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Abstract: Amaranth species are C4 plants that are rich in betalains, and they are tolerant to salinity
stress. A small family of plant-specific TCP transcription factors are involved in the response to
salt stress. However, it has not been investigated whether amaranth TCP1 is involved in salt stress.
We elucidated that the growth and physiology of amaranth were affected by salt concentrations of
50–200 mmol·L−1 NaCl. The data showed that shoot and root growth was inhibited at 200 mmol·L−1,
while it was promoted at 50 mmol·L−1. Meanwhile, the plants also showed physiological responses,
which indicated salt-induced injuries and adaptation to the salt stress. Moreover, AtrTCP1 promoted
Arabidopsis seed germination. The germination rate of wild-type (WT) and 35S::AtrTCP1-GUS
Arabidopsis seeds reached around 92% by the seventh day and 94.5% by the second day under
normal conditions, respectively. With 150 mmol·L−1 NaCl treatment, the germination rate of the
WT and 35S::AtrTCP1-GUS plant seeds was 27.0% by the seventh day and 93.0% by the fourth
day, respectively. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed when they grew
21.8 leaves after 16.2 days of treatment, which was earlier than the WT plants. The transformed
Arabidopsis plants flowered early to resist salt stress. These results reveal amaranth’s growth and
physiological responses to salt stress, and provide valuable information on the AtrTCP1 gene.
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1. Introduction

Salinity is an important environmental stress factor that has adverse effects on plant
growth and yield [1,2]. Under salt stress, plants undergo morphological, physiological,
and metabolic changes [3–8], including stomatal closure, a reduction in photosynthetic rate,
the inhibition of plant growth and development, and a significant loss of yield and quality.
Chlorophyll is the main pigment for photosynthesis in higher plants, and it is directly
related to leaf photosynthesis and plant yield potential. Salt stress reduces the leaf chloro-
phyll content [9]. Chlorophyll fluorescence is closely related to leaf photosynthesis [10],
which reflects the effects of environmental factors on plants [11–14].

The plant root is the main organ for absorbing nutrients and water. Under salt stress,
the roots are directly damaged. Salt stress can inhibit the cell cycle, cell elongation, and
root meristem activity, thereby inhibiting root growth [15,16], including root length, the
number of lateral roots, and root surface area. Furthermore, salt stress affects nutrient and
water uptake by the roots [17,18].

Salt stress can activate reactive oxygen species (ROS) mechanisms in plants [19].
Excessive ROS are produced in plants under (a)biotic stress, which causes oxidative stress
and abnormal growth. To protect them from deleterious oxidative stress, plants have
evolved defense mechanisms to protect themselves against free-radical-induced damage
by using a wide array of non-enzymatic and enzymatic systems [19–23]. Salt stress can
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increase the activity levels of antioxidant enzymes, thereby reducing peroxidation in cells
and improving the salt tolerance of plants [22,24–27]. Additionally, salt stress changes
the content and composition of secondary metabolites in plants, such as betalains [28],
carotenoids [29], and flavonoids [30,31]. These secondary metabolites are involved in
osmotic regulation in plants, thereby enhancing the salt tolerance of plants. Betalains are
important secondary metabolites. They not only play a role in coloration, but also act
as osmoregulatory substances in plants to adapt to salt stress. They directly participate
in osmoregulation to maintain normal cell metabolism under salt-stress conditions [32].
Betalain production in lalshak was increased under saline stress [33].

The small family of plant-specific TCP transcription factors includes TEOSINTE
BRANCHED1 (TB1) in Zea mays, CYCOLOIDEA (CYC) in Antirrhinum majus, and PRO-
LIFERATING CELL FACTORS 1 and 2 (PCF1 and PCF2) in Oryza sativa, which perform
comprehensive functions in plant growth and development, such as branching [34–36], leaf
morphogenesis [37–39], flower development [40,41], and hormone pathway generation [42].
Additionally, TCP genes are also involved in the response to exogenous factors such as
salt stress and other abiotic stresses [43–50]. The PCF gene, which is found in Oryza sativa,
activates the expression of the NHX gene, thereby improving the plants’ salt tolerance [51].

Amaranth species are C4 plants that are rich in betalains, and they are tolerant to
adverse environmental conditions, including droughts, saline soil, and high and low
temperatures [52]. It is particularly important to uncover the key genes of salt tolerance in
amaranth. Our previous study showed that the AtrTCP1 gene is highly expressed under
salt stress using qRT-PCR analysis [53], which implies it responds to salt stress. However,
the function of the AtrTCP1 gene is not clear. We studied the effects of salt stress on the
growth and physiological characteristics of amaranth, analyzed the molecular function of
AtrTCP1, and clarified the effects of salt stress on the growth and nutrients of amaranth
and the role of TCP1 under salt stress. This work would help us to study the profound
functions of the AtrTCPs in the future.

2. Results
2.1. Salt Stress Suppressed Amaranth Growth

We selected amaranth plants at similar growth stages for the salt stress treatment
(Figure 1A). Salt stress had an effect on their height (Figure 1B–D, Table 1). Three days
after the 200 mmol·L−1 NaCl treatment, the amaranth plants were significantly shorter
than those under the other treatments (Figure 1B). At 6 d and 9 d, the amaranth plants
treated with 50 mmol·L−1 or 100 mmol·L−1 NaCl were significantly taller than those given
the other treatments, and they were the shortest under the 200 mmol·L−1 NaCl treatment
(Figure 1C,D). Salt stress reduced the height of the amaranth plants.
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Table 1. Effect of salt stress on the height of amaranth plants.

Days after
Treatment/d

NaCl Concentration

0 mmol·L−1 50 mmol·L−1 100 mmol·L−1 200 mmol·L−1

3 8.39 ± 0.33 b 9.33 ± 0.58 a 8.36 ± 0.42 b 6.10 ± 0.41 c
6 8.52 ± 0.14 b 9.60 ± 0.42 a 9.60 ± 0.42 a 6.27 ± 0.28 c
9 8.88 ± 0.26 b 9.87 ± 0.17 a 9.70 ± 0.45 a 6.71 ± 0.28 c

Note: Data are presented as mean ± standard error. The different lowercase letters represent significant differences
at the 0.05 level.

2.2. Salt Stress Inhibited Amaranth Root Growth

There were significant differences in the roots of the amaranth plants treated with
NaCl solution. The roots after the 50 mmol·L−1 NaCl treatment were significantly longer,
stronger, and more fibrous than those of the other treatments. However, under the treatment
of 200 mmol·L−1 NaCl, the amaranth had the shortest roots and the fewest fibrous roots
(Figure 2A–D). Similar results were obtained for the root volume and activity under salt
stress. The root volume of the amaranth plants with the 50 mmol·L−1 NaCl treatment was
five to six times larger than that of the amaranth plants treated with 200 mmol·L−1 NaCl
(Figure 2E). Root vitality was also significantly increased at 50 mmol·L−1 NaCl (Figure 2F).
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Figure 2. Amaranth roots under salt stress. Note: (A–C) represents roots 3 days, 6 days, and 9 days after
salt stress treatment. The numbers 1, 2, 3, and 4 represent 0 mmol·L−1, 50 mmol·L−1, 100 mmol·L−1, and
200 mmol·L−1 NaCl, respectively. (D) represents root length. (E) represents root volume. (F) represents
root activity. Data are presented as mean ± standard error. Different lowercase letters represent significant
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2.3. Effects of Salt Stress on the Contents of Betacyanin, Betaxanthin, Flavonoid, and Chlorophyll
in Amaranth

Salt stress increased the betacyanin and betaxanthin contents in amaranth. The con-
tents of betacyanin and betaxanthin were significantly higher than those of the control and
other concentrations. Compared to the control plants, the 200 mmol·L−1 NaCl treatment
increased the contents of betacyanin and betaxanthin by about 1.5 times (Figure 3).
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However, the flavonoid content showed a trend of ‘up/down’ with an increase in
the salt solution concentration; it was the highest and lowest under the treatments with
50 mmol·L−1 NaCl and 200 mmol·L−1 NaCl, respectively (Figure 4).
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There was no significant difference in the content of chla in the amaranth leaves under
the different salt stress concentrations. However, the content of chlb in the amaranth leaves
was significantly inhibited after 3 days of the 200 mmol·L−1 NaCl solution treatment, which
resulted in a reduction in the total chlorophyll content (Figure 5).
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2.4. Effect of Salt Stress on the Leaf Antioxidant Enzyme Activity and MDA Content

The antioxidant enzyme activity was influenced by salt stress. In comparison with
that in the control, the antioxidant enzymatic activity of CAT and POD was significantly
increased under salt stress, and it gradually increased over time (Figure 6A,B). The maxi-
mum increase in CAT activity in amaranth was observed for the 100 mmol·L−1 NaCl salt
solution. The maximum increase in POD in amaranth was observed for the 200 mmol·L−1

NaCl salt solution. The MDA content in amaranth continuously increased during the salt
stress test, whereas that of the control did not. The maximum increase in MDA in amaranth
was observed for the 200 mmol·L−1 NaCl salt solution (Figure 6C).
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2.5. Functional Analysis of AtrTCP1 Gene of Amaranth Transformed into Arabidopsis

We obtained the cDNA sequence of AtrTCP1 using RT-PCR; it is 1095 bp long, contain-
ing 364 aa. The sequence was submitted to NCBI (GenBank Number: PP681416). Mean-
while, we constructed an overexpression recombinant plasmid vector and transmitted it
to Agrobacterium tumefaciens. Then, 35S:AtrTCP1-GUS was transformed into Arabidopsis
by using the floral dip method. The positive plants were identified through the resistance
screening (Figure 7A), GUS staining (Figure 7B), and PCR amplification of AtrTCP1, GUS,
and Hyg genes (Figure 7C). The results showed that only transgenic Arabidopsis could root
on the selected medium, and the leaves were stained blue using GUS staining. Furthermore,
the corresponding bands were also determined using PCR amplification.
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Figure 7. Screening of 35S::AtrTCP1 plants. (A) represents the positive plants screened on the selected
medium. (B) represents Gus staining, 1 denotes 35S::AtrTCP1, and 2 indicates the WT seedlings.
(C) represents the dentification of positive Arabidopsis plants using PCR; the number 1 represents
DL2000, 2 denotes the WT seedlings, 3 indicates the AtrTCP1 gene, 4 marks the Hyg gene, and 5
signifies the GUS gene.

To explore the function of AtrTCP1 in response to salt stress, we compared the germina-
tion rates of transgenic AtrTCP1 and wild-type (WT) plant seeds under this condition. The
germination rates and timings of the 35S::AtrTCP1-GUS plants were different from those of
the WT plants. The germination rate of the WT and 35S::AtrTCP1-GUS plant seeds reached
around 92% on the seventh day and 94.5% on the second day under normal conditions,
respectively (Figure 8). Under the treatment of 150 mmol·L−1 NaCl, the germination rate
of the WT and 35S::AtrTCP1-GUS plant seeds was 27.0% on the seventh day and 93.0% on
the fourth day, respectively (Figure 8).
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Subsequently, we compared the plant growth of the transgenic 35S::AtrTCP1 and
wild-type (WT) seeds (shown in Figure 9). The transgenic 35S::AtrTCP1 and WT plants
were shorter in the salt stress test than they were under normal conditions, and they had
fewer leaves (Figure 9A,B). Furthermore, the contents of chlorophyll a, chlorophyll b, and
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total chlorophyll in the salt-stress-induced plants were significantly lower than those in the
non-salt-stress-induced plants. However, the contents of chlorophyll a, chlorophyll b, and
total chlorophyll in the transformed 35S::AtrTCP1 plants were significantly higher than
those not under salt stress. The chlorophyll content of the transformed plants was higher
than that of the wild-type ones under salt stress and not under salt stress (Figure 9C).
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Figure 9. Effects of salt stress on Arabidopsis plants. Note: (A1,A2) represent wild-type Arabidopsis
plants before salt treatment. (A3,A4) represent wild-type Arabidopsis plants after 0 mM and 150 mM
NaCl treatment for 7 days, respectively. (B1,B2) represent 35S::AtrTCP11 Arabidopsis plants before
salt treatment. (B3,B4) represent 35S::AtrTCP1 Arabidopsis after 0 mM and 150 mM NaCl treatment
for 7 days, respectively. (C) represents chlorophyll content. (D) represents flowering time and leaf
number. Data are presented as mean ± standard error. Different lowercase letters represent significant
differences at the 0.05 level.

The AtrTCP1 gene might not influence leaf growth or flowering time when plants
are not under salt stress because the transformed 35S::AtrTCP1 plants bloomed and the
WT ones grew about 16 leaves after 13 days of treatment. Interestingly, under salt stress,
the transformed 35S::AtrTCP1 plants bloomed when they grew 21.8 leaves after 16.2 days
treatment. However, the wild type flowered when they grew 21.6 leaves after 18.4 days
treatment. This implies that salt stress delayed the flowering time in Arabidopsis, but
35S::AtrTCP1 promoted blooming (Figure 9D).

Because the AtrTCP1 gene in amaranth does not exist in Arabidopsis, we designed a
pair of primer for detecting the AtrTCP1 expressional level according to the AtTCP20 and
AtrTCP1 gene sequences, which could detect both the AtrTCP1 and AtTCP20 expressional
level. The expression of the AtrTCP1 genes in the transformed Arabidopsis leaves was
significantly higher than the WT for those not under salt stress. Under salt stress, the
expression of the AtrTCP1 genes in the WT and transformed 35S::AtrTCP1 plants was lower
than that of those not under salt stress (Figure 10). Perhaps under salt stress, AtrTCP1 was
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down-regulated in Arabidopsis, but it promoted blooming earlier to reduce the duration of
salt stress. We speculated that the transformed plants flowered early to resist salt stress.
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3. Discussion

Photosynthesis is involved in energy metabolism during plant growth and develop-
ment. Chlorophyll is the key indicator of a plant’s photosynthetic capacity [54]. Stress
can inhibit chlorophyll biosynthesis and accelerate chlorophyll degradation, thereby af-
fecting the plants’ photosynthesis [55,56]. We found that the increase in chlorophyll con-
tent increased with the 50 mmol·L−1 NaCl treatment, while the chlorophyll content de-
creased under the treatment with 200 mmol·L−1 NaCl. This result was consistent with
Populus talassica × Populus euphratica [57]. Under a high salt concentration, salt interferes
with the photosynthetic process of plants and photosynthetic enzyme activities, resulting
in a reduction in photosynthetic activity and the destruction of the chloroplast structure,
which, in turn, affects the synthesis of chlorophylls [58]. Stress can reduce the chlorophyll
content and promote chlorophyll degradation, which further influences photosynthesis.
However, antioxidant enzymes inhibit chlorophyll degradation under stress [59].

Enzyme activity is an important indicator of the damage of plants under stress,
which directly reflects the physiological and biochemical changes in plants. Toxic ele-
ments (Zn) reduce the contents of chlorophyll and proline and affect the root system in
Cannabis sativa [60]. Under salt stress, ROS accumulate excessively, which could damage the
plants. Antioxidants, such as peroxidase (POD), catalase (CAT), and superoxide dismutase
(SOD), play an important role in eliminating ROS and protecting the plant from oxidative
stress [61–63]. We verified that the POD activity increased with an increase in salt con-
centration, which indicates that salt stress induces oxidative stress in plants. MDA is an
important indicator of oxidative damage in plants caused by stress. The higher the salt
concentration is, the more serious the damage to the membrane is, and the MDA content
increases significantly [64]. We verified that the MDA content increased with an increase in
salt concentration, which perhaps aggravated the oxidative degradation of the membrane.

Salt stress changes the content and composition of secondary metabolites in plants,
such as betalains [28], carotenoids [29], and flavonoids [30,31]. These secondary metabolites
are involved in osmotic regulation in plants, thereby enhancing the salt tolerance of plants.
Betalains are important secondary metabolites. In this paper, our results indicate that
salt stress increased the betalain content in amaranth. The contents of betacyanin and
betaxanthin were significantly higher than those of the control and other concentrations.
They perhaps act as osmoregulatory substances for the plants to help them adapt to salt
stress. Betalain production in the leaves of Portulaca oleracea increased with saline stress [33].

TCP transcription factors perform comprehensive functions in plant growth and
development, such as branching [34–36], leaf morphogenesis [37–39], and flower develop-
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ment [40,41]. Additionally, the TCP genes are also involved in the response to exogenous
factors, such as salt stress and other abiotic stresses [43–50]. The PCF gene, a member of
the TCP gene family in Oryza sativa, activates the expression of the NHX gene, thereby
improving the plant’s salt tolerance [51]. The salt tolerance of the TCP-overexpressing
plants was stronger than that of the wild-type plants under salt stress [65]. NHX genes play
an important role in plants’ response to salt stress [66]. In order to clarify the function of the
AtrTCP1 gene in the response to salt stress, we transferred pCambia1301-35S-AtrTCP1-GUS
into Arabidopsis. We compared the germination rates of the transgenic AtrTCP1 and
wild-type (WT) plant seeds under salt stress. The germination rates and timings of the
35S::AtrTCP1-GUS plants were different from those of the WT plants. The seed germination
rate and germination potential of the transformed 35S::AtrTCP1-GUS plants were higher
than those of the wild-type plants, and the former plants germinated earlier under normal
conditions. Salt stress delayed seed germination and significantly reduced the germination
rate of Eruca sativa [67]. However, the germination rate and potential of the transformed
plants were significantly higher than those of the wild type. In our study, under the treat-
ment of 150 mmol·L−1 NaCl, the germination rate of the WT and 35S::AtrTCP1-GUS plant
seeds was 27.0% on the seventh day and 93.0% on the fourth day, respectively. These results
imply that AtrTCP1 can promote seed germination and enable Arabidopsis thaliana seeds to
adapt to salt stress.

Under salt stress, the plants underwent morphological, physiological, and metabolic
changes [3–8]. We found that the transgenic AtrTCP1 and WT Arabidopsis thaliana plants
were shorter under salt stress than they were under normal conditions, and they had fewer
leaves. Meanwhile, the contents of chlorophyll a, chlorophyll b, and total chlorophyll in
the salt-stress-induced plants were lower than those in the non-salt-stress-induced plants
because it decreased the leaf chlorophyll content [9]. However, the chlorophyll content
of the transformed 35S::AtrTCP1-GUS plants was higher than that of the wild type under
salt stress and not under salt stress. AtrTCP1 perhaps improved the salt tolerance of the
Arabidopsis thaliana plants. TCP family proteins perform multiple functions in the regulation
of flowering. Other studies have shown that that PIP1;1, a member of TCP, can promote
bolting and flowering in Arabidopsis [68,69]. The transformed 35S::AtrTCP1 plants bloomed,
and the WT grew about 16 leaves after 13 days of treatment. The TCP4 transcription
factor plays an important role in plant growth and development, especially in flower
development [70]. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed when
they grew 21.8 leaves after 16.2 days of treatment. In contrast, the wild type flowered
when it grew 21.6 leaves after 18.4 days of treatment. This implies that salt stress delayed
the flowering of Arabidopsis, but AtrTCP1 promoted blooming. We speculated that the
transformed plants flowered early to resist salt stress. The TCP family proteins participate
in the flowering pathways by acting at different levels and by modulating the expression
of both flowering time-related and floral meristem identity genes [71]. The interaction of
AtTCP4 with the flowering activator GIGANTEA (GI) enhances its DNA-binding ability
onto the CO promoter, facilitating CO transcription [72]. Although TCP family proteins
have multiple functions in flowering regulation, the molecular basis of their functional
specificity is virtually unknown and requires further investigation. The regulation of the
expression and activity of TCP by environmental conditions could converge to adjust
flowering time in response to growth conditions, ensuring reproductive success [72]. In
summary, the role of TCP in flowering deserves further investigation.

4. Materials and Methods
4.1. Experimental Design

The seeds of ‘Suxian No. 1’, provided by Suzhou Academy of Agricultural Sciences,
were sowed in plastic pots (10 × 10 cm2) filled with nutrient soil [peat moss: perlite,
2:1 (v/v)] for seed gemination and growth. Four NaCl concentrations, which were 0,
50 mmol·L−1, 100 mmol·L−1, and 200 mmol·L−1, respectively, were added to irrigation
water to treat the 3-4-leaf-stage amaranth seedlings. We applied 100 mL of solution every
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time, with an interval of 3 days between each irrigation, three times in total. The phenotypic
characteristics of amaranth plants were observed 3, 6, and 9 days after the last irrigation.
Meanwhile, samples were taken for the determination of root activity, pigment content, and
antioxidant enzyme activity, and quantitative polymerase chain reaction (qPCR) analysis.
These plant seedlings were placed in an illumination incubator at 25 ◦C, with 60% relative
humidity, a 16 h light/8 h dark photoperiod, and 100 µmol m−2s−1 light intensity.

4.2. Measurements and Calculations
4.2.1. Determination of Plant Phenotypes

The plants’ height was measured with a ruler. The washed roots were visualized
on a scanner Epson Expression 10000X (Epson, Suzhou, China), and then the total root
length (cm) and root volume (the total amount of space occupied by the root, cm3) were
determined with WinRHIZO software (Pro version 2016a; Regent Instrument Inc., Quebec,
QC, Canada).

4.2.2. Root Vitality Determination

The root vitality of the amaranth plants was measured using the triphenyltetrazolium
chloride (TTC) method [73]. We prepared 0, 0.0025%, 0.05%, 0.01%, 0.015%, and 0.02% TTC
solutions and poured 10 mL of each into test tubes, and then added 10 mL of ethyl acetate
and a small amount of Na2S2O4 (approximately 2.0 mg, with the same quantity in each
tube). They were then shaken sufficiently to produce red TTF, with ethyl acetate as the
blank reference, to determine the OD of the solutions with a spectrophotometer (485 nm),
and then a standard curve was drawn. The TTC standard curve was y = 0.8895x − 0.078
(R2 = 0.9943).

A total of 0.2 g amaranth root samples treated with different concentrations of NaCl
were extracted and poured into a 10 mL beaker with 0.4% TTC and 66 mmol/L phosphate-
buffered solution (pH = 7.0), and then kept at 37 ◦C for 2 h in the dark. Then, 2 mL of
1 moL·L−1 sulfuric acid was added to terminate the reaction. The root was removed,
carefully wiped with filter paper, and then ground with 3 mL of ethyl acetate and a small
amount of quartz sand in a mortar to extract TTF. A small amount of ethyl acetate was used
to wash the residue 2~3 times, and then poured into the test tube. Finally, 10 mL of ethyl
acetate was added, and a spectrophotometer was used for colorimetry, taking the blank test
(with sulfuric acid, and then the root samples were added) as the reference; the readout was
485 nm OD. According to the standard curve of y = 0.8895x − 0.078(R2 = 0.9943), the small
amount of TTC can be obtained. Because there is less TTC, it will also become weaker.

Reducing Strength of TTC (mg/g/h) = Reduction Amount of TTC (mg)/Weight of
Root Sample (g)/Time (h)

4.2.3. Determination of Pigment Contents

The betalain, flavonoid, carotenoid, and chlorophyll contents in the amaranth plants
were determined. The betalains in the Amaranthus tricolor leaves were extracted accord-
ing to Liu. The betacyanins and betaxanthins were detected spectrophotometrically at the
538 and 470 nm wavelengths and quantified using the molar extinction coefficients 60,000
and 48,000 M−1cm−1, respectively. The flavonoid content in Amaranthus tricolor was deter-
mined according to a flavonoid extraction and determination protocol (Comin Biotechnology
Co., Ltd., Suzhou, China). The chlorophyll and carotenoid contents were analyzed according
to Liu [74].

4.2.4. Determination of Leaf Antioxidant Enzyme Activity and MDA Content

According to the determination protocol (Comin Biotechnology Co., Ltd., Suzhou, China),
the peroxidase (POD, EC1.11.1.7) and catalase (CAT, EC1.11.1.6) activity levels and MDA
content were determined, respectively. We measured the OD using a spectrophotometer
at the 470 nm wavelength and read the OD value every minute. The OD value changed,
indicating POD enzyme activity, which is represented by (Atest470 − Ablank470)/[min·FW
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(g)]. We measured the OD at the ultraviolet 240 nm wavelength and read the OD value
every minute. The OD value changed, indicating CAT enzyme activity, which is repre-
sented by (Atest240 − Ablank240)/[min·FW (g)]. We measured the OD using a spectropho-
tometer at the 532 nm and 600 nm wavelengths. The MDA content is represented by
53.763 × [(A532test − A532blank) − (A600test − A600blank)]/FW (g). The MDA content is
represented by 53.763 × [(A532test − A532blank) − (A600test − A600blank)]/FW (g).

4.2.5. Transformation in Arabidopsis and Salt Treatment

Our previous study showed that the AtrTCP1 gene is expressed under salt stress using
qRT-PCR analysis [53]. However, its function is still unclear. Thus, the full-length open
reading frame (ORF) of AtrTCP1 was cloned using the amplification system (94 ◦ C for
3 min, followed by 35 cycles of 94 ◦C for 30 s, 55 ◦C for 30 s, 72 ◦C for 45 s, and 72 ◦C for
7 min). Then, PCR was conducted on the plants that overexpressed vector pCambia1301
[carrying a glucuronidase (GUS) tag], and then transformed into the Agrobacterium tumefa-
ciens strain GV3101 (the primers are listed in Supplementary Table S1).

The bacterial cells containing the 35S:AtrTCP1-GUS vector were cultivated in liquid
Luria–Bertani (LB) medium with 50 µg/mL kanamycin (Kan) and 50 µg/mL rifampicin
(Rif) in a constant temperature shaker at 200 rpm at 28 ◦C overnight. Subsequently, the
bacterium cells were collected via centrifugation at 6000 rpm at 28 ◦C for 5 min. The OD600
of GV3101 bacterial liquid was adjusted to 0.9–1.1 with freshly prepared 5% (w/v) sucrose
solution and 0.02% Silwet L-77.

The Arabidopsis seeds were sown on in plastic pots (10 × 10 cm2) filled with nutrient
soil [peat moss: perlite, 2:1 (v/v)] for seed gemination. We grew healthy seedlings until
they developed floral inflorescences. We transformed the empty vector (pCambia1301:
empty) and 35S:AtrTCP1-GUS into Arabidopsis, respectively, by using the floral dip method.
The T0 generation Arabidopsis seeds were planted in the MS medium containing 25 g/mL
hygromycin (Hyg) to screen the positive seedlings. The positive seedlings with 2–4 green
leaves were transplanted to nutrient soil [peat moss: perlite, 2:1 (v/v)]. After about one
month, we strained the leaves of the T1 generation transgenic plants and WT with glu-
curonidase solution. Meanwhile, we extracted RNA to further verify the positive seedlings
with PCR using the AtrTCP1, GUS, and Hyg primer genes (Supplementary Table S1).
The transgenic Arabidopsis plants were bred and screened until T2 generation lines were
obtained. Because the AtrTCP1 gene in amaranth does not exist in Arabidopsis, and the rela-
tionship between AtrTCP1 in amaranth and AtTCP20 in Arabidopsis is relatively close [53],
we designed a pair of primers for simultaneously detecting the AtrTCP1 expressional level
according to the AtTCP20 and AtrTCP1 gene sequences. The transcription of AtTCP20
(AtrTCP1) in the T2 generation transgenic Arabidopsis plants was examined using RT-qPCR
(Supplementary Table S1).

The pure T2 generation lines and wild-type Arabidopsis seeds were sown in Petri dishes
with three layers of filter paper, and then 50 mL of either 150 mmol·L−1NaCl solution or in
distilled water was added for gemination. We determined the seed germination potential
and germination rate on the 3rd and 7th days, respectively. The number of germination
days represents the number of days from sowing to germination.

Meanwhile, we sowed the same seeds in plastic pots (10 × 10 cm2) filled with nutrient
soil [peat moss: perlite, 2:1 (v/v)] for seed gemination and plant growth for 15 days. The
seedlings with more than 6 leaves were treated with 150 mmol·L−1 NaCl solution or
distilled water. After 7 days, we recorded the phenotypes of these plantlets and determined
the chlorophyll contents. Lastly, the transcription of AtrTCP1 and GUS in the plants was
examined using RT-qPCR.

Total RNA was isolated from samples using MolPure Plant Plus RNA Kit (Yeasen,
Beijing, China) according to the manufacturer’s instructions. First-strand cDNA was
synthesized from 1 mg of total RNA using Recombinant M-MLV reverse transcriptase
(TransGen Biotech, Beijing, China). Quantitative real-time PCR (qRT-PCR) was performed
in optical 96-well plates using the Roche Light Cycler 480 instrument (Roche, Sweden).
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The reactions were carried out in a 20 mL volume containing 10 mL of SYBR Premix Ex
Taq (Yeasen, Beijing, China), 0.8 mL of gene specific primers, 2 mL of diluted cDNA, and
6.4 mL of ddH2O. The PCR conditions were as follows: 94 ◦ C for 3 min, followed by
35 cycles of 94 ◦C for 30 s, 58 ◦C for 15 s, 72 ◦C for 15 s, and then 72 ◦C for 7 min), and the
2−∆∆Ct method was used for the quantitative analysis of gene expression [74].

4.3. Statistical Analysis

The data are presented as mean ± standard error and were subjected to analysis of
variance (ANOVA). The means were compared using the ad hoc Tukey test (p < 0.05%).
All the statistical analyses were performed using SPSS 20 (IBM Corp., Armonk, NY, USA).
GraphPad Prism 6.01 (GraphPad Software Inc., La Jolla, CA, USA) was used to draw
bar charts.

5. Conclusions

Amaranth shoot and root growth was inhibited by a 200 mmol·L−1 NaCl solution,
but it was promoted by 50 mmol·L−1. Meanwhile, the plants also showed physiological
responses, which included salt-induced injuries and adaptation to salt stress. Moreover,
the germination day of the 35S::AtrTCP1-GUS Arabidopsis seeds was earlier than that of
the wild type (WT) under normal conditions. Under treatment with 150 mmol·L−1 NaCl,
the germination rate of the 35S::AtrTCP1-GUS plant seeds was higher than that of the WT.
Meanwhile, the germination day of the 35S::AtrTCP1-GUS Arabidopsis seeds was also earlier
than that of the WT. Under salt stress, the transformed 35S::AtrTCP1 plants bloomed earlier
than the WT.

Supplementary Materials: The following supporting information can be downloaded at:
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60. Kalousek, P.; Holátko, J.; Schreiber, P.; Pluháček, T.; Širůčková Lónová, K.; Radziemska, M.; Tarkowski, P.; Vyhnánek, T.;
Hammerschmiedt, T.; Brtnický, M. The effect of chelating agents on the Zn-phytoextraction potential of hemp and soil microbial
activity. Chem. Biol. Technol. Agric. 2024, 11, 23. [CrossRef]

61. Zhang, X.; Zhang, W.; Lang, D.; Cui, J.; Li, Y. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch. by ameliorating osmotic
and oxidative stresses and improving phytohormonal balance. Environ. Sci. Pollut. Res. 2018, 25, 25916–25932. [CrossRef]
[PubMed]

62. Ighodaro, O.; Akinloye, O. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase
(GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018, 54, 287–293. [CrossRef]

63. Kim, B.M.; Lee, H.J.; Song, Y.H.; Kim, H.J. Effect of salt stress on the growth, mineral contents, and metabolite profiles of spinach.
J. Sci. Food Agric. 2021, 101, 3787–3794. [CrossRef] [PubMed]

64. Yildirim, E.; Ekinci, M.; Turan, M.; Dursun, A.; Kul, R.; Parlakova, F. Roles of glycine betaine in mitigating deleterious effect of
salt stress on lettuce (Lactuca sativa L.). Arch. Agron. Soil Sci. 2015, 61, 1673–1689. [CrossRef]

65. Xu, Y.; Wang, L.; Liu, H.; He, W.; Jiang, N.; Wu, M.; Xiang, Y. Identification of TCP family in moso bamboo (Phyllostachys edulis)
and salt tolerance analysis of PheTCP9 in transgenic Arabidopsis. Planta 2022, 256, 5. [CrossRef] [PubMed]

66. Long, L.; Zhao, J.R.; Guo, D.D.; Ma, X.N.; Xu, F.C.; Yang, W.W.; Gao, W. Identification of NHXs in Gossypium species and the
positive role of GhNHX1 in salt tolerance. BMC Plant Biol. 2020, 20, 147. [CrossRef]

67. Corti, E.; Falsini, S.; Schiff, S.; Tani, C.; Gonnelli, C.; Papini, A. Saline stress impairs lipid storage mobilization during germination
in eruca sativa. Plants 2023, 12, 366. [CrossRef] [PubMed]

68. Leng, H.; Jiang, C.; Song, X.; Lu, M.; Wan, X. Poplar aquaporin PIP1; 1 promotes Arabidopsis growth and development. BMC Plant
Biol. 2021, 21, 253. [CrossRef] [PubMed]

69. Chen, J.; Huang, Y.; Li, J.; Li, Y.; Zeng, X.; Zhao, D. Overexpression of the Eucommia ulmoides aquaporin, EuPIP1; 1, promotes leaf
growth, flowering and bolting, and stress tolerance in Arabidopsis. Int. J. Mol. Sci. 2022, 23, 11794. [CrossRef] [PubMed]

70. Iqbal, S.; Pan, Z.; Wu, X.; Shi, T.; Ni, X.; Bai, Y.; Gao, J.; Khalil-ur-Rehman, M.; Gao, Z. Genome-wide analysis of PmTCP4
transcription factor binding sites by ChIP-Seq during pistil abortion in Japanese apricot. Plant Genome 2020, 13, e20052. [CrossRef]

71. Muhammad, T.; Zhang, J.; Ma, Y.; Li, Y.; Zhang, F.; Zhang, Y.; Liang, Y. Overexpression of a mitogen-activated protein kinase
SlMAPK3 positively regulates tomato tolerance to cadmium and drought stress. Molecules 2019, 24, 556. [CrossRef] [PubMed]

72. Viola, I.L.; Gonzalez, D.H. TCP Transcription factors in plant reproductive development: Juggling multiple roles. Biomolecules.
2023, 13, 750. [CrossRef] [PubMed]

73. Kubota, A.; Ito, S.; Shim, J.S.; Johnson, R.S.; Song, Y.H.; Breton, G.; Goralogia, G.S.; Kwon, M.S.; Laboy Cintrón, D.;
Koyama, T.; et al. TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in
Arabidopsis. PLoS Genet. 2017, 13, e1006856. [CrossRef] [PubMed]

74. Liu, S.; Zheng, X.; Pan, J.; Peng, L.; Cheng, C.; Wang, X.; Zhao, C.; Zhang, Z.; Lin, Y.; XuHan, X. RNA-sequencing analysis reveals
betalains metabolism in the leaf of Amaranthus tricolor L. PLoS ONE 2019, 14, e0216001. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/plants11223025
https://www.ncbi.nlm.nih.gov/pubmed/36432761
https://doi.org/10.1016/j.molp.2015.05.005
https://www.ncbi.nlm.nih.gov/pubmed/25997389
https://doi.org/10.1134/S1021443718010144
https://doi.org/10.1186/s40538-024-00544-6
https://doi.org/10.1007/s11356-018-2595-9
https://www.ncbi.nlm.nih.gov/pubmed/29961225
https://doi.org/10.1016/j.ajme.2017.09.001
https://doi.org/10.1002/jsfa.11011
https://www.ncbi.nlm.nih.gov/pubmed/33300600
https://doi.org/10.1080/03650340.2015.1030611
https://doi.org/10.1007/s00425-022-03917-z
https://www.ncbi.nlm.nih.gov/pubmed/35670871
https://doi.org/10.1186/s12870-020-02345-z
https://doi.org/10.3390/plants12020366
https://www.ncbi.nlm.nih.gov/pubmed/36679079
https://doi.org/10.1186/s12870-021-03017-2
https://www.ncbi.nlm.nih.gov/pubmed/34082706
https://doi.org/10.3390/ijms231911794
https://www.ncbi.nlm.nih.gov/pubmed/36233096
https://doi.org/10.1002/tpg2.20052
https://doi.org/10.3390/molecules24030556
https://www.ncbi.nlm.nih.gov/pubmed/30717451
https://doi.org/10.3390/biom13050750
https://www.ncbi.nlm.nih.gov/pubmed/37238620
https://doi.org/10.1371/journal.pgen.1006856
https://www.ncbi.nlm.nih.gov/pubmed/28628608
https://doi.org/10.1371/journal.pone.0216001
https://www.ncbi.nlm.nih.gov/pubmed/31022263

	Introduction 
	Results 
	Salt Stress Suppressed Amaranth Growth 
	Salt Stress Inhibited Amaranth Root Growth 
	Effects of Salt Stress on the Contents of Betacyanin, Betaxanthin, Flavonoid, and Chlorophyll in Amaranth 
	Effect of Salt Stress on the Leaf Antioxidant Enzyme Activity and MDA Content 
	Functional Analysis of AtrTCP1 Gene of Amaranth Transformed into Arabidopsis 

	Discussion 
	Materials and Methods 
	Experimental Design 
	Measurements and Calculations 
	Determination of Plant Phenotypes 
	Root Vitality Determination 
	Determination of Pigment Contents 
	Determination of Leaf Antioxidant Enzyme Activity and MDA Content 
	Transformation in Arabidopsis and Salt Treatment 

	Statistical Analysis 

	Conclusions 
	References

