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Abstract: Grassland birds are globally imperiled. Those of endemic Neotropical savannas may be
particularly threatened as knowledge of the ecology of many species is lacking, restricting our ability
to take decisive conservation action. During the dry (non-breeding) season of 2010, we studied the
population size, distribution, and habitat associations of the Cock-tailed Tyrant (Alectrurus tricolor),
Black-masked Finch (Coryphaspiza melanotis), and Wedge-tailed Grass-finch (Emberiziodes herbicola)
across a disturbance-mediated savanna–grassland gradient in Beni, Bolivia. We used distance
sampling and surveyed structural and resource-specific habitat features at plots where birds were
present versus random locations. Occupancy models identified fine-scale habitat associations. Cock-
tailed Tyrant (7.1 ind./km2) specialized on open habitats in areas expected to be heavily inundated in
the wet season, avoided trees, and selected tall grassy swards. Black-masked Finch (25.1 ind./km2)
occurred across the gradient, associating with tall, forb-rich swards, sparse shrubs, and low levels of
fruiting and seeding vegetation. Wedge-tailed Grass-finch (27.9 ind./km2) also occurred across the
gradient, particularly associated with tall, forb-rich swards, abundant seeding grasses, and sparse
shrubs. Our results offer the first quantitative abundance estimates for these species in Beni, provide
vital baselines for future monitoring, and improve knowledge of the ecology and conservation
management needs of these species. Importantly, our results suggest that populations of these three
grassland birds may be best maintained in heterogenous, mosaic landscapes that can be produced by
carefully managed burning and grazing. Further research in the breeding season would facilitate
making stronger, more specific management recommendations.

Keywords: savanna; Cerrado; grassland; disturbance; ecotones; birds; conservation; grazing;
fire; management

1. Introduction

Grassland birds are one of the most rapidly declining and threatened avian
groups [1–3]. Their plight parallels the global degradation of grassland ecosystems, which
are being rapidly lost and converted for agriculture [4,5]. Neotropical grasslands and
their avifauna are amongst the most imperiled. For example, over 50% of the Brazilian
Cerrado has already been lost or degraded by agriculture through cropping, rangeland
grazing, and afforestation [6]. Concurrently, numbers of IUCN Red List bird species in the
Cerrado surpass those of any other South American biome, with the only exception being
Brazil’s Atlantic Forest [7]. Despite this, agricultural expansion in the Cerrado, and across
Neotropical grassland systems as a whole, is continuing at unprecedented speed [6,8].

Globally, grassland bird conservation is constrained by a critical lack of research on
grassland ecology and insufficient knowledge of the natural history and habitat associ-
ations of many grassland bird species [2,9,10]. This is especially true in the Neotropics,
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and even more so for the remote Amazonian savannas, which are patchily distributed
through Brazil and Northern Bolivia [11]. Despite being functionally distinct from their
better-known African and Australian counterparts [12], the Amazonian savannas repre-
sent some of the most understudied grasslands on earth, with only a handful of papers
exploring their unique ecology and diversity [11]. Research is urgently needed to inform
conservation policy and sustainable land-use strategies to better protect these systems and
their avifauna [11].

Tropical savannas occur as mosaics of woody and grassy habitats [13] that are strongly
regulated by abiotic gradients (e.g., soils, nutrients, climate) and disturbance regimes (e.g.,
fire, flooding and grazing [13,14]). The dependence of tropical savannas on periodic distur-
bance makes them inherently dynamic over a variety of temporal and spatial scales [13].
Savanna birds have coevolved with disturbance and tend to be well adapted to the natu-
ral cycles and fluxes created by these processes [15]. Indeed, many species demonstrate
associations with specific disturbance-mediated habitat formations [16], affiliations with
certain ephemeral habitats or seral stages of succession [17], or dependencies on seasonally
available or disturbance-mediated resources [18,19]. Given these relationships, savanna
bird communities may be expected to be highly sensitive to the human-mediated alter-
ation of disturbance regimes [15] and the potentially homogenizing impacts of large-scale
agricultural management, such as intensive cattle grazing and the overuse and insufficient
control of intentional fire.

Considered the largest of the remote Amazonian savannas, the Beni is a 128 000 km2

ecoregion in Bolivia [11]. It is dominated by expansive open grasslands and savannas
interspersed with palm forest islands, wetlands, and river channels [20–22]. Habitats
here are shaped by a multitude of abiotic conditions and disturbance factors including
wildfires and seasonal flooding [21–23]. The Beni supports a great diversity of bird species,
including many little-known, threatened and declining grassland birds [24], for which
quantitative information required to assess population status and evaluate trends is severely
lacking [11,25,26].

Although indigenous cultures have managed land in Beni for millennia [27,28], ranch-
ing has now replaced traditional agriculture to form the basis of the local economy [29].
Similarly to other Neotropical savannas, cattle grazing and associated land management,
including intentional burning, are thought to be shifting historic disturbance patterns, in-
cluding fire frequency, seasonality, extent, and severity [30,31], and driving habitat change
and wildlife declines [11,30,32–34]. Climate change also threatens habitats and species
in Beni, with shifts in temperature, rainfall, and atmospheric CO2 expected to alter fire
regimes, flooding cycles, and patterns of woody growth [35–38]. Evidence to support
conservation action and policy change for these species in Beni, and more widely, to benefit
grassland birds is therefore urgently required.

Here, we examine the population size, distribution, and habitat preferences of three
little-studied grassland birds across a disturbance-mediated savanna ecotone in Beni. Our
study species have variable ranges across the Amazonian savannas and adjacent Brazilian
Cerrado, and include two declining IUCN Red List grassland specialists classed as vul-
nerable, the Cock-tailed Tyrant (Alectrurus tricolor) and Black-masked Finch (Coryphaspiza
melanotis) [26,39]. Although no published studies track long-term population trends for
these species, declines are presumed sufficiently rapid to warrant their current Red List
classification [26,39]. We also consider the Wedge-tailed Grass-finch (Emberiziodes herbicola),
a grassland indicator that occurs sympatrically but is not experiencing declines of the same
magnitude as the other species [40,41]. Written accounts from experts have anecdotally
associated declines of these species with habitat loss and agricultural intensification across
their range [26,39,40]. More specifically, within Beni, and in other areas where ranching
is the dominant land use, declines have been attributed to cattle grazing/trampling and
annual fires set by ranchers [26,39]. However, to our knowledge, there is little published
evidence that directly investigates the impacts of these processes on bird populations, with
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the exception of one study that showed that the Cock-tailed Tyrant and Black-masked Finch
may be intolerant to grazing [42].

The broad aim of our study was to provide indirect evidence of the potential effects
of fire and grazing on our study species by assessing their relationships with disturbance-
mediated resources and habitat structures. This will provide important initial evidence
on how disturbance regimes may influence these species in order to guide future research
and management. Our specific objectives were to (1) provide the first baseline estimates of
density and abundance for these species across three grassland physiognomies; (2) estab-
lish broad-scale associations with ecological and disturbance-mediated habitat gradients;
(3) evaluate if finer-scale structural or resource-specific microhabitat requirements shape
species distributions; and (4) consider the conservation management implications of simi-
larities and differences in the ecological requirements of these grassland specialists.

2. Materials and Methods
2.1. Study Site

Our study was carried out at Barba Azul Nature Reserve (hereafter: BANR), in
Bolivia’s Beni Savanna Ecoregion (13.750 ◦S, 66.117 ◦W) between July and September 2010.
The mean annual temperature in Beni ranges from 26 to 27 ◦C and mean precipitation from
1300 to 2000 mm, with most rain falling in a distinct wet season running from September
to May [23,43]. In the wet season, drainage from high Andes watersheds combines with
local rainfall to cause dramatic inundation of Beni’s plains [44]. Although topography
rarely varies >1 m [23], the landscape can be delineated into broad, but distinct, micro-
topographical units, within which vegetation is strongly influenced by flooding gradients
and other disturbances like fire and grazing [20,21,45,46]. Alturas (high areas) sit a small
height above the annual flood line, supporting gallery and deciduous forests. Bajios (low-
laying areas) become heavily inundated in the wet season and support open grassland.
On semi-alturas (intermediate elevations), wooded savanna occurs along a continuum,
from densely wooded savanna to open grassland with scattered trees and shrubs. BANR
is an 11,000 ha protected area dominated by hyper-seasonal savanna–grasslands [21]. At
the time of study, cattle and agricultural fire had been largely excluded from BANR for
one year.

2.2. Data Collection
2.2.1. Habitat Mapping

We mapped three savanna–grassland physiognomies (hereafter: habitats) across the
semi-alturas and bajios of BANR using a Garmin eTrex H GPS receiver. Habitats were
delineated visually according to homogeneity of structure, based on the cover and height
of woody vegetation and shrubs (Table 1). We used a classification system associated
with the structural division of the Brazilian Cerrado that is based on explicit vegetation
measures [46–48]. Equivalent terms are not yet well defined for Beni [43], but the application
of Cerrado nomenclature has been proposed to standardize the variable terminology
applied to vegetation in this region [49].

Table 1. Physiognomic divisions (habitats) mapped across the semi-alturas and bajios of Barba Azul
Nature Reserve (BANR). The estimated area of each habitat is shown alongside the total length of
transects walked in each habitat type. The final effort is double the length since all transects were
walked twice.

Habitat Area (km2) Length (km) Effort (km) Description †

campo cerrado 0.76 2.34 4.68

Lightly wooded grassland
with shrubs and trees,
ranging 2–5 m in height and
not exceeding 15% cover
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Table 1. Cont.

Habitat Area (km2) Length (km) Effort (km) Description †

campo sujo 3.26 13.66 27.32
Grassland, with scattered
shrubs and occasional small
trees not exceeding 2% cover

campo limpo 23.7 12.6 25.2

Grassland with occasional
shrubs that do not grow taller
that the surrounding
vegetation and in which tall
woody plants are
completely absent

† Derived from [46–48].

2.2.2. Bird Surveys

We used distance sampling along line transects to estimate species density. Surveys
were completed by a team of seven trained observers using 8 × 40 Bushnell binoculars.
Our study design met key distance sampling assumptions [50]: (1) transects were placed
randomly relative to bird distribution; (2) distances were measured accurately; (3) birds
were recorded at their original location, prior to movement; and (4) birds on the transect
line were always detected. We used a systematic approach [51], laying out parallel 1.3 km
transects (n= 22) spaced 200 m apart. Transects were later stratified by habitat. To maintain
independence, birds detected > 100 m from the transect line were not recorded. For pairs
and flocks, the location was taken as the central point between individuals. Bird locations
were recorded and flagged for later habitat assessment. All transects were sampled twice
between sunrise (~06:30 h) and ~09.30 h when activity noticeably declined. Walking speed
was slow (~0.5 km/h−1). The final sampling effort was 57.2 km (28.6 km of transects
sampled twice).

2.2.3. Habitat Assessments

Habitat assessments were carried out at flagged locations where birds were observed
during the survey (hereafter, bird plots) and at ten equidistant, prespecified distances along
each transect (n = 220; hereafter, a random plot). At each plot, we recorded microhabitat at-
tributes in three replicate 1 m2 quadrats. These included (1) three components of vegetation
structure, a) grass height (cm), b) distance to the nearest tree (m), and c) frequency of three
plant functional groups (forbs, woody shrubs, and trees); (2) occurrence of two plant-based
food resources, a) seeding grasses, and b) seeding/fruiting forbs or shrubs; and finally 3)
two flooding indices, a) surales (worm mound) height (cm), and b) the frequency of large (>
30 cm), small (< 30 cm), conical, and rounded termite mounds. The selected variables were
hypothesized to influence habitat selection in the study species and/or relate to local dis-
turbance dynamics. For example, vegetation structure and food availability can influence
habitat selection in grassland birds, but these features can also shift significantly over short
timescales in grasslands as a function of disturbance [15,52,53]. Other variables were linked
to flooding dynamics. Specifically, surales are natural mounds created by earthworms
and bunchgrass growth in flooded grasslands [45,54]. Taller mounds correspond with
increasing flooding depth and duration [55]. The size and shape of termite mounds is also
indicative of hydrology. Large, round mounds tend to occur in dry, infrequently inundated
areas; small, conical mounds occur in regularly inundated locations [56,57].

Grass and surales heights were measured using a 2 m stick inserted vertically into the
grass. Five measurements were taken in each quadrat, one at the center and one at each
of the four mid-points between the center and each corner. Grass height was recorded as
the tallest point where grass touched the stick. The height of the nearest surales mound
was recorded within a 15 cm radius of the stick. Measurements were averaged for each
quadrat and the average of the three quadrats was taken as the plot average. Distance to the
nearest tree was estimated visually from the first sampled quadrat at each plot. As termite
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mounds and non-grassy plants had very low cover, these features, along with resource
abundances, were recorded as ordinal variables representing the number of quadrats in
which they occurred.

2.3. Statistical Analysis
2.3.1. Species Density, Abundance, and Distribution

We used Distance 7.0 [58] to assess the density and abundance of target species [50].
A separate analysis was completed for each species using the following protocol. Data
from the two transect visits were pooled and treated as replicates with detections coded
as clusters. We examined frequency histograms of detection data to determine truncation
distances and look for “invasive movement”, “heaping”, or “rounding” [50]. Data were
right-truncated where observation frequency dropped to ~5, adding 2.5 m to avoid round-
ing distances [50]. To avoid upward bias, we avoided the flexible hazard rate model if
evidence of heaping was apparent [50]. Otherwise, models were parameterized with three
key functions and appropriate adjustment terms: (i) a half-normal key with cosine/hermite
polynomial adjustments; (ii) a uniform key with cosine/simple polynomial adjustments;
and (iii) a hazard rate key with cosine/simple polynomial adjustments [50]. Final detection
functions (Supplementary Materials Figure S1) were selected based on four factors, AIC val-
ues, visual inspection of QQ plots, goodness-of-fit (GOF) tests, and the shape criterion [50].
We used Kolmogorov–Smirnov (KS) and Cramer–von Mises (CVM) family test statistics
for GOF, as data were analyzed as exact. We note here that, since the few existing studies
assessing Cock-tailed Tyrant populations elsewhere in South America have not subdivided
effort in campo sujo and campo limpo [59,60], we provide additional density estimates,
combining efforts in these two habitats to make the results more comparable.

2.3.2. Associations with Ecological and Disturbance-Mediated Habitat Gradients

We used R (version 4.0.3, [61] for all further statistical analyses. Principal Component
Analysis (PCA; prcomp function, base R) was used to reduce data dimensionality and allow
graphical exploration of relationships between ecological gradients and species distribu-
tions. We standardized independent variables to a mean zero and unit variance to equalize
weights in analyses and used the latent root criterion (eigenvalues > 1) to determine the
number of interpretable axes [62]. We interpreted ecological and environmental gradients
by examining the factor loadings of variables on each axis. Only variables with factor
loadings >0.5 or <−0.5 were deemed to have a meaningful effect.

Species relationships with axes (and hence derived ecological gradients) were tested
by extracting PCA axis scores and using these to run an additive multinomial logistic
regression with a logit link function (mlogit function, mlogit package; [63]). Multinomial
logistic regression compares parameter estimates to a baseline response category. We used
“species identity” as the dependent response variable and PCA axes scores as independent
predictors. Random plots were coded as pseudo-species and set as the reference level
for the response; thus, species distributions were compared to the random category. The
model was assessed for goodness of fit using the χ2 statistic. Alpha values of p ≤ 0.05
determined significance.

2.3.3. Microhabitat Associations

PCA results informed the parameterization of a global occupancy model to determine
finer-scale microhabitat associations. We selected a subset of habitat variables from the PCA.
All uncorrelated covariates with high factor loadings (> 0.5 or < −0.5) on at least one axis
were included in a global species model to help tease apart finer-scale habitat associations
confounded in the PCA. Where there was high correlation (> 50%) between variables
with acceptable factor loadings, we selected the variable with the highest factor loading
from the correlated group. For the Cock-tailed Tyrant, the limited number of observations
constrained the number of parameters that could be fitted in the model. Based on the
results of the multinomial regression, we did not include variables associated with seeding
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or fruiting resources as these were not expected to influence habitat selection significantly.
For occupancy modeling, generalized linear models (GLMs) were used, with a binomial
error distribution and logit link function (glm function, base-R; [61]). Separate analyses
were completed for each species, comparing bird plots where the species was detected with
random plots. We performed backward stepwise selection to reduce the full model and
selected the top model based on Akaike’s Information Criterion (AIC; [64]). Where one or
more competing models (∆ AIC < 2) existed, conditional model averaging was performed
(model.avg function; MuMIn package; [65]). Top models were assessed for goodness of
fit using McFadden’s pseudo-R2 (PseudoR2 function, DescTools package; [66]) and the
Hosmer–Lemeshow test (Hoslem.test function, base R, [61]). Respectively, values of 0.2–0.4
and p > 0.05 were judged as representing an excellent fit for these tests [64]. Models were
also checked for overdispersion with dispersion values close to 1 regarded as adequate [64].

For interpretation, parameter estimates from the conditional average were converted
to odds ratios [67]. We generated effects plots to allow visual exploration of relationships
between significant model variables and occupancy [64]. To compose these, we predicted
occupancy (predict function, base R; [61]), keeping non-significant continuous variables
at their mean and non-significant categorical variables at “medium” frequency. Where
two continuous variables were compared, we set three levels for the second variable,
the mean and the mean plus/minus one standard deviation. This allowed us to create
pseudo-categories, for example, representing short, mean, and tall grass height.

3. Results

A total of 191 target species observations were made over this study, including 23 Cock-
tailed Tyrant (31 individuals); 79 Black-masked Finch (113 individuals); and 89 Wedge-tailed
Grass-finch (142 individuals).

3.1. Species Density, Abundance, and Distribution across Grassland Physiognomies

Cock-tailed Tyrant (7.1 ind. per km2; 95% CI 3–16.9) were only observed in campo
limpo (Table 2). In contrast, Black-masked Finch (25.1 ind. per km2; 95% CI 14.4–43.7) and
Wedge-tailed Grass-finch (27.9 ind. per km2; 95% CI 20.2–38.8) were observed in all sampled
habitats. Black-masked Finch were found at relatively similar densities across the Cerrado–
grassland gradient, although they appeared slightly less abundant in campo Cerrado
(Table 2). Wedge-tailed Grass-finch appeared to be more abundant in campo Cerrado
compared to other habitats (Table 2). Cock-tailed Tyrant occurred at lower densities and
had the smallest estimated population size of our sampled species. Wedge-tailed Grass-
finch had the highest densities overall and the largest estimated population size.

Table 2. Estimated density (D) as individuals per km2 and population size (N) of study species within
the grasslands of BANR stratified by habitat type. Sample size (n) as clusters is shown, in addition to
standard error (SE), 95% lower and upper confidence intervals (LCLs and UCLs, respectively), the
coefficient of variation (CV) for density and abundance estimates, and species encounter rates (ERs)
per km2. Totals represent global density and abundance estimates for the site. The latter are based on
the estimated area of available habitat on site.

Density Population Size

Habitat n D SE LCL UCL N SE LCL UCL CV ER

Cock-tailed Tyrant

campo limpo 23 14.9 5.9 6.9 32.0 353 139 164 758 0.39 0.9
limpo + sujo 23 7.1 3.2 3 16.9 193 88 81 458 0.45 0.4
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Table 2. Cont.

Density Population Size

Habitat n D SE LCL UCL N SE LCL UCL CV ER

Black-masked Finch

campo cerrado 6 21.0 9.4 5.4 81.0 16 7 4 62 0.45 1.1
campo sujo 40 25.3 4 17.8 35.8 82 14 58 117 0.17 1.5

campo limpo 28 25.2 8 13.4 47.5 598 190 317 1127 0.32 1.1
Total 74 25.1 - 14.4 43.7 696 - 400 1212 0.33 1.3

Wedge-tailed Grass-finch

campo cerrado 10 34.6 14.5 11 111 26 11 8 84 0.42 2.1
campo sujo 36 27.0 6.4 16.8 43.3 88 21 55 141 0.27 1.3

campo cimpo 37 27.9 5.1 19.5 39.9 661 120 462 946 0.18 1.5
Total 83 27.9 - 20.2 38.8 776 - 559 1076 0.17 1.5

3.2. Broad-Scale Associations with Ecological and Disturbance-Mediated Habitat Gradients

The first five PCA axes (eigenvalues > 1) collectively explained 67% of the variance in
the habitat data (Figure 1 and Table 3), suggesting that these PCA gradients can provide
useful characterization of the habitat characteristics individual bird species associate with.
Based on factor loadings for indicator variables (Table 3), PC1 related to a floodplain
gradient, separating drier areas (lower PC1 score) from seasonally wet grassland (high
PC1 score). PC2 represented a seeding forb-rich gradient. It separated grassland with high
levels of forbs, and more seeding/fruiting forbs and shrubs (low PC2 score), from forb-poor
grassland with fewer seeding/fruiting forbs and shrubs (high PC2 score). PC3 described a
tall, seeding grassland gradient, separating shorter (lower PC3 score) and taller grassland
with correspondingly more seeding grasses (higher PC3 score). PC4 represented a gradient
of openness, separating open (low PC4 score) from more wooded grassland (high PC4
score). Finally, PC5 showed a shrub abundance gradient, separating shrub-less (low PC5
score) and shrub-rich grassland (high PC5 score).

Table 3. Results of the Principal Components Analysis (PCA), showing key variables identified as
indicators for the interpretation of axes, alongside the direction of their relationship (Sign) and factor
loading (FL) scores. For each individual axis, the correlation (Cor) between variables and the percent
variance (% Var) explained are indicated. A shared letter indicates a correlation > 0.5. Independent
variables selected to parameterize species occupancy models are indicated with an asterisk (*).

PCA Axis Ecological Description Indicator Variables Sign FL Cor % Var

PC1 Flooding gradient

Freq. of large termite mounds * − 0.66 a

19.5%
Freq. of small termite mounds + 0.62 a
Freq. conical termite mounds * + 0.59 b
Freq. of round termite mounds − 0.53 b
Surales height * + 0.51 c

PC2 Forb-rich seedy gradient Freq. of seeding/fruiting forbs/shrubs * − 0.80 d
14.2%Freq. of forbs − 0.78 d

PC3
Tall seedy grassland
gradient

Mean grass height * + 0.75 e
12.4%Freq. of seeding grasses * + 0.64 f

PC4 Openness gradient Distance to nearest tree * − 0.79 g
11.4%Freq. of small termite mounds + 0.56 a

PC5 Shrubby gradient Freq. of woody shrubs * + 0.52 h 9.7%
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a preference for forb-rich grassland with abundant seeding/fruiting forbs and shrubs); (B) PC3:
Tall seeding grassland gradient (a +ve score on this axis indicates a preference for tall grassland or
grassland with abundant seeding grasses); (C) PC4: Openness gradient (a +ve score on this axis
indicates a preference for more densely wooded grassland); (D) PC5: Woody shrub gradient (a +ve
score on this axis indicates a preference for grassland with abundant woody shrubs). See Results for
detailed descriptions of each PC axis. Ellipses represent centroid values for each species and their
standard deviation from the mean.

Multinomial logistic regression revealed significant relationships between PCA gra-
dients and species occurrence (χ2

df = 3 = 106.91 at p < 0.001). Cock-tailed Tyrant were
positively associated with heavily inundated areas (high PC1 scores; p < 0.05), tall, seeding
grassland (high PC3 scores; p < 0.001), and tree-less grassland (high PC4 scores; p < 0.01)
and trended to have negative associations with shrub cover (low PC5 scores; p = 0.11). Both
finch species were positively associated with forb-rich seeding grassland (low PC2 scores;
p < 0.001) and tall seeding grassland (high PC3 scores; p < 0.001).

3.3. Finer-Scale Microhabitat Selection

For all species, conditional model averaging of top occupancy models was performed,
and none of the averaged models showed evidence of poor fit or overdispersion (Ta-
ble 4). For Cock-tailed Tyrant, probability of occupancy increased with mean grass height
(p < 0.001) and increasing distance to trees (p < 0.01; Table 5, Figures 2 and 3). For any
given grass height, the chance of occupancy was reduced closer to trees, but even when
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trees were distant, the chance of occupancy only exceeded 50% when grass height was
above ~100 cm (Figure 3). For Black-masked Finch, probability of occupancy increased
with mean grass height (p < 0.001), in areas with low levels of woody shrubs (p < 0.05),
and in areas with a low (p < 0.05) and moderate (p < 0.05) abundance of seeding/fruiting
forbs and shrubs (Table 5, Figures 2 and 3). For Wedge-tailed Grass-finch, the probability
of occupancy increased with mean grass height (p < 0.001), in areas with low levels of
woody shrubs (p < 0.05), and in areas with moderate (p <0.05) and high (p<0.05) levels of
seeding grasses (Table 5, Figures 2 and 3). For both Black-masked Finch and Wedge-tailed
Grass-finch, the occurrence of low levels of woody shrubs had the effect of increasing the
chance of occupancy at shorter grass heights (Figure 3).

Table 4. Results of model selection for binomial occupancy models. Model averaging was used
to derive parameter estimates and confidence intervals from all models with a ∆AIC < 2. Relative
model weights (AIC and ∆AIC) and model likelihood (MLik) are reported alongside pseudo-R2 (PR2),
dispersion parameters (DPs), and results of the Hosmer–Lemeshow goodness-of-fit tests. The latter
include the chi2 statistic (χ2) degrees of freedom (df) and p-value (p) for the test.

Hos–Lem

Model AIC ∆AIC MLik PR2 DP χ2 df p

Cock-tailed Tyrant
Occupancy ~ mean grass height + distance to nearest tree 120.2 0.0 1.00 0.25 0.86 6.6 8 0.58
Occupancy ~ surales height + mean grass height +
distance to nearest tree 121.4 1.3 0.53 0.26 0.81 3.8 8 0.91

Occupancy ~ surales height + conical termites + mean
grass height + distance to nearest tree 124.3 5.1 0.08 - - - - -

Occupancy ~ 1 154.2 34.1 4.4e−8 - - - - -

Black-masked Finch
Occupancy ~ surales height + seeding forbs or shrubs +
mean grass height + woody shrubs 291.4 0.0 1.00 0.20 0.95 4.5 8 0.81

Occupancy ~ surales height + seeding forbs or shrubs +
mean grass height+ distance to nearest tree + woody
shrubs

293.1 1.7 0.43 0.21 0.95 7.9 8 0.45

Occupancy ~ surales height + large termites + seeding
forbs or shrubs + mean grass height+ distance to nearest
tree + woody shrubs

297.6 6.2 0.04 - - - - -

Occupancy ~ 1 347.3 55.9 7.1e−13 - - - - -

Wedge-tailed Grass-finch
Occupancy ~ large termites + mean grass height +
seeding grass + woody shrubs 311.3 0.0 1.00 0.22 0.98 1.4 8 0.99

Occupancy ~ surales height + large termites + mean grass
height + seeding grass + woody shrubs 312.4 1.1 0.59 0.22 0.97 2.7 8 0.95

Occupancy ~ surales height + large termites + mean grass
height + seeding grass + distance to nearest tree +
woody shrubs

314.2 2.9 0.24 - - - - -

Occupancy ~ 1 373.0 61.7 3.9e−14 - - - - -

Table 5. Parameter beta (β) estimates, standard errors (SEs), lower and upper confidence limits (LCLs
and UCLs, respectively), z-scores (z), and p-values (p) for binomial occupancy models. Significance
codes: ‘***’ p < 0.001, ‘**’ p < 0.01, ‘*’ p < 0.05, ‘.’ p < 0.1, ‘ ’ p > 0.1.

Variable β SE LCL UCL z p

cock-tailed tyrant
Intercept −8.3 1.5 −11.2 −5.4 5.6 ***
Mean Grass Height 5.3e−03 1.5e−03 2.2e−03 8.3e−03 3.4 ***
Distance to Nearest Tree 3.9 e−02 1.3e−02 1.4e−02 6.5e−02 3.0 **
Surales Height 9.7e−04 2.3e−03 −3.5e−03 9.1e−03 0.4
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Table 5. Cont.

Variable β SE LCL UCL z p

black-masked finch
Intercept −5.0 0.7 −6.4 −3.6 6.9 ***
Surales Height −3.4e−03 2.0e−03 −7.3e−03 5.1e−04 1.7 .
Seeding/Fruiting Forbs/Shrubs (Low) 0.8 3.6e−01 4.9e−02 1.5 2.1 *
Seeding/Fruiting Forbs/Shrubs (Med) 1.1 0.4 0.2 2.0 2.4 *
Seeding/Fruiting Forbs/Shrubs (High) 0.5 0.7 −0.8 2.0 0.8
Mean Grass Height 5.6e−03 9.5e−04 3.7e−3 7.4e−03 5.8 ***
Woody Shrubs (Low) 3.0 1.2 0.6 5.3 2.5 *
Woody Shrubs (High) −1.3e 1.2 −3.8 1.1 1.1
Distance to Tree 3.6e−03 5.5e−03 −7.3e−03 1.4e−02 0.6

wedge-tailed grass finch
Intercept −4.8 0.8 −6.4 −3.2 5.9 ***
Large Termites (Low) −1.0 0.8 −2.6 0.6 1.2
Large Termites (Med) 1.2 0.6 −0.1 2.4 1.8 .
Large Termites (High) 0.3 0.4 −0.4 1.1 0.9
Mean Grass Height 4.4e−03 9.6e−03 2.5e−03 6.3e−03 4.6 ***
Seeding Grass (Low) −0.7 0.7 −2.1 0.7 1.0
Seeding Grass (Med) 1.2 0.6 0.1 2.3 2.1 *
Seeding Grass (High) 1.2 0.5 0.1 2.3 2.2 *
Woody Shrubs (Low) 3.1 1.2 0.7 5.5 2.5 *
Woody Shrubs (High) −0.7 1.2 −3.1 1.7 0.6
Surales Height −2.1e−03 1.9e−03 −6.0e−03 1.8e−03 1.0
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Figure 2. Forest plots showing results from occupancy modeling for (A) Cock-tailed Tyrant; (B)
Black-masked Finch; and (C) Wedge-tailed Grass-finch. For (B,C), (i) shows the continuous variables
from the model and (ii) shows the categorical variables. Note differences in scale for odds ratios used
in (i) versus (ii). Dots show point estimates for each variable. Lines are 95% confidence intervals
(95% CI). Variables with 95% CIs overlapping 1 are non-significant; variables with 95% CIs that do
overlap 0 are significant. Estimates > 1 represent a positive effect of the variable, and estimates < 1 a
negative effect. The abundance of categorical variables is shown as low, medium, and high as data
were ordinal (see Methods for details).
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Figure 3. Effects plots from occupancy modeling for Cock-tailed Tyrants (A,B), Black-masked Finch
(C,D), and Wedge-tailed Grass-finch (E,F). Plots visualize the predicted probability of occupancy as a
function of significant model variables. For Black-masked Finch and Wedge-tailed Grass-finch plots
D and F are distinguished from C and E by the presence of low levels of woody shrubs.

4. Discussion

This study improves the knowledge of the status and ecology of three little-known,
declining grassland birds, the Cock-tailed Tyrant, Black-masked Finch, and Wedge-tailed
Grass-finch, by providing baseline estimates of their density and abundance, and a greater
understanding of their habitat associations, within the endemic Beni savannas of Bolivia.
Cock-tailed Tyrant were the least abundant study species. They specialized on open habitats
(campo limpo) in areas expected to be heavily inundated in the wet season, avoided trees,
and selected tall grassy swards. Black-masked Finch were found in all sampled Cerrado–
grassland habitats. They occurred at higher densities compared to Cock-tailed Tyrant and
were associated with tall, forb-rich swards, sparse woody shrubs, and grassland with low
levels of fruiting or seeding forbs and shrubs. Wedge-tailed Grass-finch were marginally
more abundant than Black-Masked Finch. Like the Black-masked Finch, they were also
found across all sampled Cerrado–grassland habitats associated with tall, forb-rich swards
and sparsely distributed woody shrubs, but their distribution was related to the occurrence
of seeding grasses. The at times contrasting needs of study species, within and between
adjacent habitat types, suggest that complex land management approaches will be needed
to conserve communities of multiple grassland specialists such as these.

Cock-tailed Tyrant were absent in both shrubby (campo sujo) and woody (campo
Cerrado) grassland. This species has also been noted to be absent from wooded grasslands
in the Brazilian Cerrado [16,59], but it has been recorded at similar relative abundances
in campo limpo and campo sujo habitats there [16]. Campo limpo and campo sujo are
not distinguished in other studies of its distribution [59,60], but the Cock-tailed Tyrant
reportedly uses campo sujo [16,42,68–70]. Compared to existing studies quantifying the
abundance of this species, our density estimates are high compared to [59] (4.5 individuals
per km2), but similar to [70] (6.9 individuals per km2).

As Cock-tailed Tyrant may be niche switchers, exhibit nomadism, and/or display
variance in social behavior across the annual cycle [71], detectability and habitat use could
vary seasonally. This could explain the avoidance of campo sujo habitats seen in our
surveys which were constrained to the dry season. Since the timing of breeding in Beni
is still ambiguous [71], it is worth highlighting that male displays were observed during
our study in August. Breeding activity and juveniles have been noted elsewhere in Beni in
the wet season [72]. Thus, if breeding occurs in the region, its timing likely aligns with the
onset of seasonal rains, as in other parts of this species’ range [39].

Known aspects of the ecology of the Cock-tailed Tyrant could help to explain finer-scale
patterns of habitat selection. Cock-tailed Tyrant are aerial insectivores that primarily hawk
or sally for arthropods from the herbaceous stratum [73]. During breeding, males gather
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to demonstrate elaborate aerial displays to groups of females, with cup nests built on the
ground to accommodate offspring [59,74]. Since trees in open areas can harbor avian and
terrestrial woodland predators [75], their avoidance may be particularly critical for Cock-
tailed Tyrant given the conspicuous nature of their foraging and breeding activities. Within
open areas, tall grassy stands may provide additional benefits such as elevated areas to scan
for prey/predators or prime arenas for breeding displays. Taller grasses may also provide
greater cover than shorter swards, enhancing escape when under attack or protection from
extreme weather. Although our surveys were restricted to the dry (non-breeding) season,
maintaining territories in seasonally inundated areas could provide benefits during the
breeding phase. Insect abundance is widely related to moisture availability in seasonally
dry tropical ecosystems including the Neotropical savannas [76–78]. Hence, areas that flood
first and hold water longer could provide enhanced foraging to support nestlings. Future
research should seek to understand the relationship between invertebrate abundance and
the distribution of insectivorous species such as Cock-tailed Tyrants. Raised surales (worm
mounds) commonly found in these areas could also function to support nesting above the
annual flood line during that time.

In contrast to Cock-tailed Tyrant, Black-masked Finch and Wedge-tailed Grass-finch
were found in all sampled habitats. For Wedge-tailed Grass-finch, this is consistent with
studies in Brazil (e.g., [16]). However, Black-masked Finch tend to be associated more with
campo limpo and campo sujo formations and have been listed as absent from wooded
grassland in multi-species studies in Brazil [16,42,59]. Our global density estimates for
Black-masked Finch are comparable to those of [59] (23.2 ind. per km2). These high figures
might be counterintuitive considering the species’ threatened status. However, its range
is extremely restricted and its distribution tends to be very local at sites where it does
occur [26]. Home range studies have also shown that it can occur at very high densities
with significant territory overlap in both the winter and breeding seasons [79].

Tall grasses may provide similar benefits for Black-masked Finch and Wedge-tailed
Grass-finch as those discussed for Cock-tailed Tyrant (e.g., cover from predation and
extreme weather). Tall grasses and scattered shrubs may also be preferred perches; both
species were frequently observed vocalizing from elevated locations in the herbaceous
stratum during data collection. Black-masked Finch have been noted to disappear from
grassland where the shrub component is very high [80]. This aligns with our results,
which show a positive association with shrubs only when they are infrequent. High shrub
cover can influence predator numbers and affect grassland bird productivity and breeding
success [75,81]. As such, dense shrubby areas may be less attractive to grassland birds.

Associations of Black-masked Finch and Wedge-tailed Grass finch with forb-rich grass-
land are consistent with other studies relating to the ecology of these
species [26,31,40–42,69,70]. Forb-rich areas may provide a greater diversity and abun-
dance of foods, including a variety of insects, seeds, and small fruits [82]. It is notable that
both finch species were associated with resource abundance. Although the diets of these
two species are not well described, it is feasible that grass seeds and the seeds and fruits
of non-grassy vegetation form an important component of the diet of the Wedge-tailed
Grass-finch and Black-masked Finch, respectively. Resource tracking has been noted in
grassland birds within savanna systems and may be an adaptive response to the inherent
patchiness of resources [17,83–85].

5. Conclusions

Our results suggest that maintaining the co-occurrence of our study species within a
landscape will require the maintenance of a mosaic of habitat structures and resources. It is
likely that these can be promoted through land management approaches that encourage
spatial heterogeneity. While the spatially extensive burning and largely uncontrolled
cattle grazing that are currently widespread in Beni are likely incompatible with the
conservation needs of these species, broad suppression of such disturbances may also
be counterproductive. Patch burning and controlled grazing can help maintain habitat
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heterogeneity and resource availability within grassland systems [86–88]. For example,
mosaic burning can simultaneously secure the persistence of open areas in combination with
tall, mature tussocky perennial grasses [45,89], patches of low-density woody scrub [14,90],
and rich herbaceous vegetation [42], a mix of features identified here as important in
the habitat selection of our study species. Informed fire management and conservation
grazing may thus represent key land management tools that could help to secure the varied
requirements of grassland bird communities such as those within Neotropical savanna
ecosystems. Given that our study was focused on the dry, non-breeding season, the next
key research challenge for conservation management in the endemic Beni savannas will
be to understand species distributions throughout the full annual cycle. Furthermore, we
must identify the managed burning and grazing regimes and patterns that can best support
the integration of conservation and agricultural production. This information will assist
in the development of more wildlife-friendly land-use recommendations to guide both
conservation and private land managers.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/d16040229/s1, Figure S1: Detection functions for (A) Cock-tailed
Tyrant, (B) Black-masked Finch and (C) Wedge-tailed Grass-finch.
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