28,29].

In this study, we present ImaPEp, an image-based predictor for paratope–epitope
prediction using machine learning (ML) methods and protein structural features. The
predictor uses a residual neural network (ResNet) architecture [30] and was trained on a
non-redundant dataset of 3D structures of Ab-Ag complexes.

To our knowledge, ImaPEp is the first structure-based computational method for
predicting the binding between an Ab and a protein Ag using a two-dimensional (2D) rep-
resentation of the binding interfaces, i.e., of the paratope–epitope pair. First of all, predicting
such pairs rather than single epitope residues and paratope residues is already an improved
approach compared to other computational methods [31–36]. Moreover, the inclusion of
structural information sets ImaPEp aside from sequence-only methods which provide
no precise information about the binding residues and the type of interactions [37–39],
especially as structural motifs at the binding interface are known to be fundamental for
Ab-Ag recognition [5]. ImaPEp also differs from other structure-based methods [23,40–42],
as it considers the entire binding interface with a simplified representation and a shallow
neural network as model architecture. This results in a method that is faster and less prone
to overfitting than other structure-based approaches, thereby enabling its application to
large-scale screening of Ab-Ag binding complexes.

2. Results and Discussion
2.1. Performance of the Models

The ImaPep pipeline for predicting binding paratope–epitope pairs was developed
based on the structure dataset DAb-Ag using the CNN model depicted in Figure 1, as
described in Section 3. It was tested in 10-fold cross validation where the training was
performed on a Dsubtrain set and validated on the associated validation set Dval. Moreover,
it was also tested on an external test set Dtest. Two versions of the model were developed,
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ImaPEp-atom and ImaPEp-resi, in which the epitope and paratope images were generated
on an atom and residue level, respectively. The metrics used to evaluate the performance
of the predictors were the balanced accuracy (BAC) and the Matthews correlation coef-
ficient (MCC), two threshold-dependent metrics, as well as the area under the receiver
operating characteristic curve (AUROC) and under the precision–recall curve (AUPRC),
two threshold-independent metrics (see Supplementary Section S4 for details). The values
of these metrics on Dval and Dtest are summarized in Table 1 and detailed in Supplementary
Tables S2 and S3.

Figure 1. Illustration of the ImaPEp pipeline. (a) Example of Ab-Ag complex (PDB ID: 1A2Y), with
the Ab light chain colored in light pink, the Ab heavy chain in magenta, and the Ag in cyan; the
paratope residues are shown in red and the epitope residues in dark blue. The picture is created using
the PyMol package [43]. (b) The atoms of paratope residues are shown as red spheres and the epitope
atoms as blue spheres. The 3D perspectives were drawn by the vedo package of Python. (c) The Cµ

spheres of the paratope and epitope residues projected onto their respective PCA planes are depicted
as red and blue circles, respectively. (d) The paratope and epitope images are colored according to
the physicochemical properties of their residues (RGB color code). (e) Each of these two images were
converted into 3D tensors, with the first dimension corresponding to the image height (100 pixels), the
second to the image width (100 pixels), and the third to the channels (3 RGB colors). These two tensors
were then concatenated on the third channel, resulting in a 100 × 100 × 6 tensor. The ensemble of
so obtained Ag-Ab tensors from the learning set was used as the training sample. The numbers in
parentheses after “Conv2D” represent the number of input channels, the number of output channels,
and the convolutional kernel size. The numbers in parentheses after “MaxPool2D” and “AvgPool2D”
represent the window size of pooling. “LReLu” represents the leaky-ReLU activation function. “FC +
Dropout + sigmoid” refers to a fully connected layer to which the Dropout mechanism is applied and
whose output is activated by a sigmoid function. “Add” refers to the addition of two tensors with the
same shape.
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Table 1. Balanced accuracy (BAC), Matthews correlation coefficient (MCC), area under the re-
ceiver operating characteristic curve (AUROC) and under the precision–recall curve (AUPRC) of
the per-residue and per-atom pipelines ImaPEp-resi and ImaPEp-atom applied to the external test
set Dtest.

Model BAC MCC AUROC AUPRC

ImaPEp-resi 0.84 0.70 0.94 0.86
ImaPEp-atom 0.78 0.57 0.90 0.77

The first result we want to underline is the good performances of both ImaPEp-resi
and ImaPEp-atom. Indeed, both reached a BAC of 0.8, an MCC of 0.6–0.7, an AUROC
above 0.9 and an AUPRC of 0.8–0.9 (Table 1). However, ImaPEp-resi performs better than
ImaPEp-atom, whatever the metric and test set considered. For example, the BAC and MCC
increased from 0.78 to 0.84 and from 0.57 to 0.70, respectively, on Dtest. This suggests that
atomic details are not too informative in this problem and that a coarse-grained model in
which the side chain is represented by the Cµ side chain centroid performs better. Although
this is a bit unexpected, as a per-atom representation is supposed to save more details of an
Ab-Ag interface, such detailed representation is also likely to introduce noise that could
explain the drop in performances.

The good performance of our methods is also demonstrated graphically in Figure 2,
where the distribution of both ImaPEp-resi and ImaPEp-atom scores for positive and
negative entries in Dtest are shown to be clearly separated. The precision–recall (PR) curve
(left) and receiver operating characteristic (ROC) curves of ImaPEp-resi are shown in
Figure 3.

Figure 2. Distributions of scores outputted by ImaPEp-resi and ImaPEp-atom applied to the Dtest set.

Figure 3. Precision-recall (PR) curve (left) and receiver operating characteristic (ROC) curve (right)
plotted according to the scores outputted by ImaPEp-resi applied to the Dtest set; the area under the
PR and ROC curves (AUPRC and AUROC) are given.
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2.2. Ablation Studies

We performed a series of ablation studies in ImaPEp-resi to gain insight into the
importance of the different features included in our model and the granularity of the
representation. The results are shown in Table 2.

Table 2. Ablation studies in ImaPEp-resi. We trained six models: (I) without the distance-based color
reduction mechanism. ✓ and X respectively indicates the introduction and removal of the distance
feature; (II) with different image coloring scheme; (III) with images of different size; (IV.a) with
polarizability (P) knocked out; (IV.b) with isolelectric point (I) knocked out; (IV.c) with hydrophobicity
(H) knocked out.

Model Shape Distance Features BAC MCC AUROC AUPRC

ImaPEp-resi 100 × 100 ✓ P-I-H 0.841 0.697 0.940 0.857

I 100 × 100 X P-I-H 0.813 0.651 0.927 0.830
II 100 × 100 ✓ 4-color 0.841 0.699 0.935 0.835
III 64 × 64 ✓ P-I-H 0.799 0.614 0.905 0.775

IV.a 100 × 100 ✓ X-I-H 0.836 0.683 0.936 0.839
IV.b 100 × 100 ✓ P-X-H 0.822 0.678 0.933 0.839
IV.c 100 × 100 ✓ P-I-X 0.850 0.717 0.943 0.855

I. Distance to the PCA plane. We investigated the impact of considering the contribu-
tion of the distance of the residues to the epitope–paratope plane. We trained a model on
the images with and without the distance feature. The results in Table 2 show that without
the integration of the distance factor, model I performs slightly worse than the standard
ImaPEp-resi (BAC 0.81 vs. 0.84). This underlines the importance of geometrical factors in
the epitope–paratope recognition.

II. Coloring system. To examine whether our model benefits from the physical–
chemical information of the residues integrated in the RGB color vector, we generated
another kind of color encoding, in which aromatic residues were colored in green, positively
charged residues in red, negatively charged residues in blue, and all the other residues in
white. We called this the four-color mode. We trained a new model with this new coloring
scheme (model II), without changing any hyperparameters and compared its performance
with that of the original model. As shown in Table 2, the model trained on the four-color
scheme achieved an equal BAC, a slightly higher MCC, but a lower AUROC and AUPRC
than the original one, indicating that a finer-grained physical–chemical representation is
more informative.

III. Image size. Originally, the images used for training were first generated in
200 × 200 and cropped to 100 × 100 with respect to the image center. In our dataset, images
of this size cover the whole interfaces for the vast majority of the samples. We wondered
whether the image size has an effect on the model’s performance. To determine the answer
to this, we constructed a new training and test set, which were identical to Dtrain and Dtest
except that the images in the new sets have a 64 × 64 pixel shape. In the dataset, images
of this size cover the whole interface for the vast majority of the samples, but the model
trained on this dataset has fewer parameters. The results in Table 2 show that the standard
ImaPEp-resi model that is trained on images with a larger size performs better than the model
trained on reduced images (model III), which indicates that the larger set of parameters in
ImaPEp-resi allows for a more accurate learning of Ab-Ag interface peculiarities.

IV. Biophysical features. To further investigate the contribution of each individual
physical–chemical feature to the model, we ran a series of knock-out experiments, in which
we substituted one feature at a time with a tensor of all zeros (knock-out), trained a new
model based on the new features, and analyzed the metric values on Dtest. As shown in
Table 2, the original model achieves the best performance even though the differences are
not significant. The differences between different knock-out groups of features are also
rather small. The model with the isoelectric point knocked out (model IV.b) has the lowest
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accuracy, suggesting the prominent role of electrostatic interactions in Ab-Ag recognition,
which has already been mentioned in the literature [44]. Additionally, when knocking out
hydrophobicity (model IV.c), the model works equally well, suggesting, as expected, the
minor role of hydrophobic interactions in Ab-Ag complex formation.

2.3. ImaPEp Applications

We present here two applications of ImaPEp-resi. In the first, we assessed our tool’s
performance for rescoring docking poses, and in the second, for screening paratope libraries
to identify those binding to a target epitope.

2.3.1. Rescoring Docking Poses

The docking poses used were obtained from the Dockground unbound docking decoy
set 2 [45], which contains poses of over 100 protein complexes. As ImaPEp is specifically
designed for Ab-Ag recognition, we only used poses of the 24 available Ab-Ag complexes.
For each complex, 100 poses were generated, of which 99 were incorrect and the remaining
one was near-native. We compared ImaPEp’s results with a series of scoring functions,
including simple energy functions (electrostatics, van der Waals, etc.) and composite
docking scoring functions, listed in Table 3. Computation of the different functions is
performed by CCharPPI [46]. The score-based ranking of the near-native pose out of the
100 poses, averaged over all 24 Ab-Ag complexes, was computed for ImaPEp-resi and
compared with the rankings of the 18 methods assessed. A lower average rank indicates
better performance in rescoring docking poses.

As shown in Table 3 and Supplementary Table S4, ImaPEp-resi is able to recognize, for
each considered Ab-Ag complex, the near-native docking pose out of the 100 poses with an
average rank of 26.7, which outperformed 13 out of the 18 methods tested. ImaPEp-resi
successfully predicted the ranking of 6 complexes in the top 5%, and of 10 complexes in the
top 20%. Despite not being the best scorer, ImaPEp has the advantage of being extremely
fast, as will be discussed in Section 2.5. The reduction in the Ab-Ag interfaces from 3D to
2D sped up and simplified the computations, but led to some information loss.

Table 3. Ranking of the score of the near-native docking pose out of all 100 poses, averaged over
24 Ab-Ag complexes, using ImaPEp-resi and 18 other methods [46]. A lower rank indicates a
better prediction.

Scoring Function Average Rank

ImaPEp 26.7
ELE 24.5

HBOND2 42.9
VDW 62.2

AP_DCOMPLEX 43.2
AP_DFIRE2 25.7

AP_PISA 29.2
AP_dFIRE 29.5

AP_T2 49.5
CP_PIE 80.1

LK_SOLV 60.9
FIREDOCK 22.6

FIREDOCK_AB 57.5
FIREDOCK_EI 22.8

ROSETTADOCK 61.5
ZRANK 40.9

ZRANK2 58.5
PYDOCK_TOT 17.3

SIPPER 94.1



Int. J. Mol. Sci. 2024, 25, 5434 7 of 16

2.3.2. Paratope Library Screening

The speed of ImaPEp allows broad screening of paratope libraries, in order to identify
Ab binders to a given epitope. Here, a paratope library consists of a collection of paratope
images generated in the way described in the Methods Section 3.3 using the structures in
DAb-Ag dataset. The target epitope was also represented as an image generated in the same
way. In addition, the epitope image was rotated 12 times, each time by an angle which is a
multiple of 30°. This produced 12 rotated versions of the epitope. Each rotated epitope was
combined with each of the paratopes in the library, and each paratope–epitope pair was
scored by ImaPEp. A paratope that is predicted to bind with an epitope with an angle 0°,
30°, and −30° (referred to as B0, B+30 and B−30 ) is regarded as a binder.

For this experiment, we considered MSP1-19 from Plasmodium falciparum, a parasite
surface protein (PDB ID: 1OB1), which is not found in the training set of ImaPEp. The screen-
ing of the entire library of paratope images, containing about 14k candidates, yielded good
results. Indeed, our method identified the MSP1-19 paratope binder in position 69 out of the
14k candidates, with, however, a rotation angle of −30°. This means that ImaPEp ranked
the real binder in the top 0.5% candidates, which confirmed its ability to prioritize, out of
huge paratope libraries, paratopes that potentially bind with the target antigen epitope.

2.4. Insights into Prediction Mechanisms

An effective ML-based predictor is expected to learn the molecular mechanisms behind
Ab-Ag binding. Deficiency in this ability makes the predictor prone to simply being a
“reciter” of the data in the training set, which is a product of overtraining and possesses
limited generalization ability. It is thus of paramount importance to inspect whether such a
predictor learns true biophysical information.

We generated the feature map learned by our neural network architectures of all
samples. During the forward propagation of our model, dot multiplication was performed
for each sample between the trained weights of the FC layer and the 1D vector produced by
flattening the 25 × 25 × 64 tensor (which is the concatenation of two 25 × 25 × 32 tensors
from the pooling layers), resulting in a scalar logit (or log-odds).

Mathematically, a dot multiplication between two vectors is equivalent to a Hadamard
multiplication followed by summing up all elements of the Hadamard product. In order to
visualize the feature map, we only retrieved for each input the aforementioned Hadamard
product and reshaped it into a 25 × 25 × 64 tensor. The tensor is then split into two
25 × 25 × 32 tensors, corresponding to the maximum and average pooling layers, respec-
tively. A maximum unpooling and average unpooling operation is applied to each of the
25 × 25 × 32 tensors, resulting in two 100 × 100 × 32 tensors, of which the mean along the
third dimension is calculated, generating a 100 × 100 tensor, which is the ultimate feature
map for all convolutional layers.

We showed that ImaPEp-resi is able to extract the contours of the paratope and epitope
in a pair, and that the shape compatibility is utilized as an important feature to distinguish
between bound and unbound paratope–epitope pairs. A typical example is shown in
Figure 4a–c, where the paratope comes from an Ab against cytokine interleukin 13 (IL-13)
(PDB ID: 4I77) [47] and the epitope comes from a mouth disease viral protein (PDB ID:
1QGC) [48]; this pair represents a negative data sample. We clearly see in the Figure that the
regions where one of the two interfaces has residues and the other does not make negative
contributions to the overall binding score, regardless of whether the existing residues are
close to or distant from their binding partner.

ImaPEp-resi is also able to recognize information about the non-covalent interactions
between residues that contribute to stabilizing the Ab-Ag interface. This is shown in
Figure 4d–f, in which the paratope and epitope are obtained from a complex of low-density
lipoprotein receptor-related protein 6 (LRP6) and its cognate antibody [49] (PDB ID: 1FE8;
Ab-heavy and -light chains are referred to as J and N, and the Ag chain is referred to as C).
Indeed, the region outlined in the top box of the images contains an amino-π interaction
occurring between Tyr (N50) in the Ab and Asn (C983) in the Ag, and a side-chain–side-
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chain hydrogen bond between Asn (C983) and Arg (N53). In the bottom box, we have a
salt bridge between Asp (N28) and Arg (C963). These two interactions, especially the salt
bridge, stabilize the Ab-Ag interface and appear in the feature map as a red area, signaling
their important role which is learned by the ImaPEp model.

Figure 4. Paratope and epitope images and convolutional feature maps. (a) Paratope image of PDB
ID 4I77; (b) epitope image of PDB ID 1QGC; (c) backward feature map of negative sample 4I77-1QGC;
(d) paratope image of 1FE8; (e) epitope image of PDB ID 1FE8; (f) backward feature map of the
positive sample 1FE8. In the feature maps, red dots represent positive contributions, and blue dots
represent negative contributions to the final output.

To gain insights into the relatively poorer performance of the per-atom model com-
pared to the per-residue model, we looked for the entries to which ImaPEp-atom as-
signed incorrect scores and examined their feature maps. As discussed in Supplementary
Section S6 and Figure S1, we found that the per-atom model has an oversensitivity to
the distance feature and that its fine-granularity increases the probability of shape incom-
patibility of the 2D represented interfaces. These behaviors are likely to lead to a loss in
performances compared to the residue-based model, which is fully coarse-grained both at
the level of the residues and interface representations.

2.5. Computational Efficiency

By reducing the 3D Ab-Ag interface to a 2D representation, our model is exempt
from the time-consuming 3D graphical computations and thus is computationally efficient.
Training 10 cross-validated models takes ~55 graphic processing unit (GPU) minutes (with
GPU Tesla P100). The predictions are, moreover, very fast. The scoring of 1 k testing samples
(images) costs ~15 GPU seconds and the rescoring of 2.4 k docking poses (including the
process of image generation) costs ~1 GPU minute.

3. Materials and Methods
3.1. Dataset of Ab-Ag Complexes

The dataset that we used in this study was obtained by downloading structures of
Ab-Ag complexes from the SAbDab structural antibody database [50], in which the Ab
structures deposited in the Protein Data Bank (PDB) [51] have their chains renumbered in a
consistent way. We split the PDB files containing multiple Ab-Ag complexes into smaller
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PDB files, each containing a single Ab-Ag complex. We then filtered this dataset based on
the following principles:

• Only true Ab-Ag complexes were retained; we thus removed complexes where the Ab
bound to proteins serving as crystallization facilitators.

• Only the complexes containing the whole Fab region or their variable Fv part were
kept; Ab derivatives such as single-chain Fvs, nanobodies, etc., were not considered.

• Only complexes in which the Ag was a protein and which contained ≥50 residues
were retained.

• All complexes whose structures were solved by X-ray crystallography or electron
microscopy were retained, without any threshold for their resolution.

• Complexes that have more than 50 residues with missing atomic coordinates were
removed; for the remaining complexes, PDBFixer [52], a Python package for processing
PDB files, was used to add the missing atoms.

• Complexes with unknown residues (with identifier “UNK” in the PDB file) were discarded.
• Only complexes with an Ab-Ag binding region (as defined in the next section) that

contains at least three residues were selected.

We further refined the set of Ab-Ag complexes obtained after applying these filters on
the basis of sequence identity. To this end, we began by identifying the CDRs in the Abs,
based on a structure-based definition [53–55], which includes all Ab residues in the loops
at the Ag interface. This was performed using abnumber, a Python package wrapping
ANARCI, which is a tool for CDR identification [56]. For the sequence identity filter, we
used CD-HIT [57,58], a computational tool for protein sequence clustering. We separately
clustered the sequences of the Ab CDRs and of the Ags. The sequence identity cut-offs
were 0.8 for CDR sequences and 0.9 for antigen sequences, which means that two CDR
sequences with sequence identity over 0.8 or two Ag sequences with sequence identity over
0.9 were clustered together and considered to be similar (see Supplementary Section S1
for details). To identify similar Ab-Ag complexes, we applied the following procedure:
given two Ab-Ag complexes (Ab1, Ag1) and (Ab2, Ag2), if Ab1 is similar to Ab2 and Ag1
is similar to Ag2, the two complexes were considered similar and placed in the same group.
In each group, the complex with the longest Ag sequence was retained and all the others
were discarded.

In this way, we collected a dataset of 1767 complexes, referred to as DAb-Ag. Their
PDB structures are available in our GitHub repository https://github.com/3BioCompBio/
ImaPEp (accessed on 1 April 2024).

3.2. Identification of Paratope and Epitope Residues

We used a distance criterion to identify the Ab-Ag interface. Specifically, a residue
in the Ab (Ag) was regarded as paratope (epitope) if it had a distance of ≤6 Å from any
residue in the Ag (Ab). We defined the distance between two residues as the distance
between their Cµ pseudoatoms, where the coordinates of a residue’s Cµ is the mean of all
its heavy side-chain atoms. For Gly, the Cµ coincides with the Cα.

Some Ags are huge proteins which contact Ab residues not only in the conventional
Ab-Ag binding region around the CDRs, but also in some other surface regions. Residues
in these regions should not be regarded as paratopes or epitopes. To prevent their inclusion,
residues with a distance >40 Å from the geometrical center of the CDRs were removed
from the list of epitope and paratope residues.

3.3. Image Representation of Paratopes and Epitopes

For each Ag-Ab complex, we extracted the 3D coordinates of all the heavy atoms of
the paratope and epitope residues, as well as their Cµ pseudoatom [59], which was defined
as the average geometric center of all their heavy side-chain atoms. We then performed
principal component analysis (PCA) separately on the 3D coordinates of the paratope and
epitope to reduce them to 2D patches. We thus obtained a 2D image of the paratope and

https://github.com/3BioCompBio/ImaPEp
https://github.com/3BioCompBio/ImaPEp
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a 2D image of the epitope of each Ag-Ab complex. This is illustrated in Figure 1a–c. The
details are given in Supplementary Section S2 and Table S1.

We constructed two type of models: the first is coarse-grained with 2D images obtained
considering only the Cµ pseudoatoms of each residue; the radii of the circles centered on
the Cµ pseudoatoms represent the residue sizes [60]. We call this model ImaPEp-resi.
The second model, ImaPEp-atom, is defined at the atomic level and considers all heavy
side-chain atoms, with each atom represented as a circle of 1 Å radius.

In a second step, an RGB-based bitmap image was generated for each of these so-
defined paratope and epitope 2D images. The circles were colored according to the physic-
ochemical properties of the residues; in the atomic model, all atoms of a residue are of
the same color. Inspired by the fact that hydrophobicity is a key biophysical property
for protein stability and binding, and that aromatic and charged interactions are crucial at
Ag-Ab interfaces [25], we chose the following features:

• polarizability (P), as defined in [61].
• isoelectric point (I), as defined in [62];
• hydrophobicity (H), as defined in [63].
• distance (D) to the PCA plane, as defined in Supplementary Section S2.

The first three features correspond to the three channels in the RGB coloring system.
The images were generated using the matplotlib package [64]. The distance feature is
represented by the transparency of the circles in the images. An example of epitope and
paratope images colored according to this scheme is illustrated in Figure 1d. Note that we
tested other types of residue information and different encoding schemes, but the simple
features we selected emerged as the most relevant because they are intrinsically linked to
the biophysics of Ab-Ag binding.

3.4. Construction of the Learning, Validation and Test Sets

All complexes in our DAb-Ag dataset were randomly shuffled and split into a training
set (Dtrain) containing 80% of the complexes and a test set (Dtest) containing the remaining
20% of the complexes. Moreover, the training set Dtrain was randomly split into a sub-
training set (Dsubtrain) containing 90% of the samples and a validation set (Dval) containing
the remaining 10%. The separation was performed in a stratified way to ensure that both
Dsubtrain and Dval contain the same proportion of positive and negative samples. The model
was trained on Dsubtrain and validated on Dval in a 10-fold cross-validation procedure, and
finally tested on Dtest.

In both Dtrain and Dtest, cognate Ab-Ag complexes were regarded as positive samples.
The negative samples were generated by three mechanisms:

• Pairing non-cognate Abs and Ags;
• Rotating the images of cognate Ab-Ag pairs by different relative angles;
• Translating the images of cognate Ab-Ag pairs by different relative displacements.

The negative samples were obtained using Abs and Ags that are in the same set, which
basically guarantees the isolation of the training and test sets. More details are given in
Supplementary Section S3.

Note that the DAb-Ag set is unbalanced, as it contains far more negative samples than
positive ones. However, this imbalance does not have a significant impact on the model’s
performance. Indeed, we trained ImaPEp on various datasets in which the negative entries
were downsampled, and the resulting performances showed no statistically significant
difference compared to those of the model trained on DAb-Ag.

3.5. Model Architecture

We used a convolutional neural network (CNN) as model architecture. Specifically,
we considered residual network (ResNet) blocks [65], which include a skip-connection
mechanism that has proven efficient to stabilize gradient-based model training and resolve
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the problem of model degradation that is frequently encountered in the training of super
deep networks. The precise model structure used for ImaPEp is illustrated in Figure 1e.

The first component of our model is two stacked ResNet blocks [65] connected by a
leaky rectified linear unit (LReLU) activation function [66]:

LReLU(x) =

{
x x > 0
0.1x x ≤ 0

(1)

Each ResNet block contains two convolutional layers connected by LReLU activation. For
each sample, the two images were loaded into 100 × 100 × 6 tensors and concatenated
along the dimension representing the color, resulting in a six-channel “image”, which is
represented as follows:

X =

x1,1 ... x1,n
... ... ...

xn,1 ... xn,n

 (2)

where xi,j represents the “pixel” at the i-th row and the j-th column, which is a six-element
1D vector. The convolutional operation used in our model is formulated as follows:

ci,j =
k

∑
t=−k

k

∑
s=−k

Ft,s · xi+t,j+s (3)

where F is the convolutional kernel with a size of 2k + 1; here, we used k = 1. ci,j is the
result of convolution at position (i, j) of the tensor output by the convolutional layer and is
called the feature map. During each convolutional operation, the input tensor is padded to
make sure the shape is consistent before and after the operation. For each convolutional
layer, we used 32 kernels. Each kernel generates one feature map of the same size as the
others, which is further activated by a LReLU function.

Immediately after each ResNet block, two pooling layers (one max-pooling and one
average-pooling) were introduced to perform the downsampling of the output feature
map, which reduced the amount of the trainable parameters and prevented overfitting.
The max-pooling operation is formulated as follows:

pi,j = max
(
{r(i−1)s+t,(j−1)s+t|t = 1, 2, ..., s}

)
(4)

and the average pooling operation is formulated as follows:

pi,j = avg
(
{r(i−1)s+t,(j−1)s+t|t = 1, 2, ..., s}

)
(5)

where s is the window size of the pooling layer (here, we chose s = 4), r represents the
input to the pooling layer, and pi,j is the pooling result at position (i, j). The result tensors
of the two pooling operations were concatenated by the first dimension, which was then
flattened to a 1D tensor and fed into a fully connected (FC) layer. The output was mapped
by a sigmoid function into scores in the [0,1] range

σ(x) =
1

1 + e−x (6)

ŷ = σ(w · f + b) (7)

where w is the weight matrix of the FC layer, f is the flattened 1D tensor, and b is the
bias term; ŷ is the final output of the network, i.e., the score of the binding of the in-
put paratope–epitope pair. We also added a regularization mechanism to the FC layer,
i.e., Dropout [67], which cancels the contribution of some neurons towards the next layer
in order to adjust the model’s capacity and achieve a balanced point between overtraining
and undertraining.
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To obtain an optimal architecture, we manually pruned hyperparameters on Dtrain. We
varied the number of ResNet blocks, the number of kernels in each convolutional layer, the
position of max-pooling layers, and the dropout rate. Our final model uses two ResNet blocks,
with each convolutional layer containing 32 kernels. The dropout rate was set at 0.75.

3.6. Training

To validate the performance of our model, 10-fold stratified cross-validation was
performed on Dtrain, with Dsubtrain and Dval serving as training and validation sets, re-
spectively, as described in Section 3.4. We introduced an early stopping mechanism to
the training [68], which observes the performance metrics on Dval and terminates the
training if their values plateau or worsen on Dval for a predefined period. We used binary
cross-entropy as the loss function:

J(θ) = − 1
m

m

∑
i=ℓ

[yℓ ln ŷℓ + (1 − yℓ) ln(1 − ŷℓ)] (8)

where ŷℓ is the model’s score of the ℓth sample (with the label yℓ) outputted by the model
with parameters θ; m is the number of samples. Adam [69] was adopted as the optimizer.
A learning rate scheduler was introduced along with Adam. Similar to early stopping, it
also works by observing the performance on Dval, but adjusts the learning rate instead of
terminating training in case the performance does not progress. For the initialization of
the model parameters, we used the Kaiming normal initialization method [65] for all the
convolutional layers, as it is a specific initialization method designed for layers with LReLU
activation. We initialized the weights of the FC layer by Xavier normal initialization [70] as
this method initializes the weights such that the variance of the activations are the same
across every layer, which has proven beneficial for the convergence of the training. During
each training epoch, a mini-batch of samples was sequentially fed to the model.

After the 10 models of the cross-validation procedure were generated, the ultimate
score was calculated as the mean value of the scores outputted by the models. All the
programs in ImaPEp were developed in Python using the PyTorch framework.

4. Conclusions

In this study, we introduced a 2D image-based predictor called ImaPEp, which is
capable of predicting the binding probability of a given paratope and epitope pair with
considerable performance. We analyzed the features contributing to the per-residue repre-
sentation model, which achieved slightly higher accuracy compared to the per-atom model.
Despite their simplicity, the biophysical properties of the interacting residues provide a
physiochemistry-based coloring scheme with good model performance. The distance of
each interface residue to its binding partner also plays an indispensable role in predicting
the Ab-Ag binding, in addition to residue biophysical properties. Finally, we demonstrated
that the prediction of ImaPEp significantly depends on the complementarity between the
shapes of the paratope and epitope.

However, the ImaPEp model also has limitations. From the dataset perspective,
one of the well-known difficulties is the generation of negative learning samples. As no
incorrectly bound Ab-Ag structures can be experimentally determined, we have to rely
on artificial negative samples. The choice of this negative set can restrict the learning of
relevant features from the positive set of Ab-Ag complexes. Moreover, the vast number of
non-cognate epitope–paratope pairs used in our negative sample can render the dataset
extremely unbalanced. Additionally, the low specificity of some Abs, which implies that
some paratopes can bind to more than one epitope, albeit with a different affinity, also
introduces noise into the positive training dataset.

Another limitation of ImaPEp lies in the reduction of the 3D structure of Ab-Ag interfaces
to 2D images. This inevitably leads to some loss of information and inaccuracies in the distance
representation, as shown in Supplementary Section S7, Figure S2 and Table S5.



Int. J. Mol. Sci. 2024, 25, 5434 13 of 16

Despite these limitations, our method achieves very good performance, as demon-
strated in both the binary binding epitope–paratope pair classification and the additional
tests we conducted, such as the rescoring of the docking poses. The loss of information in
our representation has the advantage of allowing our method to be very fast, as demon-
strated in the computational screening of tens of thousands of paratopes to identify the
correct binding partner for the selected epitopes.

Future development will involve creating negative sets of paratope–epitope pairs
which do not bind but are sufficiently challenging to distinguish from positive samples
for ML models. This will certainly lead to an increase in the robustness of the models and
their performance. Moreover, other representations of Ab-Ag interfaces, involving intricate
geometrical features, are also conceivable and are expected to improve the results achieved
with our current model based on a simplified 2D representation. Finally, combining
ImaPEp with slower scoring approaches that use less simplified, atomistic representations
(see, e.g., [71]) could also lead to an improved prediction pipeline for antibody design.

In summary, we are confident that our ImaPEp computational method will be of inter-
est to the entire scientific research community working on optimizing Ab-Ag complexes. It
could accelerate the discovery of new antibody-related drugs, addressing one of the most
intriguing and pressing challenges in the biomedical field today.

Supplementary Materials: The following supporting information can be downloaded at https:
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