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Abstract: The miniaturization and low power consumption characteristics of RF MEMS (Radio
Frequency Microelectromechanical System) switches provide new possibilities for the development
of microsatellites and nanosatellites, which will play an increasingly important role in future space
missions. This paper provides a comprehensive review of RF MEMS switches in satellite communica-
tion, detailing their working mechanisms, performance optimization strategies, and applications in
reconfigurable antennas. It explores various driving mechanisms (electrostatic, piezoelectric, electro-
magnetic, thermoelectric) and contact mechanisms (capacitive, ohmic), highlighting their advantages,
challenges, and advancements. The paper emphasizes strategies to enhance switch reliability and
RF performance, including minimizing the impact of shocks, reducing driving voltage, improving
contacts, and appropriate packaging. Finally, it discusses the enormous potential of RF MEMS
switches in future satellite communications, addressing their technical advantages, challenges, and
the necessity for further research to optimize design and manufacturing for broader applications and
increased efficiency in space missions. The research findings of this review can serve as a reference for
further design and improvement of RF MEMS switches, which are expected to play a more important
role in future aerospace communication systems.
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1. Introduction

The increasing demand for advanced reconfigurable communication technologies and
their products [1] has been accentuated by significant advancements in modern satellite
and radar communication fields [2,3]. There is an urgent need for integrated RF commu-
nication systems that are low-cost, low-power, reconfigurable in frequency, and capable
of multi-band operation [4,5]. MEMS (Microelectromechanical Systems) technology has
made revolutionary strides in various fields such as photonics [6], sensors [7], and commu-
nications [8], fundamentally altering electronic technology. Particularly in RF applications,
the advent of MEMS technology has sparked widespread interest in developing RF de-
vices such as switches [9], phase shifters [10], antennas [11], and filters [12]. Among these,
RF MEMS switches, with their miniaturization, low cost, low power consumption, excel-
lent RF performance, and reliability, have found widespread use in radar and satellite
communications.

Recent advances in aerospace technology have focused on launching micro- and
nanosatellites, each weighing only a few tens of kilograms, into space. In satellite systems,
where the launch cost of each kilogram of payload can be hundreds of thousands of dol-
lars, the communications subsystem accounts for over 15% of the satellite’s load. Satellite
payloads typically feature hundreds of switches integrated in a matrix form to provide
system redundancy. Low-power redundancy switch matrices are usually implemented
using coaxial switches [13], which are bulky and undesirable for burgeoning micro- and
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nanosatellites, necessitating new alternatives to reduce size and weight. RF MEMS technol-
ogy can be used to construct miniaturized redundancy switch matrices, replacing these
bulky coaxial switches.

Semiconductor devices and components, such as PIN diodes and FETs suffer losses
at high frequencies despite their numerous advantages [14]. In recent years, atomic-level
memristive switches have shown great potential in RF applications due to their high
bandwidth and rapid response [15]. However, the development of memristive switches
is still in its infancy, and wafer-scale production faces many bottlenecks [16]. Therefore,
designing high-linearity, high-efficiency, and miniaturized devices and components has
become one of the most challenging tasks in the field of wireless communication systems.

RF MEMS switches offer superior performance over traditional RF switches in mi-
crowave applications [17], making them effective for deployment in wireless antenna
systems. In satellite communication systems with multiple antennas, RF MEMS switches
can be used to select specific antennas for communication, adapting to different transmis-
sion requirements and environmental conditions. Their low driving voltage and low power
consumption significantly improve the battery life of communication devices, which is
crucial for long-term space missions and helps extend the lifespan of satellites. Additionally,
the application of RF MEMS switches in satellite uplink and downlink networks, especially
in the switching process between frequency allocators and transceivers/receivers [18],
demonstrates their broad applicability.

In this review, we investigate the operating mechanisms of RF MEMS switches in the
second section, including driving mechanisms (electrostatic, piezoelectric, electromagnetic,
and electrothermal) and contact mechanisms (capacitive and ohmic). The advantages and
challenges associated with each type are also discussed. The third section focuses on strate-
gies to enhance the reliability and RF performance of RF MEMS switches, exploring various
optimization strategies such as reducing stiction effects, lowering driving voltage, improv-
ing contact materials and structures, and appropriate packaging. Moreover, the importance
of enhancing the equivalent inductance, capacitance ratio, and optimizing serial-parallel
configurations for better RF performance is emphasized. In the fourth section, the article
explores the application of RF MEMS switches in reconfigurable antennas, highlighting
their enormous potential in future satellite communication systems. The existing reviews
of RF MEMS switches tend to concentrate on general aspects such as reliability [19], driving
voltage [20], and performance parameters [21]. Through a comprehensive analysis of
existing research, this paper highlights the significance of RF MEMS switches in enhancing
the performance and reliability of satellite communication systems, reducing costs and
power consumption, and discusses their potential and challenges in practical applications.
Overall, this paper aims to provide an in-depth analysis of the application of RF MEMS
switches in the field of satellite communications, revealing their technological advantages
and challenges, as well as their key role in future satellite communication systems. To our
knowledge, this is the first comprehensive review to holistically examine the improvement
of RF MEMS switches through various strategies for better suitability in space applications,
offering a reference for the development or improvement of the next generation of RF
MEMS switches, particularly in the field of satellite communications.

2. Advanced Technologies and Mechanisms in RF MEMS Switches

RF MEMS switches are devices that operate in the RF to the millimeter-wave frequency
range, consisting of two distinct parts: the mechanical and the electrical. The mechanical
part is driven by one of four actuation mechanisms: electrostatic, piezoelectric, electromag-
netic, or electrothermal, facilitating the lateral or vertical movement of the switch. The
electrical part is categorized by the contact type, as either capacitive (metal-insulator-metal
contact) or ohmic (metal-to-metal contact), and by the circuit configuration, as either series
or parallel. The following sections further elaborate on these types of switches and their
respective research.
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2.1. Actuation Mechanism

RF MEMS switches can be divided into electrostatic, piezoelectric, electromagnetic,
and electrothermal based on traditional actuation methods. Figure 1 illustrates the typical
structures of these four types of switches.

In space applications, RF MEMS switches or structures, compared to PIN and optical
switches, may demonstrate more ideal performance due to their non-involvement with
radiation-sensitive electronic components [22]. In terrestrial wireless communication sys-
tems, the choice and number of switches depend on the required operational speed and
specific requirements of the entire system. Silicon, a common substrate material, shows
no significant degradation in mechanical properties even under radiation doses exceeding
100 Mrad. The radiation sensitivity of devices is largely influenced by their actuation
mechanism, structural design, and material choice [23,24], primarily related to the distur-
bance caused by charge trapping in dielectrics under radiation. Notably, electrostatically
driven MEMS devices are extremely sensitive to charge accumulation in the dielectric
layer. In contrast, MEMS devices using other actuation mechanisms, such as thermal and
electromagnetic, exhibit higher radiation resistance.
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Figure 1. Structures of four conventional RF MEMS switches: (a) Electrostatically actuated RF MEMS
switch [25]. Reprinted/adapted with permission from [25]. Copyright 2011, with permission from
Elsevier. (b) Piezoelectrically actuated RF MEMS switch [26]. Reprinted/adapted with permission
from [26], 2012, IEEE. (c) Electromagnetically actuated RF MEMS switch [27]. Reprinted/adapted
with permission from [27]. (d) Electrothermally actuated RF MEMS switch [28]. Reprinted/adapted
with permission from [28], 2020, IEEE.

2.1.1. Electrostatically Actuated RF MEMS Switches

Figure 1a shows the structure of a typical electrostatically driven RF MEMS switch.
Among various actuation principles, electrostatic actuation is the most common in RF
MEMS switches due to its simplicity, low power consumption, high-frequency circuit com-
patibility, and good compatibility with CMOS (Complementary Metal–Oxide–Semiconductor)
fabrication processes. These switches play a key role in constructing SPDT (Single-Pole
Double-Throw) and more complex SPMT (Single-Pole Multiple-Throw) networks. Core
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performance parameters include the actuation voltage, switch capacitance ratio, on-state in-
sertion loss, and off-state isolation, which are critical metrics for assessing the performance
of electrostatic RF MEMS switches.

Despite many advantages, electrostatically driven RF MEMS switches face two main
challenges: reducing the actuation voltage and improving mechanical structure stability.
High actuation voltages shorten the lifespan of switches and cause failure due to charge
trapping in the dielectric layer. A high actuation voltage is impractical for satellite commu-
nication applications, as it necessitates the addition of bulky step-up converter circuits. To
achieve efficient voltage conversion, step-up converters need to have sufficient inductors
and capacitors to store and release energy [29], which necessitates a certain volume for
the converter. Smith et al. [30] confirmed through research that, for capacitive RF MEM
switches, a reduction of 5–7 V in actuation voltage can extend the switch’s lifespan by
10 years. Shekhar et al. [31] reported a low actuation voltage RF MEMS switch, requiring
a very low actuation voltage (4.8 V). After undergoing 10 million switching cycles, its
RF performance showed little change, with no failures, proving that a low voltage can
effectively prolong the switch’s lifespan.

2.1.2. Piezoelectrically Actuated RF MEMS Switches

Figure 1b shows the structure of a typical piezoelectrically driven RF MEMS switch.
In these switches, piezoelectric materials are applied to the top of the beam. Under voltage,
these materials produce elongation and strain along the entire piezoelectric layer, thereby
driving the beam membrane. The magnitude of the actuating force depends on the piezo-
electric coefficient, and low actuation voltages can be achieved by choosing materials with
high piezoelectric coefficients [26].

Common piezoelectric materials in MEMS devices are AlN [32] and PZT [33,34]. PZT,
a ferroelectric material, has a spontaneous polarization that can be permanently altered by
an electric field, i.e., by changing the orientation of dipoles to produce a hysteresis loop to
the electric field (or voltage) [35]. Compared to PZT, AlN has the advantage of compatibility
with current CMOS processes and lower leakage current at the same film thickness [32].
Additionally, AlN has a lower dielectric constant, meaning lower energy consumption for
a given actuator size [26]. Although PZT has a higher piezoelectric coefficient, high-quality,
reproducible thin films have always been a technical challenge. Guerre et al. [33] designed
and integrated a PZT-based RF MEMS switch into CMOS technology, demonstrating the
BEOL (Back End of Line) CMOS compatibility of this integration technique. The switch’s
actuation voltage is 15 V, with an insertion loss of less than 0.5 dB and isolation better than
30 dB in the frequency range of 0.4 to 6 GHz.

2.1.3. Electromagnetically Actuated RF MEMS Switches

Figure 1c shows the structure of a typical electromagnetically driven RF MEMS switch.
Electromagnetic RF MEMS switches, as a special type of latching switch, are characterized
by a low loss, high linearity, and wide bandwidth [36,37]. Niarchos [38] demonstrated that
on the microscale, electromagnetic forces dominate over electrostatic forces. The working
principle of electromagnetic MEMS switches is based on the electromagnetic interaction
between magnetic materials and active (coil) or passive magnetic field sources (permanent
magnets). The electromagnetic force drives the movement of the beam membrane when
direct current is applied to the coil.

Using permanent magnets or ferromagnetic materials, electromagnetic MEMS switches
can achieve a stable latched state without the need for external energy input; i.e., the beam
membrane can maintain a fixed position, either up or down. In this case, the magnetomo-
tive force generated by the permanent magnet forms the core part of the magnetic circuit.
The magnetic field produced by the coil is opposite to the magnetization direction of the
cantilever beam, achieving ON/OFF switching [39]. With the miniaturization of MEMS
devices, the required magnetic force decreases. For instance, Glickman et al. [40] designed
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and fabricated a laterally driven magnetic MEMS switch, which can generate about 200 µN
of magnetic closure force under less than 0.7 V driving voltage and 13 mW power.

Although electromagnetic MEMS have clear advantages over electrostatic and piezo-
electric actuators in terms of force, polarity, and driving distance on the microscale, they are
relatively slower, larger in size, and typically do not use CMOS-compatible manufacturing
processes [40]. The compatibility of MEMS technology with magnetic materials is a key area
of current research, with many research institutions around the world actively exploring
this issue.

2.1.4. Electrothermally Actuated RF MEMS Switches

Figure 1d shows the structure of a typical electrothermally driven RF MEMS switch.
Compared to other actuation methods, the primary advantage of electrothermal actuation
lies in its lower actuation voltage threshold to initiate switch operations [28].

The operation of electrothermal RF MEMS switches is based on the thermal expansion
coefficient of materials. The heat generated by the current flowing through the resistor
on top of the beam causes the beam to deflect. This electrothermal actuation method not
only produces a stronger force than electrostatic actuation but also achieves high isolation,
requiring only a lower actuation voltage (typically a few volts) [41,42]. Additionally,
Shojaei-Asanjan et al. [43] conducted a multiphysics analysis of electrothermally driven
RF MEMS switches in power limiter applications. The results indicated that compared
to their electrostatic counterparts, electrothermal RF MEMS switches offer higher device
sensitivity in such applications. However, a major drawback of electrothermal actuation
is the relatively larger device structure, leading to increased power consumption during
operation. Since electrothermal RF MEMS switches require the application of an actuation
current both during the switching and holding phases, they typically consume more
electrical energy.

2.2. Contact Mechanisms

RF MEMS switches typically rely on two main contact mechanisms: capacitive (i.e.,
metal-insulator-metal contact) and ohmic (i.e., metal-to-metal contact). Capacitive switches
utilize changes in capacitance between metals and insulators to control signals, making
them ideal for high-performance signal processing applications such as precision filtering
and frequency selection [44]. Ohmic switches, on the other hand, which operate through
direct contact between metals, are particularly suitable for handling high-power and fast-
switching applications [45]. When selecting RF MEMS switch types, decisions should be
based on the specific requirements of the application, considering factors like frequency
range, power handling capability, switching speed, isolation, and insertion loss, among
other key parameters. Scattering parameters of RF MEMS switches are typically used to
assess their RF performance, and they can be theoretically calculated using Equation (1) [46].
When an RF MEMS switch is on, RF signals are attenuated due to factors like series
resistance and impedance mismatch, and S21 represents the insertion loss, which measures
signal transmission efficiency. When the switch is off, RF signals are grounded through the
off-state capacitance, and S21 indicates isolation, which is the ability to block signals.

S21 =
2

2 + ωCZ0
(1)

where ω = 2π f0 = (k/m)1/2, and the resonance frequency f0 = 1/2π
√

LC. Here, k, m,
and L represent the spring constant, effective mass [47], and equivalent inductance of the
beam membrane, respectively; C equals Cu or Cd, representing the up-state or down-state
capacitance, respectively; and Z0 is the switch’s characteristic impedance.

2.2.1. Capacitive RF MEMS Switches

Capacitive RF MEMS switches operate based on capacitive coupling, where the switch-
ing of states is achieved by moving the electrical part into or out of contact with the trans-
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mission line. Compared to ohmic switches, they are typically used in higher frequency
scenarios [48,49] because they have better isolation and lower insertion loss at higher
frequencies [50], such as the millimeter wave band (30–300 GHz). In high-frequency appli-
cations, the capacitive coupling characteristics of these switches enable them to effectively
transmit high-frequency signals while maintaining high isolation and low insertion loss.
Additionally, these switches are easier to miniaturize and lightweight, meeting the strict
space and weight requirements of high-frequency circuits.

Challenges commonly faced by capacitive MEMS switches include dielectric stic-
tion/breakdown and mechanical impact caused by high actuation voltages, hindering
their commercialization. The actuation and capacitive areas of RF MEMS switches can be
designed separately [51], as shown in Figure 2a. Such switches can be integrated into RF
systems without additional circuits to isolate the DC voltage, cleverly avoiding damage to
the system from high actuation voltages.
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Figure 2. Structures of capacitive RF MEMS switches: (a) Li et al. [51]. Reprinted/adapted with
permission from [51]. Copyright 2016, with permission from Elsevier. (b) Shi et al. [8]. Configuration
diagram of flexible RF MEMS switch in different modes: (i) On state and (ii) Off state of MEMS
switch with flat substrate; (iii) On state and (iv) Off state of MEMS switch with curved substrate.
Reprinted/adapted with permission from [8].

Flexible RF MEMS switches, with advantages such as conformability, low cost, and im-
pact resistance [52–55], ensure high-performance, high-integration, and lightweight devices.
They are suitable for satellite/aerial radar or IoT communication systems, especially in
satellite communication applications where large curvature bending or scalable conformal
integration is required. Flexible RF MEMS switches are basic structural units in flexible
RF MEMS switch matrices [13,56] and reconfigurable MEMS antennas [57], such as island
bridges connecting MEMS units. In the system, each individual switch acts as a node
within the island bridge structure [58] and needs to adapt to a certain degree of curvature.
Shi et al. [8] designed a flexible RF MEMS switch, as shown in Figure 2b, achieving a
certain degree of bending radius through miniaturized electronic components. When the
curvature varied from 0 mm−1 to 0.10 mm−1, the RF characteristics of this switch were
insensitive to bending deformation. However, when the switch is in the On state and
the curvature exceeds 0.10 mm−1, its performance rapidly deteriorates. Currently, it has
not been confirmed that flexible RF MEMS can maintain stable RF performance under
conditions of significant bending [59,60]. This is mainly due to the difficulty in reconciling
the manufacturing processes of MEMS with high performance [61–63].

2.2.2. Ohmic RF MEMS Switches

Ohmic RF MEMS switches operate based on resistive tuning, achieving signal path
disconnection by physically separating the input and output. Ohmic switches are typically
used in low-frequency circuits, as they form an actual electrical connection through metal
contact points in the closed state, providing a low-resistance path to ensure signal integrity
and minimize loss in low-frequency signals. Since a physical connection is formed in the
closed state, ohmic switches maintain good signal integrity, which is crucial for analog
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signals in low-frequency applications. With special design, series MEMS switches can also
achieve good RF performance at frequencies up to 110 GHz [64].

Manufacturing MEMS with superconducting materials, though still in development,
has the potential to greatly reduce circuit losses. Attar et al. [65] designed a niobium-
based superconducting DC contact RF MEMS switch, using standard superconducting
microelectronics (SME) technology and multi-step post-processing. This study validated
the feasibility of operating MEMS switches at extremely low temperatures, such as 4K.
However, at superconducting temperatures, the increased rigidity of the beam membrane
required higher actuation voltages. They then proposed an innovative eight-mask fabri-
cation process, integrating low-temperature superconducting niobium RF circuits with
gold-based RF MEMS switches [66]. The research demonstrated significant effects of the
adopted gold-based MEMS process on the superconducting properties of niobium by
comparing RF performance at room temperature and low temperatures.

Ohmic RF MEMS switches are susceptible to stiction and contact degradation. Min-
imizing static friction can be achieved by modifying the cantilever [67], but altering the
structure requires additional steps, thereby increasing the complexity and cost of the pro-
cess. Instead of modifying the cantilever beam [68], bumps are introduced in the pull-in
electrode manufacturing process. These bumps reduce the contact area by 84%, thus mini-
mizing adhesion significantly. The manufactured switch achieves lower driving voltage
with fewer manufacturing steps, as shown in Figure 3a. Traditional MEMS switches require
a trade-off between RF performance and driving voltage [20]. Enhancing RF performance,
such as by increasing the air gap to reduce insertion loss [69], typically results in an increase
in driving voltage. Conversely, lowering the driving voltage may compromise RF perfor-
mance. Utilizing residual stress in thin films, Bajwa et al. [9] reported an innovative switch
design with three-dimensional (3D) wavy microstructures. Figure 3b shows the three states
of the switch. This design breaks the limitations of traditional planar cantilever beams,
providing additional degrees of design freedom, which can further optimize the switch
networks currently used in satellite communications. It utilizes a geometric shape that can
be adjusted in three-dimensional space, achieving a lower driving voltage and enhanced
RF performance, surpassing conventional flat cantilever switches. However, compared to
existing designs [20,70], the downside of this topology is the longer switching time, likely
due to its relatively greater length.
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3. Strategies for Optimizing RF MEMS Switch Performance

A key challenge in the design of space systems is achieving subsystem redundancy to
manage component failures. One of the core components of such redundancy architectures
is the redundant switch [71], used for routing and switching RF signals between two
redundant systems. In the event of a component’s failure, the switch can quickly switch
to a backup path or system, ensuring the continuity of communication. Traditionally,
these switches have been implemented with bulky and heavy coaxial relays. However,
RF MEMS switches, as a promising alternative technology, not only have excellent RF
performance but also a smaller size and lighter weight. For space applications, reliability
is a crucial consideration. Modern satellites typically require mission lifetimes of several
decades [72], thus devices within satellites must maintain long-term stable operation. This
is why redundancy designs are often used to reduce the overall system’s failure risk. In
aviation, equipment may face temperature ranges from −50 ◦C to 125 ◦C, and if installed
outside a spacecraft, environmental conditions can be even more extreme.

In satellite communications, RF MEMS switches and devices with excellent RF per-
formance can provide wider bandwidth and higher data transfer rates. This means that
enhancing the RF performance of RF MEMS switches can transmit more data, includ-
ing high-resolution images and videos, significantly improving communication efficiency
and quality.

3.1. High Reliability

With the continuous increase in performance and reliability requirements of RF sys-
tems, developing high-performance switches that can meet complex communication de-
mands has become particularly important. However, the structural characteristics of RF
MEMS switches make them prone to failure [73]. In commercial applications, lifespan
and long-term reliability have become major limiting factors [74]. Especially in satellite
applications, where devices need to maintain stability over many years, the failure time
prediction of RF MEMS switches under long-term excitation is critical [75].

Over the past few decades, extensive research has been conducted to address these
reliability issues, covering aspects like dielectric charging, mechanical creep, and contact
degradation. Different failure mechanisms can affect the performance of switches, which
can be categorized into three main types: (1) electrical [76–78], including charge trapping
and electrostatic discharge; (2) mechanical [79–81], mainly involving degradation and
creep of contact surfaces; (3) environmental mechanisms [76,82], mainly involving the
effects of humidity, environmental particles, and contaminants. Measures such as reduc-
ing the impact of shocks, lowering actuation voltages, and improving the materials and
structure of contacts can significantly minimize mechanical and electrical degradation.
Meanwhile, employing good packaging techniques can effectively control problems related
to the environment.

3.1.1. Reducing the Impact of Shocks

In RF MEMS switch applications, significant impacts can accelerate the degradation of
contact surfaces and creep, reducing the performance of the dielectric layer [83,84]. This
amplifies the likelihood of failure due to adhesion. Increased impact velocity can strengthen
contact bouncing and residual vibrations [67,85,86], mainly due to the inertial momentum
of the movable electrode and the elastic energy stored in its structure [85,87]. This bounc-
ing can last for an extended period and does not stop until a stable contact is achieved.
High-intensity contact impacts can cause electrical discontinuities, material damage, and
dielectric charging [86], detrimental to lifespan and reliability. Therefore, taking measures
to eliminate or reduce the speed of an electrode bounce to enhance the reliability of these
switches is necessary. Various corrective strategies have been developed to mitigate the
effects of contact, including open-loop [88] and closed-loop [89] control schemes.

The overall dynamic characteristics of the switch can be improved by modifying the
electromechanical and electromagnetic modeling of the switch’s geometry, as well as the
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number and size of its holes. The switches shown in Figure 4a [90] are manufactured on
a Pyrex glass substrate using a four-layer mask surface micromachining process. These
MEMS switch designs require only a low actuation voltage of 4.8–6.2 V. They achieve
bounce-free switching during contact and quickly stabilize after release. Customized pulse
drive waveform schemes, widely applied to minimize velocity issues related to contact
impact, are used [91,92]. A solution based on command shaping [93], developed through
the application of energy conservation, force balance, and elliptical integrals, is shown in
Figure 4b. Experimental validation indicates that this approach achieves rapid positioning
by suppressing motion-induced vibrations, thus reducing the contact effects on MEMS
devices.
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Figure 4. (a) Schematics of three designs of capacitive RF MEMS switches. (i) Design 1: T-support,
(ii) Design 2: parallel-support, and (iii) Design 3: L-support beams [90]. Reprinted/adapted with per-
mission from [90], 2017, IEEE. (b) Illustration of the nonlinear command shapers for electrostatically
actuated MEMS systems. (i) Two-step nonlinear shaping method for positioning and (ii) shaper for
contact force minimization [93]. Reprinted/adapted with permission from [93], 2011, IEEE. (c) Soft-
landing by patterning the electrode upper/lower or dielectric. Electrode upper/lower can be a
(p1) rectangular plate, (p2) array of cylinders, or (p3) array of spheres, and dielectric can be (p4) an
array of linear slots or (p5) a fractal of linear slots [88]. Reprinted from [88], with the permission of
AIP Publishing.

However, even minor deviations in parameters may result in significant changes
in the force, due to the highly nonlinear characteristics of electrostatic forces, thereby
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potentially leading to serious collisions. Therefore, the design of excitation pulse waveforms
is particularly sensitive to parameter deviations, which might not be the best choice for
mass-produced devices. To address this issue, Xiang et al. [89] proposed a novel method of
adaptive stiffness. This approach enhances inherent stiffness adaptively in the area near the
closed position, improving the robustness of mass-produced switches against parameter
deviations. When the actuation voltage is slightly increased, constant stiffness switches
convert more electrostatic energy into collision energy for the movable plate compared to
adaptive stiffness switches. This new method effectively offsets the significant changes in
electrostatic force caused by parameter deviations.

Jain et al. [88] proposed a dynamic soft landing scheme that effectively reduces impact
velocity without affecting other performance characteristics such as actuation voltage and
actuation time. Figure 4c illustrates the electrode or dielectric patterning design, where
the field lines associated with the patterned array begin to rapidly separate as the upper
electrode approaches the dielectric during the actuation process. This separation causes
the array elements to act as isolated capacitors, rapidly reducing the effective area. Such
a decrease in capacitance leads to a reduction in electrostatic potential energy, thereby
lowering impact velocity. This technique also helps in reducing dielectric charging, as the
contact area decreases, thereby extending the switch’s lifespan.

3.1.2. Reducing Actuation Voltage

Currently, many RF MEMS switches require high actuation voltages, often reaching
several tens of volts. This high voltage requirement makes them less practical for applica-
tions like mobile wireless communication and reconfigurable circuits. Furthermore, high
actuation voltages can lead to unstable dielectric behavior, limiting the switch’s lifespan
and reliability [90]. High actuation voltages also cause significant impact forces on the
moving beams during contact, increasing the risk of mechanical failure. Additionally,
high-impact forces can lead to bouncing and residual vibrations [94,95].

Many researchers are working to reduce the actuation voltage of RF MEMS switches.
Studies show that choosing optimal material properties and optimizing switch structural
parameters are key to achieving low actuation voltage. The dynamic behavior of MEMS
switches is largely influenced by squeeze-film damping, and introducing holes in the
structural layer can mitigate squeeze-film effects [96]. Modifying and optimizing beam
membrane structure to achieve a low spring constant can significantly reduce actuation
voltage but may also reduce beam strength and affect reliability. There is also a trade-off
between low spring constant and switch time. For example, reducing air gaps or increasing
the area of the electrostatic field drive [97] increases the upstate capacitance, leading to RF
signal loss.

Electromagnetic, piezoelectric, and thermally driven MEMS switches have shown
potential for low actuation voltages [27,98–100]. Although these switches have successfully
achieved low actuation voltage, they have disadvantages compared to electrostatically
driven switches in terms of higher switch-driving power requirements and structural com-
plexity. To address these issues, researchers have introduced hybrid actuation mechanisms,
such as thermal/electrostatic, piezoelectric/electrostatic, and electromagnetic/electrostatic
actuation. Table 1 shows some of the performances achieved by switches using these hybrid
actuation mechanisms. In these schemes, switches are operated using electromagnetic,
piezoelectric, or thermal actuation and maintained in their closed state electrostatically,
achieving low-voltage operation and reduced power consumption. However, these schemes
also introduce complexities in structure and slower switch speeds.
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Table 1. Performance of hybrid actuation mechanism RF MEMS switches.

Actuation Mechanism Actuation
Direction

Actuation
Voltage Insertion Loss Isolation Ref

Thermal/Electrostatic Vertical 0.3 V 0.23 dB @ 2.4 GHz 38.80 dB @ 2.4 GHz [28]
Thermal/Electrostatic Lateral 7 V −0.73 dB @ 6 GHz −46 dB @ 6 GHz [101]
Thermal/Electrostatic Lateral 6 V >−1 dB @ 150 GHz <−20 dB @ 16 GHz [41]
Thermal/Electrostatic Vertical 25 V 1.67 dB @ 5.4 GHz 33 dB @ 5.4 GHz [102]
Thermal/Electrostatic Lateral 0.9 V >−0.1 dB @ 40 GHz −20 dB @ 100 GHz [103]
Thermal/Electrostatic Lateral 0.16 V <1.2 dB @ 40 GHz −60 dB @ 35 GHz [42]
Thermal/Electrostatic Lateral 0.07 V −0.27 dB @ 10 GHz −40 dB @ 10 GHz [99]
Thermal/Electrostatic Lateral 0.07 V >−0.5 dB @ 40 GHz <−30 dB @ 40 GHz [104]

Electromagnetic/Electrostatic Vertical 3.7 V −0.37 dB @ 20 GHz −34 dB @ 20 GHz [105]
Electromagnetic/Electrostatic Vertical 4.3 V −0.52 dB @ 20 GHz −36 dB @ 20 GHz [27]
Electromagnetic/Electrostatic Vertical 15 V 0.06 dB @ 14 GHz 50 dB @ 14GHz [39]
Piezoelectric/Electrostatic Vertical 5 V −2 dB @ 20 GHz −12 dB @ 20 GHz [106]
Piezoelectric/Electrostatic Vertical 5 V <0.5 dB @ 6 GHz >30 dB @ 6 GHz [33]

Graphene, composed of carbon atoms tightly packed in a two-dimensional honey-
comb lattice, exhibits excellent mechanical, thermal, and electrical properties, meeting the
requirements for high-reliability contact materials, including high thermal conductivity,
electromigration resistance, and fracture resistance. In recent years, graphene has attracted
attention for its ultra-thin thickness, high Young’s modulus of 1 TPa, and excellent current
carrying capacity of 108 A/cm2 [107–109]. In the application of NEMS/MEMS switches,
graphene has shown its unique electrical and mechanical properties, attracting interest from
many researchers. Studies have found that MEMS switches made of graphene can achieve
a lower actuation voltage [110] and good RF performance [111]. Bunch et al. [112] first used
graphene in MEMS devices. Mechanical exfoliation was used to extract single-layer and
multi-layer graphene from graphite and place it on the groove of a SiO2/Si substrate to
fabricate MEMS resonators, as shown in Figure 5a.
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Subsequently, Kim et al. [113] fabricated a graphene beam-type MEMS switch, as
shown in Figure 5b. The good mechanical properties of graphene allowed the mechanical
switch to operate at an extremely low actuation voltage (1.85 V). Moreover, research shows
that increasing the electrical conductivity of graphene can further improve isolation [114],
enhancing graphene’s potential application in RF MEMS devices. Zhang et al. [53] designed
an RF MEMS switch with a graphene–gold composite upper electrode structure, as shown
in Figure 5c. Compared to traditional switches, the actuation voltage was only 3 V, and
the isolation of this structure improved by 10 dB. The pioneers’ work indicates that using
graphene can effectively solve the high actuation voltage problem of electrostatic MEMS
switches, demonstrating graphene’s important role in the future development of MEMS
technology. However, current graphene production methods have limitations, especially
in the direct acquisition of self-assembled NEMS device structures. For example, the
mechanical exfoliation method of separating graphene from bulk graphite is not suitable for
the mass production of graphene-based devices. In summary, graphene has clear potential
advantages in the application of RF MEMS switch beams, but overcoming challenges in
production and integration is necessary for commercialization.

3.1.3. Improvement of Contact Materials and Structures

Contact stiction and degradation are among the most critical failure modes in RF
MEMS switches [68]. These reliability issues are closely related to the contact area between
metals, especially in ohmic RF MEMS switches. Stiction usually originates from cold
welding or hot welding [115]. Cold welding is primarily caused by atomic adhesive
forces between contact materials, while hot welding is particularly crucial for switches,
as it depends on the current passing through the contact point. This current elevates the
temperature, leading to localized welding at the points of micro-roughness.

Ideal contact materials should possess low electrical resistivity, low roughness, high
hardness, and high resistance to chemical corrosion and contamination. Gold is a common
material for making ohmic switch contacts due to its low resistivity and high chemical
corrosion resistance. However, being a soft metal, pure gold contacts often fail to achieve
the desired reliability. Therefore, strategies to improve contact life often involve alloying
gold with other metals (such as ruthenium, rhodium, or nickel) to increase hardness [116].
However, these strategies have significant limitations, as hardness enhancement is lim-
ited at low-alloy metal concentrations, while high concentrations increase resistivity and
may introduce brittleness and surface contamination issues. Most metals, when exposed
to atmospheric environments, are prone to oxidation or reactions with organics [117],
forming non-conductive layers on the surface, which must be removed to establish good
electrical contact.

Surface contamination is associated with the presence of reactive metals on contact
surfaces that easily oxidize or react with organic materials, forming friction polymers, which
lead to a rapid increase in contact resistance [118]. Gold has a significantly lower affinity
for forming friction polymers and does not react with common contaminants. From this
perspective, the best approach is to increase the hardness of the gold contact points without
introducing other metals on the outer surface. Mulloni et al. [115,116] demonstrated that
stacking platinum layers between gold not only increased the hardness of the contact
points but also improved the contact surface performance. This improved gold-platinum
multi-layer contact material significantly outperforms pure gold in terms of stability and
shows lower serial resistance. Ideally, understanding the failure mechanisms of MEMS
switch surfaces and interfaces requires extensive research under various environmental,
temperature, and material conditions to reveal the interactions of various mechanisms and
their impact on the overall system response.

Recent advancements in CVD (Chemical Vapor Deposition) technology [119,120]
have made it possible to precisely control the morphology and structure of high-quality
graphene, leading to its application in various micro- and nanodevices [121]. Seo et al. [122]
evaluated graphene as a reliability-enhancing contact material for M/NEM switch devices.
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Atomic force microscopy experiments and quantum mechanical calculations showed that
using a few layers of graphene as the contact material on nickel surfaces can achieve
energy-saving features of mechanical contact separation. Compared to bare nickel surfaces,
the graphene coating reduced energy dissipation by 96.6%. The DFT (Density Functional
Theory) optimized atomic structures and their F-z (force-displacement) curves during
the contact separation process on nickel and graphene substrates indicate that graphene
almost achieves elastic contact separation, i.e., almost no wear at the atomic scale, including
plastic deformation, fracture, and atomic-level wear, as shown in Figure 6. Additionally,
under thermal switch conditions, the graphene coating significantly extended the switch’s
lifespan, reaching 1000 times that of uncoated switches.
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Figure 6. Atomic-scale contact–separation simulation using DFT calculations. [122] (a) DFT-optimized
atomic structures of the gold (Au) tip and nickel (Ni) surface; (b) calculated atomic force of the
Au tip, Ftip Ftip, during approach (left) and retraction (right). Ftip fluctuates considerably and
gradually recovers during approach and retraction, respectively, because of the rearrangement of
Au atoms, resulting in significant hysteresis; (c) DFT-optimized atomic structures of the Au tip and
graphene (Gr)-coated surface; (d) calculated Ftip Ftip during approach (left) and retraction (right).
Reprinted/adapted with permission from [122].

Novel structural designs can also prolong the lifespan of switches by reducing contact
stiction, contact degradation, and charge injection, beyond improving the materials of
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the contacts [73,92]. The innovative design shown in Figure 7a [123] utilizes a method
of paralleling sacrificial contacts with low-resistance contacts, significantly reducing the
electric field strength and thereby minimizing contact degradation associated with field-
induced material transfer. This design allows the use of a single actuator and bias electrode
to implement the correct protective driving sequence, resulting in more than a 100-fold
increase in thermal switch lifespan compared to unprotected switches. Liu et al. [124]
introduced a parallel protection technique. Protective contacts are placed before the main
contact points of the RF MEMS metal contact switch to block the RF signal when the main
contact operates, as depicted in Figure 7b. This method creates a local cold switch condition
for the main contact, thereby extending the switch’s lifespan under thermal conditions.
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Figure 7. (a) Top view of switch with series protection contact [123]. Reprinted/adapted with permis-
sion from [123], 2016, IEEE. (b) Top view of the shunt-protected switch [124]. Reprinted/adapted
with permission from [124], 2017, IEEE. (c) The structure of the compact single-cantilever multicon-
tact switch [125]. Reprinted/adapted with permission from [125], 2018, IEEE. (d) The structure of
levitation-based micro-switch [126]. Reproduced with permission from Springer Nature. (e) The
structure of a non-contact-type switch [127]. Reprinted/adapted with permission from [127], 2009,
IEEE. (f) The structure of a three-state contactless switch [128]. The inset shows the initial gap between
the signal lines and grounded movable electrodes. Reprinted/adapted with permission from [128],
2015, IEEE.
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Figure 7c [125] presents an innovative cantilever and electrode bias design that inte-
grates multiple contact points within a single cantilever, aimed at enhancing the reliability
of the switch. These contact points are used to sequentially conduct RF current until one
of them fails. By alternating contact points, the device can refresh and reduce the contact
resistance of the switch, thus improving its overall lifespan. Traditional actuation relies
solely on reducing voltage to detach the movable electrode (i.e., opening the switch), but
any degradation of the contact surface may cause changes in switch characteristics, such
as permanent collapse due to strong surface adhesion. The design studied by Mousavi
et al. [126], as shown in Figure 7d, employs twoside electrodes to operate a normally closed
switch. This design incorporates repulsion auxiliary excitation into the traditional gap-
closing capacitor design, overcoming the stiction caused by adhesion forces and providing
better switch control. Even with surface degradation, switch operation can be achieved by
increasing the side voltage, although this may necessitate higher side voltages.

Further, to avoid common stiction and charge injection issues in contact RF MEMS
switches, a design with no physical contact between the signal line and the movable elec-
trode can be implemented by separating the DC bias from the RF signal path. A non-contact
RF MEMS switch for radar applications has been reported, as shown in Figure 7e [127].
Subsequently, Pal et al. [128] designed a new type of three-state non-contact RF MEMS
switch. Figure 7f displays the structure of the non-contact switch, which is based on a
variable capacitance between the signal line and a movable ground electrode controlled
by an electrostatic actuator. The proposed switch does not require any ohmic contacts
prone to stiction or dielectric layers susceptible to dielectric charging, thus enhancing the
device’s reliability.

3.1.4. Using Appropriate Packaging

Operational environmental factors like temperature, humidity, and particulate matter
in the environment significantly affect the reliability of switchable devices [19,129,130]. This
is particularly challenging in space applications, where devices must withstand extreme
temperature variations, humidity fluctuations, or high levels of radiation [24], while still
fulfilling their intended mission lifespans. In this context, the packaging of RF MEMS
becomes crucial for ensuring their reliability and a high degree of integration. Consequently,
researchers have developed multiple technologies to ensure MEMS switches maintain their
performance in harsh environments.

MEMS switches require hermetically sealed packaging to prevent any residual mois-
ture or organic contaminants from affecting the internal moving parts. Comprehensive
studies are needed on the reliability and electrical performance of devices under differ-
ent voltage levels and various noise conditions, such as high temperatures and humidity.
Understanding the failure mechanisms of RF switches in harsh environments, and their
electrical performance under different input frequencies, control voltages, and power levels,
remains a key issue to be addressed.

WLP (wafer-level packaging) technology is one of the most promising methods for
packaging MEMS devices due to its high performance, ease of integration into semicon-
ductor foundry processes, and low cost. Comart et al. [131] proposed a novel packaging
method using BCB (benzo-cyclo-butene) as an adhesive layer for encapsulating shunt
capacitive RF MEMS switches, as shown in Figure 8a. This packaging method, applied
to 50 Ω CPW transmission lines, underwent microwave characterization through circuit
modeling. Based on the microwave characterization results, a packaging structure for
the shunt capacitive contact of RF MEMS switches was designed, achieving a fault-free
lifespan of up to 10.2 billion cycles. Al-Ge eutectic bonding is a widely used bonding
technique in microelectronics [132,133], offering significant advantages over other eutectic
wafer bonding processes, like Au−Ge and Au−Si, in terms of compatibility with standard
CMOS wafer manufacturing processes [134]. Al-Ge eutectic bonding provides not only a
conductive path between two substrates but also allows for patterning. Najah et al. [135]
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successfully integrated Au-Ru/AlCu contacts into the MEMS manufacturing process using
Al-Ge eutectic bonding for wafer-level packaging, as depicted in Figure 8b.
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WLP allows for the creation of sealed cavities within MEMS-specific process flows,
providing robust protection against external environments. However, the resultant compo-
nent thickness from this packaging method may pose integration challenges with low-cost
RF PCB (printed circuit board) subsystems, especially at millimeter-wave frequencies. The
addition of a sealing ring around the chip during the packaging process not only increases
the overall size of the component but also adds to the losses. In response to this challenge,
an alternative method is TFP (thin-film packaging), integrated directly into the MEMS
manufacturing process. This method significantly reduces the final component cost and sub-
stantially enhances the reliability of such RF MEMS. Figure 8c shows a zero-level packaged
MEMS switch capacitor [136]. This minimized packaging is achieved through standard mi-
croelectronic process steps within the production flow. Its hermeticity was verified through
simple testing, and the device could withstand subsequent PECVD (Plasma-Enhanced
Chemical Vapor Deposition) processes for long-term protection. The packaging shown in
Figure 8d is also achieved at the wafer level through thin-film packaging technology [72],
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minimizing the device footprint and being compatible with wire bonding and flip-chip
assembly techniques. Moreover, this type of packaged switch exhibits good microwave
performance and reliability, particularly in meeting redundancy requirements in satellite
communications.

3.2. Excellent RF Performance

In communication systems and test instruments, the superior RF performance of RF
MEMS switches is reflected in two key indicators: low insertion loss and high isolation.
These two factors are critical metrics for evaluating the performance of devices and systems
based on RF MEMS switches [137]. High insertion loss can lead to significant RF signal
loss, while low isolation may result in signal leakage, both severely affecting the overall
performance of the system. Therefore, ensuring RF MEMS switches have a low insertion
loss and high isolation is of paramount importance.

3.2.1. Improving Equivalent Inductance

The design and structure of the capacitive MEMS switch beam membrane can be
equivalent to a series combination of capacitors, inductors, and resistors [138–140]. The
equivalent inductance of the switch significantly impacts its RF performance. Therefore,
optimizing the equivalent inductance can effectively improve the switch’s RF performance.

For instance, improving the equivalent inductance of the beam membrane primarily
involves adjusting its physical dimensions, shape, materials, and layout. These changes can
directly impact the electromagnetic parameters of the switch, including inductance [141],
thereby optimizing its RF performance. Angira et al. [142] proposed a capacitive MEMS
switch based on two different shapes of non-uniform cantilevers, as shown in Figure 9a.
The different structural designs of the cantilever beams can achieve different inductance
values when the device is closed, thus adjusting the electrical resonance frequency. Zhang
et al. [141] achieved less than a 2 dB low insertion loss in the 240 to 280 GHz range by
reducing the equivalent parallel inductance of the switch.

Figure 9b shows an RF MEMS switch with short high-impedance transmission line
(T-line) sections added to both sides of the beam membrane [143]. These parts act as series
inductors to compensate for the capacitance when the switch is in the upstate. This design
provides good matching at the desired frequency, thus improving the isolation by up to
24.05%, at the cost of increased insertion loss. The independence of device impedance
from input RF signal power, which indicates linearity, is typically characterized by the
third-order intercept point (IIP3) in dual-tone RF intermodulation measurements [144]. For
instance, to prevent intermodulation between GSM at 1800 MHz and LTE at 2400 MHz,
the IIP3 of the antenna switch must be as high as possible. Zhang et al. [145] designed a
novel single-pole twelve-throw RF MEMS switch structure, as shown in Figure 9c. This
design uses specially designed parallel double cantilever beams, aimed at improving RF
matching and achieving smaller size and more compact devices. The switch also uses the
least squares method to reduce the uncertainty of the IIP3 measurement. In this design,
the insertion loss and isolation of each channel of the switch are better than 0.94 dB and
30 dB, respectively.
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3.2.2. Increasing Capacitance Ratio

In capacitive MEMS switches, the ON/OFF states are achieved by changing the
capacitance between the MEMS bridge and the transmission line. According to the previous
Equation (1), a small up-state capacitance helps to reduce insertion loss, while a large down-
state capacitance aids in increasing isolation. Therefore, the capacitance ratio (Cr) directly
affects the RF response of the switch. A higher capacitance ratio is desired for better RF
response [142,146], making it one of the key methods to optimize the RF performance
of capacitive MEMS switches. Theoretically, the capacitance ratio of the switch can be
calculated using Equation (2) [142]. The equation shows that the capacitance ratio can
be effectively increased by using materials with a high dielectric constant, reducing the
thickness of the dielectric layer, and increasing the air gap between the electrodes.

Cr =
Cd
Cu

≈ g0εr

td
(2)

where g0 is the air gap between two electrodes; εr and td are the permittivity and thickness
of the dielectric layer, respectively; Cd and Cu are the down-state and up-state capaci-
tance, respectively.

Researchers have explored using materials with high dielectric constants to increase
the capacitance ratio. High dielectric constant materials can enhance the RF performance
of the switch, but the reliability of the dielectric must be carefully analyzed. Si3N4 (silicon
nitride), with its moderate dielectric constant, has been the most commonly used dielectric
material for capacitive RF MEMS switches [147]. Approaches using high dielectric constant
materials like HfO2 (hafnium dioxide) [148,149], AlN (aluminum nitride) [147], Ta2O5
(tantalum pentoxide) [150], and STO (strontium titanate oxide) [151] have been proposed
to achieve high capacitance ratios in MEMS switches. Table 2 shows the RF performance
and capacitance ratios achieved with these materials.
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Table 2. RF performance comparisons of using different high dielectric constant materials.

Material εr Insertion Loss (dB) Isolation (dB) Cr Ref

Si3N4 7.5 −0.90 dB @ 40GHz −23.7 dB @ 40GHz 22.6 [147]
HfO2 25 −0.20 dB @ 20 GHz −14 dB @ 20 GHz 19.66 [149]
AIN 9.8 −0.68 dB @ 40 GHz −35.8 dB @ 40 GHz 32.4 [147]

Ta2O5 32 <0.80 dB @ 30 GHz −40 dB @ 30 GHz 19 [150]
STO 120 0.08 dB @ 10 GHz 42 dB @ 5 GHz 600 [151]

The reliability of capacitive RF MEMS switches is limited by leakage current and
charging phenomena in the dielectric layer. A common technique to increase the capacitance
ratio is to enlarge the air gap between the beam membrane and the dielectric layer, but this
method increases the drive voltage, and changing the height of the beam also affects the
mechanical characteristics of the RF MEMS switch. Additionally, reducing the dielectric
thickness and increasing the dielectric constant are limited due to dielectric breakdown
and charge-trapping effects.

Besides the above methods, the capacitance ratio can also be improved by changing
the structure of the MEMS switch, such as the double-buckling beam switch shown in
Figure 10a [152]. This design increases the effective capacitance area in the downward state
by introducing buckling bimetal beams in the switch. As a result, this switch achieves a
capacitance ratio of up to 170 without thin dielectrics or high dielectric constant materials
and exhibits good RF performance. The switch shown in Figure 10b, consisting of a
composite metal-dielectric buckling membrane [153], uses a buckling plate structure to
decrease the upstate capacitance and increase the downstate capacitance, achieving a
capacitance ratio of 91:1.
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3.2.3. Using Serial-Parallel Configurations

Employing serial-parallel configurations, a common method to enhance RF perfor-
mance in traditional RF switches like FETs, is also applicable to RF MEMS technology,
including capacitive and metal contact switches. This structure offers improved RF perfor-
mance [47,154,155] but at the cost of increased design and manufacturing complexity. For
instance, to ensure the optimal performance of an SP4T switch before its application in a
phase shifter array, its isolation can be enhanced using a series-type shunt topology at each
output port [156].

For example, Khodapanahandeh et al. [157] proposed an electrostatically actuated
serial-parallel RF microelectromechanical system switch, as shown in Figure 11a. This
switch has ON, OFF, and Deep-OFF states and is normally in the OFF state, driven to the ON
or DEEP-OFF states using two electrostatic actuators. This switch shows an insertion loss
of 0.6 dB and an isolation of 65 dB at 20 GHz, suitable for low-power and high-performance
RF tuning. The switch shown in Figure 11b [158] achieves high isolation while maintaining
a compact switch size by combining two serial and parallel configurations of thin films
on a single substrate. Both capacitive and ohmic beam membranes can be electrostatically
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driven at the same voltage level. The voltage provided to the parallel beam membrane
closes the switch, while the voltage provided to the serial beam membrane opens the switch.
However, there are two issues with these serial shunt switches. First, the serial or parallel
switch structures need individual biasing, which is difficult to design. Secondly, as they are
vertically driven, they require higher driving voltages and thus are unsuitable for many
low-voltage applications. The single thermally actuated lateral contact switch shown in
Figure 11c is a good alternative [42], as this design simplifies the driving mechanism and
reduces the required voltage level.
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4. Application in Reconfigurable Antennas

The miniaturization of satellite communication systems can be achieved by using
reconfigurable antennas to reduce the number of antennas in a device. Today, multimode
and multi-band RF front-end transceivers are receiving great attention [159]. This is because
they can support multiple communication standards, which helps in reducing power
consumption, lowering costs, and minimizing signal loss. Figure 12 shows an example of
a front-end transceiver that supports GSM/WCDMA/GPS. From the figure, it is evident
that the switching network follows immediately after the antenna to enable sharing of the
antenna across different frequency bands. The antenna switching network, composed of
antenna switches, plays a key role in the overall performance of the multimode modulated
front end.
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The development of the Internet of Things brings new requirements for antennas in
wireless communication systems, especially in areas such as smart cities, smart transporta-
tion, and smart healthcare [160,161]. These applications require antennas to be reconfig-
urable in frequency, polarization, and radiation direction. RAs (reconfigurable antennas)
change their effective aperture of the radiation field by rearranging antenna currents or
reconfiguring radiating edges, thereby altering the antenna’s characteristics [162–166]. The
characteristics of such antennas can be altered by changing the operating frequency, radi-
ation pattern, or polarization behavior. Compared to traditional multi-antenna systems,
reconfigurable antennas can significantly reduce hardware complexity and costs while max-
imally improving antenna performance, all while meeting the ever-changing operational
requirements. Therefore, reconfigurable antennas are receiving great attention in fields
such as satellite communication [164,165,167,168]. A reconfigurable antenna can change its
operating frequency, radiation pattern, and directivity according to different application
needs, thus offering greater flexibility and efficiency.

RF MEMS switches are widely used in satellite reconfigurable antennas, enabling
reconfigurable multi-band antenna devices based on RF MEMS switches to be reconfigured
step by step in microseconds to adapt to a variety of applications in different frequency
ranges. Compared to traditional antennas, antennas integrated with RF MEMS switches
can reduce parasitic effects and power loss [169]. For example, in phased array anten-
nas, RF MEMS switches can be used to adjust the phase of signals, thus controlling the
direction of the beam. This allows satellites to perform more precise beamforming and
directional transmission, enhancing communication quality and coverage. Sharma and
Gupta [170] described various design parameters to improve the performance of RF MEMS
switches, which ultimately enhances the performance of beam-scanning and reconfigurable
antennas. It is evident that the performance of antennas largely depends on the design
and functionality of RF MEMS switches [171]. The application of these switches not only
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enhances the flexibility and efficiency of antennas but also helps meet the growing wireless
communication needs of IoT.

The advancement in antenna technology is becoming crucial, especially in ensur-
ing fixed frequency and avoiding RF blockage [172] or interference from multiple RF
sources [173]. Figure 13a shows a MEMS-modulated scanning beam metamaterial antenna
based on surface micromachining processes [174]. The antenna achieves an electromagnetic
homogeneous waveguide with periodic metamaterial modules of unit lengths less than
λg/5. MEMS switches are integrated into each unit to modulate the phase constant β,
thus achieving scanning beams at a fixed frequency of around 8 GHz. Patch antennas are
another widely used antenna type in wireless communication, particularly in base sta-
tions. However, their application in cognitive radio systems is limited due to their narrow
bandwidth. Rajagopalan et al. [175] provided a method using particle swarm optimization
to design a reconfigurable antenna with RF MEMS switches for potential applications in
cognitive radio systems. By using MEMS switches shown in Figure 13b to dynamically
change the slot size, a bandwidth nearly double that of patch antennas can be achieved.
The linearity of antennas is also very important for the successful operation of tunable
front-ends, as signal correction is not possible after data transmission [176,177]. Although
there have been many demonstrations of frequency-tunable antennas in the past, there
has been relatively less research in terms of linearity measurements and data transmission
capabilities. Chaabane et al. [178] used a switch-assisted band in a compact planar inverted
F antenna (PIFA), with the antenna’s center frequency tunable between 1.52 GHz and
2.25 GHz. The RF MEMS switch shown in Figure 13c is used to connect and disconnect the
auxiliary band, thereby maintaining power handling capability and antenna linearity.
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Reprinted/adapted with permission from [175], 2014, IEEE. (c) Photograph of the antenna and its
MEMS biasing network [178]. Reprinted/adapted with permission from [178], 2016, IEEE. (d) The
novel multiple-beam antenna for satellite applications [168]. Reproduced courtesy of the Electromag-
netics Academy.

Additionally, antenna technology for LEO (low Earth orbit) satellites is also progress-
ing [179,180]. Recently launched LEO satellites for Earth observation are equipped with
advanced scientific instruments to gather a large amount of data. However, high-speed
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transmission of all collected data to Earth has become a challenge, mainly due to the rela-
tively short time a single ground station can receive data from a transiting LEO satellite.
The new multi-beam antenna shown in Figure 13d [168] can be used for a transparent
high-speed data relay system. This system connects multiple LEO satellites to a single
ground station through a satellite located in the geostationary orbit (GEO). The antenna
switches between different sub-arrays of a larger multi-feed array using a reconfigurable
switch matrix based on RF MEMS switches, to track LEO satellites. By combining digital
beamforming with beam switching, the radiating characteristics of the antenna can be
further improved [181,182].

5. Conclusions

This article comprehensively explores the application of RF MEMS switches in satellite
communication systems and deeply analyzes how they effectively solve key issues present
in current systems, such as weight [183,184], cost [185,186], and power consumption [187–190].
We find that RF MEMS switches not only provide higher performance and flexibility
but also significantly reduce the overall weight of the system, which is crucial for space
missions. Additionally, the miniaturization and low power consumption characteristics
of these switches open up new possibilities for the development of microsatellites and
nanosatellites, which will play an increasingly important role in future space missions.

RF MEMS switches still face some challenges and limitations [118,191–193], despite
their great potential in satellite communications [194,195]. For instance, the reliability and
RF performance of these switches in extreme environments still require further research
and improvement. Moreover, to make these switches more common and practical in future
satellite communication systems, it is necessary to further optimize their design and address
the technical and cost issues in large-scale production. At the same time, advancements in
materials science to tackle the current limitations of RF MEMS switches could lead to the
development of switches that are more radiation-resistant and have longer lifespans.

In conclusion, RF MEMS switches, as an advanced technological solution, provide
unprecedented performance enhancements for satellite communication systems. However,
to fully utilize the potential of these switches, we must continue to explore the optimization
of their design and how to overcome the limitations of existing technology. Future research
should focus on improving the reliability and RF performance of the switches, thereby
enhancing the performance and reliability of satellite communication systems, while ex-
ploring more economical and efficient manufacturing methods. With these challenges
addressed, RF MEMS switches are expected to play an even more important role in future
aerospace communication systems.
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