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Abstract: The substantial data volume within dynamic point clouds representing three-dimensional
moving entities necessitates advancements in compression techniques. Motion estimation (ME) is
crucial for reducing point cloud temporal redundancy. Standard block-based ME schemes, which
typically utilize the previously decoded point clouds as inter-reference frames, often yield inaccurate
and translation-only estimates for dynamic point clouds. To overcome this limitation, we propose
an advanced patch-based affine ME scheme for dynamic point cloud geometry compression. Our
approach employs a forward-backward jointing ME strategy, generating affine motion-compensated
frames for improved inter-geometry references. Before the forward ME process, point cloud motion
analysis is conducted on previous frames to perceive motion characteristics. Then, a point cloud is
segmented into deformable patches based on geometry correlation and motion coherence. During
the forward ME process, affine motion models are introduced to depict the deformable patch motions
from the reference to the current frame. Later, affine motion-compensated frames are exploited in the
backward ME process to obtain refined motions for better coding performance. Experimental results
demonstrate the superiority of our proposed scheme, achieving an average 6.28% geometry bitrate
gain over the inter codec anchor. Additional results also validate the effectiveness of key modules
within the proposed ME scheme.

Keywords: dynamic point cloud geometry compression; affine motion estimation; patch generation

1. Introduction

With the development of three-dimensional (3D) sensor technology, significant strides
in point cloud capturing and reconstruction have spurred a surge in interest in 3D media
applications, including virtual reality, immersive telepresence, and free-viewpoint tele-
vision [1–3]. Point clouds are widely adopted for representing both static and dynamic
objects in 3D space. A point cloud comprises a sparse and unstructured collection of
points enriched with position, color, and additional attributes like reflectance and trans-
parency. However, the escalating demand for high-resolution and high-bit-depth point
clouds presents a formidable challenge due to the substantial data volume they entail.
This challenge is particularly pronounced for applications constrained by limited transmis-
sion bandwidth and storage capacity. Consequently, there is an urgent need for efficient
compression techniques to mitigate the spatial and temporal redundancy inherent in
point clouds.

Considerable research endeavors have been dedicated to static point cloud geom-
etry compression [4–6], static point cloud attribute compression [7–10], and intra-codec
design [11–13]. Despite these advancements in removing spatial information redundancy
in point clouds, the domain of dynamic point cloud compression remains relatively un-
explored. Dynamic point clouds inherently possess significant temporal redundancy
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attributed to moving people and objects, often exhibiting regular motion patterns. The
primary challenge in dynamic point cloud compression lies in establishing inter-frame
point correspondences within unstructured point sets and exploiting temporal correlation
to generate a more compact point cloud representation [14–16]. It is noteworthy that point
correspondences in point cloud sequences are implicit, and the number of points may
vary across different frames. These characteristics pose challenges in reducing temporal
redundancy during point cloud compression. Given that geometric fidelity profoundly
influences point cloud quality, our focus in this paper is on dynamic point cloud geometry
lossless compression.

Motion estimation (ME) has been proven to be effective in point cloud temporal
redundancy removal [17–19]. In dynamic point clouds, numerous independently moving
objects and components necessitate efficient approximation of the intricate motion field.
The accuracy of ME significantly influences geometry inter-coding performance. A notable
ME-based inter-coding framework is the inter-exploration model for geometry-based point
cloud compression (G-PCC interEM) introduced by the Moving Picture Experts Group 3D
Graphics coding group (MPEG 3DG) [20]. In G-PCC interEM [21], the previously decoded
frame is directly employed as the inter-reference for the current frame being coded. Then,
the current point cloud undergoes partitioning into regular geometry blocks via an octree,
with the motion field represented as block-based translational motions. Block-matching
motion search is conducted in the interEM to capture the motions of all blocks in dynamic
point clouds.

Several critical issues in current ME schemes warrant attention. First, the selection
of the reference frame in the interEM relies solely on the previously decoded frame with-
out any warping operations. This would lead to inaccurate block-matching pairs in the
backward ME process when it occurs in fast-moving areas. We intend to introduce a
forward-backward jointing ME scheme to generate a better reference frame to enhance the
accuracy of the ME process. Second, the octree-based block structure in the interEM limits
motion representation to capturing discontinuities along three axes. This poses challenges
in fine-tuning motion representation due to the fixed size of the block. To address this, we
propose a motion-assisted patch generation approach for flexible motion representation,
facilitating better alignment between the estimated motion representation with the real
motion field in point clouds. Last but not least, the limitation of the translational motion
model in the interEM restricts motion representation to three degrees of freedom (DOFs),
hindering optimal inter-coding performance. We advocate for the incorporation of affine
motion models to allow for accurate motion approximation with increased DOFs.

Overall, we propose an advanced patch-based affine ME framework incorporating
a novel motion representation and estimation scheme for dynamic point cloud geometry
compression. Our contributions can be summarized as follows:

• We design a forward-backward jointing ME strategy incorporating forward motion
tracking and backward motion refinement. Forward motion tracking is conducted to
generate better motion-compensated frames for improved inter-geometry references
before the backward ME process. Results demonstrate that the proposed scheme
notably improves the ME accuracy and coding performance.

• We propose a motion-assisted patch generation scheme for the flexible motion repre-
sentation of point clouds. Motion priors from previously decoded frames are extracted
to guide deformable patch generation. Our irregular patch representation can better
depict the varying local motions in point clouds.

• We introduce an affine motion model to replace the traditional translational model
to improve the ME accuracy for dynamic point clouds. The proposed affine motion
model incorporates more DOFs, allowing for finer motion representation, thereby
improving the precision of motion-compensated predictions and optimizing point
cloud compression efficiency.
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The paper is structured as follows. Section 2 provides a literature review on dynamic
point cloud geometry compression and point cloud ME schemes. In Section 3, the details
of the proposed framework are presented. Section 4 contains experimental results and
analysis. Finally, the paper concludes in Section 5.

2. Related Work
2.1. Dynamic Point Cloud Compression

Current approaches to dynamic point cloud geometry compression can be categorized
into two groups based on their utilization of ME methods: those without ME and those
with ME. Point cloud inter codecs without ME typically disregard inter-frame movements
and directly utilize previously decoded frames as inter references [22,23]. Conversely, inter
coders with ME aim to identify optimal motions for temporal redundancy removal [21,24].
For instance, in the case of point cloud inter coders that do not utilize ME, early work
by Kammerl et al. [25] employs the exclusive-OR (XOR) operation on geometry octree
occupancy to reduce temporal redundancy among consecutive frames. Garcia et al. [22]
propose a context-adaptive arithmetic coder without ME, utilizing a reference octree to
construct temporal contexts. Milani et al. [26] introduce a transform-based coding approach
employing multiple nonlinear context-related transforms tailored for dynamic point clouds.
However, these approaches without ME may struggle to compress dynamic point clouds
with large complex motions like [23].

A well-designed ME module significantly enhances coding performance. It is commonly
addressed through methods such as the iterative closest points algorithm (ICP) [24,27], feature
matching [28], and block matching [21,29]. Mekuria et al. [24] utilize ICP to estimate
block-wise motions for point cloud inter coding. Thanou et al. [28] introduce a graph-based
feature matching technique for motion estimation. However, the estimated motions in
these approaches have not been well optimized in a R-D manner [24,28]. Santos et al. [29]
propose an R-D optimized mode decision scheme in inter-frame prediction to improve
coding performance. Additionally, Kim et al. [30] propose a skeleton-based nonrigid
ME scheme for the compression of dynamic human point clouds, albeit with limited
generality. Shao et al. [17] devise a registration-based ME scheme to capture nonrigid
motions for different types of dynamic point clouds. Notably, the G-PCC interEM [21]
achieves remarkable coding performance with an R-D optimized ME scheme for dynamic
point clouds. However, limited updates to local ME have identified it as a bottleneck in
codec design, prompting exploration into advanced local ME frameworks to enhance the
coding performance for dynamic point clouds.

2.2. Point Cloud Motion Estimation

A precise local ME scheme is essential for maximizing the utilization of temporal corre-
lation in dynamic point cloud compression. The design of ME schemes primarily revolves
around two critical aspects: the motion field representation and the motion model. Re-
garding the motion field representation for point cloud moving contents, the most popular
method is the block-based motion field derived from the block-matching strategy. G-PCC
interEM [21] is a pioneer in block-matching ME for dynamic point cloud compression.
Based on this, An et al. in [31] enhance the interEM with new block-matching criteria,
leading to notable improvements in geometry bitrate gains and coding time efficiency.
Moreover, Hong et al. in [15] propose a fractional-voxel ME method to accommodate the
inherent distinctions between dynamic point clouds. This scheme specifically addresses the
irregular distribution of point cloud geometry between consecutive frames. However, block-
based motion field representation assumes uniform motion within each block, disregarding
object boundaries and complex motion scenarios. To address this limitation, Thanou et
al. in [28] introduce a graph-based motion field representation with a graph-matching
ME scheme. Despite partially mitigating the shortcomings of block-based approaches, the
graph construction and matching processes are computationally intensive.
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Another key issue in the design of the ME schemes is the selection of motion models.
In general, motion models employed in dynamic point clouds can be classified into four
categories based on their complexity: translational, rigid, affine, and nonrigid models [17].
Translational motion models are frequently utilized in dynamic point clouds owing to
their simplicity, exemplified by the block-based translational motion estimation in G-PCC
interEM [21]. Additionally, translational motions are estimated in [28] through feature
matching between successive graphs of point clouds. Nonetheless, this approach is time-
consuming due to the graph transform-based spectral feature generation for points. A rigid
motion model offers more DOFs in describing motion, encompassing rigid transformations
in 3D space, such as rotations, translations, and reflections. Mekuria et al. in [24] adopt ICP
to estimate rigid transformations among blocks in consecutive frames and each estimated
transformation consists of a rotation matrix as a quaternion and a translation motion with
three parameters. Moreover, an affine motion model for dynamic point clouds can represent
a broader range of spatial transformations, including translation, rotation, scaling, shearing,
and more. In [27], the affine motion model comprising 12 parameters is introduced for
compressing human-shaped point clouds, with local motion estimation of each body part
facilitated by the ICP algorithm. Shao et al. [17] introduce a nonrigid motion model with
16 parameters to capture 3D deformations in dynamic point clouds. Those motion model
parameters would introduce an extra bitrate expense, which can be further optimized.

We highlight a selection of representative studies closely related to our study and elab-
orate on the advantages and disadvantages of our study compared to these works. G-PCC
interEM in [21] provides a block-matching motion estimation scheme for dynamic point
cloud compression. Our scheme improves upon G-PCC interEM in several ways. First,
while G-PCC interEM relies solely on the previously decoded frame as the inter-reference,
our forward–backward joint ME scheme enhances accuracy by generating a more suitable
reference frame. Second, G-PCC interEM’s octree-based block structure limits motion repre-
sentation along three axes, whereas our motion-assisted patch generation approach allows
for flexible motion representation, better aligning with real motion fields. Third, while
G-PCC interEM employs a translational motion model restricting motion to three DOFs,
we advocate for affine motion models to increase DOFs and achieve more accurate motion
approximation. However, our scheme has a disadvantage in terms of time complexity
compared to G-PCC interEM due to the additional time expenses of the forward–backward
joint ME scheme. P(Full) in [22] offers a context-adaptive point cloud inter coder without
motion estimation, leveraging a reference octree to construct temporal contexts. While
effective for most scenarios, it struggles with low-quality dynamic point cloud datasets
due to difficulties in temporal context modeling caused by noise and holes. In contrast, our
approach integrates forward–backward joint motion estimation, enhancing inter-geometry
references and resulting in improved coding performance. Despite the higher time com-
plexity compared to P(Full), our scheme outperforms P(Full) with significant coding gains.
The Nonrigid ME in [17] offers a registration-based scheme to capture nonrigid motion in
dynamic point clouds using a 16-parameter motion model. However, its iterative energy
optimization process for parameter estimation results in higher computational complexity.
In contrast, our method avoids iterative optimization and employs singular value decompo-
sition for efficient affine motion computation, significantly reducing coding time. Although
our approach sacrifices some motion estimation accuracy due to its simpler 12-parameter
motion model compared to Nonrigid ME, it achieves faster processing times.

3. Our Approach
3.1. Overview of the Proposed Framework

The pipeline of the proposed patch-based affine ME framework is depicted in Figure 1.
In the first stage, point cloud inter-frame motion analysis is conducted on previously
decoded frames to capture motion prior information. Subsequently, these motion priors are
utilized for frame-wise motion coherence evaluation in the second stage. Simultaneously,
spatial geometry correlation among all points of the reference point cloud is evaluated using
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the Euclidean distance metric. Leveraging the insights gained from geometry correlation
and motion prior analysis, the reference point cloud is segmented into a collection of
irregularly shaped patches, each characterized by high motion consistency. Within this
segmentation, each patch is linked to a control point that acts as its centroid. Consequently,
the motion field of the point cloud frame is represented based on these control points. In
the third stage, the forward motion field from the reference frame to the current frame is
estimated as a series of control point-based affine motions via the ICP algorithm, resulting
in a new affine motion-compensated reference frame. In the fourth stage, the backward ME
scheme employs a block-matching method to refine motions for the current frame relative
to the affine motion-compensated reference frame. Finally, the point cloud geometry and
estimated motions are encoded into the total bitstream.
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Figure 1. The pipeline of the proposed patch-based affine ME scheme for dynamic point cloud
geometry compression.

3.2. Point Cloud Inter-Geometry Motion Analysis

Prior to the ME process, forward motion tracking is conducted to capture previous
motion priors. Given that the geometry information of the current frame is unavailable in
the encoder, inter-geometry motion analysis is performed on previously decoded frames
based on inter-frame motion consistency. The motion analysis process unfolds as follows:

Given an input point cloud sequence F, we arrange those frames with the group-of-
picture (GOP) structure, where the first frame in a GOP is the intra frame and the following
contents are inter frames. Motion analysis is conducted from the second frame in a GOP to
track the motions between two consecutive frames.

Let F(t) be the decoded frame at time index t, it comprises n points
{

v1, v2, ..., vn ∈ R3}.
Let F(t − 1) denote the previous frame relative to the current frame, it contains m points{

u1, u2, ..., um ∈ R3}. The objective of motion analysis is to track motions by identifying ge-
ometric changes between consecutive frames. Motion vectors are computed by establishing
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correspondences between points at time t and points at time t − 1. The nearest neighbor
search method with the Euclidean distance metric is adopted to find point correspondences.
Specifically, a KD-tree search is employed for efficient nearest neighbor search to mitigate
computational complexity. Then, the matched point umap(i) in frame F(t − 1) for point vi in
frame F(t) is determined, along with the estimated motion vector −→mv(i) via the following
optimization process:

−→mv(i)= argmin∥F(xi, yi, zi, t)− F(xi − mv1, yi − mv2, zi − mv3, t − 1)∥
= {(m̂v1(i), m̂v2(i), m̂v3(i))},

(1)

umap(i)= vi +
−→mv(i)

= (xi + m̂v1(i), yi + m̂v2(i), zi + m̂v1(i))

= (x̂j, ŷj, ẑj),

(2)

where mv1, mv2, and mv3 are the displacements along the x, y, and z axis, respectively. The
selection of the corresponding point (xi − mv1, yi − mv2, zi − mv3) in the frame F(t − 1)
to the point (xi, yi, zi) in the frame F(t) involves finding the nearest neighboring point
through a KD-tree search in the previous frame F(t − 1). m̂v1(i), m̂v2(i), m̂v3(i) are the final
estimated motions. map(·) defines the point mapping operation. (xi, yi, zi) and (x̂j, ŷj, ẑj)
are the positions of the point vi and umap(i), respectively.

Later, based on the established corresponding point pairs, the inter-frame geometry
difference between two frames is evaluated by computing the square of the Euclidean
L2-norm of all corresponding points. Subsequently, the total geometric changes D(F(t − 1),
F(t)) between the frame F(t − 1) and F(t) are defined as:

D(F(t − 1), F(t)) =
n

∑
i=1

∥∥∥vi − umap(i)

∥∥∥2

2
. (3)

The derived geometric changes between two consecutive frames, along with the esti-
mated motion priors, reflect the motion characteristics in the temporal domain of the point
cloud. These motion indicators play a pivotal role in subsequent motion representation
and estimation processes.

3.3. Point Cloud Deformable Patch Generation

The conventional block-based ME technique used in point cloud compression often
underperforms due to its inability to fully exploit motion correlation between adjacent
blocks. This limitation can be addressed by adopting a more adaptable patch-based motion
representation approach. We aim to segment point cloud inter-frames into deformable
patches to better accommodate continuously varying motion fields observed in dynamic
point clouds. Instead of the conventional block-based motion model, we propose a control
point-based model for representing the motion field of moving point clouds. In terms of
bitrate efficiency in coding motion fields, the goal of deformable patch generation is to
group neighboring points with similar motions into the same patch, thereby enhancing
intra-patch motion consistency. To minimize additional bitrate overhead in indicating
point cloud patch generation during encoding, we perform the patch segmentation on the
reference frame corresponding to the current frame to be encoded. This reference frame is
decoded beforehand and is accessible to the encoder and decoder, eliminating the need for
extra bitrate transmission to delineate the patch segmentation.

3.3.1. A Joint Similarity Metric for Patch Generation

We propose a joint similarity metric that integrates geometry correlation and motion
coherence measurement to serve as the criteria for identifying and clustering point cloud
patches. Both the geometry distribution and motion characteristics within point clouds
are taken into account in the generation of dynamic point cloud patches. The Euclidean
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distance between two points is utilized as the geometry correlation descriptor. Let pi and
pj denote two adjacent points in the point cloud. The geometry correlation descriptor
geo−error(pi, pj) representing the geometry errors of two points in the Euclidean geometry
space is defined as:

geo−error(pi, pj) =
∥∥pi − pj

∥∥2
2, (4)

where larger values of geo−error(pi, pj) indicate the smaller geometric correlation between
the two points, and vice versa.

Additionally, motion priors derived from the previous motion analysis stage are
employed for motion field coherence detection in the point cloud, further driving the
clustering of points with similar motions in a single patch. Coherent motion detection can
be seen as the clustering of consistent behavior, positively impacting efficient motion field
representation and bitrate savings. The motion coherence descriptor motion−error(pi, pj),
describing the motion discontinuity between points pi and pj in the motion field −→mv, is
defined as

motion−error(pi, pj) =
∥∥−→mv(i)−−→mv(j)

∥∥2
2, (5)

where larger values of motion−error(pi, pj) indicate smaller motion coherence between the
two points, and vice versa.

Subsequently, we formulate the joint error metric joint−error(pi, pj) for the simi-
larity measure of two points pi and pj, combining the geometry correlation measure
geo−error(pi, pj) and motion coherence measure motion−error(pi, pj). The proposed joint
error metric is formulated as

joint−error(pi, pj) =a1 · geo−error(pi, pj) + a2 · motion−error(pi, pj)

=a1
∥∥pi − pj

∥∥2
2 + a2

∥∥−→mv(i)−−→mv(i)
∥∥2

2,
(6)

where a1 and a2 are two scalar parameters for the geometry correlation term geo−error(pi, pj)
and the motion coherence term motion−error(pi, pj), respectively.

3.3.2. Optimization-Based Patch Generation

With the proposed joint error metric described in Equation (6), the task of generating point
cloud patches is formulated as an optimization problem, as shown in Equation (7), aiming to
minimize the total joint error between the points and their respective patch centroids:

argmin total−error =
k

∑
j=1

g(j)

∑
i=1

joint−error(pi, µj)

=
k

∑
j=1

g(j)

∑
i=1

a1
∥∥pi − µj

∥∥2
2 + a2

∥∥−→mv(pi)−−→mv(µj)
∥∥2

2,

(7)

where k is the number of patches, g(j) is the number of points in the patch Pj, and pi is
a point within the patch Pj. The motion −→mv(pi) of point pi is derived from the estimated
motion field described in Equation (6). The motion −→mv(µj)is approximated by the motion
of the centroid’s nearest neighbor points. The centroid µj of the patch Pj is computed as

µj =
1

g(j)

g(j)

∑
i=1

pi. (8)

The optimization-based patch generation problem is tackled through an iterative
clustering process. A k-means clustering algorithm with the proposed joint error metric is
devised to generate point cloud patches. Details of the proposed patch generation algorithm
are presented in Algorithm 1. In the initialization phase, the desired number of point
cloud patches is specified, and the patch centroids are determined using the k-means++
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method [32]. In the assignment phase, the joint error between the points to be processed and
the identified cluster centroids is computed using Equation (6). Points are then assigned
to patches with the lowest joint error to minimize Equation (7). Later, the patch centroids
are updated based on the newly determined patch assignments using Equation (8). The
assignment and update operations are repeated until either the point assignment remains
unchanged from the previous iteration or the preset iterations are reached.

Algorithm 1 Proposed Patch Generation Algorithm

Input: Point cloud with m points, desired number of point cloud patches k.
Output: Generated point cloud patches C with centroids µ.

1: Initialize patch centroids µ1, µ2, · · · , µk using the k-means++ method.
2: iter = 0, f lagupdate = false.
3: repeat
4: for i = 1 : m do
5: errormin(i) = 0, indexmin(i) = 1.
6: for j = 1 : k do
7: Compute the joint error joint−error(pi, µj) between the point pi and the patch

centroid µj using Equation (6).
8: if j == 1 or errormin(i) > joint−error(pi, µj) then
9: errormin(i) = joint−error(pi, µj).

10: if indexmin(i) ̸= j then
11: indexmin(i) = j, f lagupdate = true.
12: end if
13: end if
14: end for
15: end for
16: for j = 1 : k do
17: Select points belonging to the point cloud patch Cj where indexmin = j.
18: Update the patch centroid µj with selected points using Equation (8).
19: end for
20: iter = iter + 1.
21: until iter == itermax or f lagupdate == false
22: return C and µ.

As shown in Figure 2, an example of the point cloud patch generation results is
showcased from various angles. Notably, the algorithm produces intricate patches within
localized regions featuring complex motions, exemplified by areas like the hair region
in Redandbalck. Following the optimization-based iterative point clustering process, the
point cloud is segmented into irregular patches, each containing points with homogeneous
geometry distribution and motion characteristics. These point cloud patches are associated
with control points acting as centroids, laying the foundation for representing the motion
field of the point cloud frame. The motion field estimation for a point cloud translates into
estimating the motions of all control points within point cloud patches.

3.4. Forward–Backward Jointing Motion Estimation

We propose a novel forward–backward jointing ME scheme tailored for approximating
the motion field in dynamic point clouds. In our approach, forward ME captures motions
from the reference frame to the current frame, while backward ME delineates motions
from the current frame back to the reference frame. Leveraging warping in the forward
ME phase enables the generation of a more refined motion-compensated reference frame,
thereby enhancing the accuracy of the backward ME process. Consequently, this results in
a more precise representation of the motion fields compared to conventional methods that
rely solely on forward or backward ME techniques.
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                 (a)                                                (b) 

Figure 2. Demonstration of point cloud patch generation from various angles for dataset Redandblack:
(a) Original point cloud. (b) Point cloud generation results presented from different Angles.

In the forward patch-based ME stage, we introduce affine motion models with 12 DOFs
to represent the motions of point cloud patches from the reference frame to the current
frame. The affine transformation of a point p with position (x, y, z) to the affine-deformed
point with p′ with position (x′, y′, z′) can be defined as[

p′

1

]
=

[
R T
0 1

][
p
1

]
, (9)


x′

y′

z′

1

 =


r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 t3
0 0 0 1




x
y
z
1

, (10)

where the matrix R with parameter rij represents a 3 × 3 affine transformation matrix with
9 DOFs. It is crucial to emphasize that this matrix accounts for various affine motions within
dynamic point clouds, including zooming, rotation, scaling, and shear mapping, each
contributing to different DOFs. Since scaling and shearing are not rigid transformations,
the affine transformation matrix R with 9 DOFs is not rigid. T with parameter ti denotes
translation along different directions.

Every control point identified during the previous patch generation process is linked
with an affine transformation detailing its transition from the preceding frame to the current
frame. These transformations are determined by locating the optimal matching point in
the current frame for each control point in the previous frame. We utilize the classic ICP
algorithm [33] to construct the point correspondences. This is achieved by identifying the
nearest neighbor point pairs between the point cloud patch centered at the control point in
the reference frame and points within a search window surrounding the control point’s
position in the current frame.

With those established point correspondences between the point ui ∈ P in the reference
frame and the match point vmap(i) ∈ Pmap in the current frame, the affine transformation is
obtained by solving the following optimization problem:

argmin ∑
ui∈P

∥∥∥vmap(i) − (Rui + t)
∥∥∥2

2
, (11)

where P denotes the patch to be processed in the reference frame, and Pmap means the
matched point set in the current frame.

We employ singular value decomposition (SVD) to solve the optimization problem in
Equation (11). First, we compute the weighted centroids v̄ and ū for the point sets P and
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Pmap, each with n and m points, respectively, as v̄ = 1
n ∑n

i=1 vi and ū = i=1
m ∑m

1 ui. Next, we
derive the mean-centered point sets P̃ and P̃map by subtracting the mean from P and Pmap.
We compute the covariance matrix S between P̃ and P̃map as S = P̃WP̃mapT , where W is a
diagonal matrix. Then, we decompose the matrix S using SVD as:

S = UΣVT , (12)

where U is a left singular vector matrix, Σ = diag(σi) is a diagonal matrix containing
singular values σi, and V is a right singular vector matrix.

Later, the affine transformation matrix R and the translation vector t describing the
affine motion from the reference centered point set P̃ to the current centered point set P̃map
can be defined as:

R = VΣ∗UT , (13)

t = P̃map − RP̃, (14)

where the matrix Σ∗ is a diagonal matrix with elements 1/σi, if σi greater than zero, and
zero otherwise. The rotation action in the affine transformation matrix R is constructed
from the matrix V and the matrix U. The scaling factors, found in the diagonal elements of
Σ∗, govern scaling along different axes, enabling both uniform and non-uniform zooming
effects. Additionally, the shear operation, integrating aspects of scaling with rotations,
further contributes to the comprehensive representation of affine motions.

The resulting affine transformation matrices for all patches are encoded and trans-
mitted to facilitate motion estimation on the decoded point clouds. Utilizing the obtained
patch-wise affine motion field, affine motion compensation occurs via an affine transfor-
mation, mapping point cloud patches from the reference frame to the current frame. This
process yields a newly wrapped reference frame with a smooth reconstruction.

In the backward block-based ME stage, compensated frames from the forward ME
serve as inter references. A backward ME approach is then employed to capture local
motions from the current frame to the reference frame, enhancing the motion estimation
accuracy. Utilizing the block-matching ME method, as in interEM [21], the current point
cloud is initially partitioned into blocks of varying sizes, supported at dimensions of
32 × 32 × 32 and 16 × 16 × 16. A three-step search motion algorithm, detailed in [17],
identifies optimal translational motions for occupied blocks. Subsequently, these refined
motions are encoded into the bitstream utilizing the arithmetic coder integrated within the
interEM framework [21], with tailored contexts designed to enhance compression efficiency.

4. Experimental Results

We perform a series of experiments to evaluate the effectiveness and efficiency of the
proposed R-D optimized ME framework for dynamic point cloud geometry compression.
Details of our experimental setup are provided in Section 4.1. The comparison between the
proposed scheme with competitive platforms in terms of compression performance and
time complexity is presented in Sections 4.2 and 4.3, respectively. Moreover, ablation studies
are conducted in Section 4.4 to validate the performance of our key processing modules.

4.1. Simulation Setup

All experiments are conducted using a computer (Lenovo, Beijing, China) equipped
with an Intel i7 8700K CPU (3.7 GHz) and 64 GB RAM. We employ a selection of standard
point cloud sequences with diverse motion characteristics sourced from MPEG [34] and
JPEG [35] as our test datasets. The visualization of these datasets is provided in Figure 3.
The first 200 frames of each sequence are tested for coding performance evaluation. The
characteristics of those datasets are provided in Table 1. G-PCC interEM [21] serves
as the inter codec anchor for dynamic point cloud geometry compression within our
framework. Our proposed approach is compared against several competitive platforms
from both industry and academia: (i) G-PCC interEM w/ME (enabled motion estimation),
(ii) G-PCC interEM w/o ME (disabled motion estimation), (iii) Nonrigid ME (nonrigid
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registration-based motion estimation scheme [17], representing our previous work), and (iv)
P(Full) (context-based inter codec [22]). Adhering to MPEG common test conditions [34],
we use bits per point (bpp) to denote the total geometry bitrate. The geometry bitrate
gain, calculated as (1 − bitratea/bitrateb), illustrates the coding performance improvement
of method a with bitrate bitratea over method b with bitrate bitrateb. To ensure a fair
comparison across all tests, the GOP is uniformly defined as 8.       

      

 

(a)

       

      

 

(b)

Figure 3. Point cloud datasets. (a) MPEG 3DG point clouds. Their first frames are shown from left to
right: Longdress, Loot, Redandblack, and Soldier. (b) JPEG Pleno point clouds. Their first frames are
shown from left to right: Andrew, David, Phil, Ricardo, and Sarah.

Table 1. Characteristics of point cloud datasets.

Category Sequence Geometry
Precision

Test Frame
Range

Total Point
Number

MPEG

Longdress 10 1051∼1082 26,128,187
Loot 10 1000∼1031 25,741,340

Redandblack 10 1450∼1481 23,392,394
Soldier 10 536∼567 35,008,852

JPEG

Andrew 9 0∼31 9,314,433
David 9 0∼31 10,612,744
Phil 9 0∼31 11,532,439

Ricardo 9 0∼31 7,047,590
Sarah 9 0∼31 9,984,193

4.2. Compression Performance Evaluation

Table 2 provides a comprehensive summary of the compression performance eval-
uation of the proposed scheme against competitive platforms in dynamic point cloud
geometry lossless compression. Specifically, the proposed scheme achieves significant
geometry bitrate gains, averaging 6.28%, 7.33%, 1.77%, and 16.57% when compared to
interEM w/ ME, interEM w/o ME, Nonrigid ME, and P(Full), respectively. These outcomes
consistently demonstrate the superior coding efficiency of our approach for dynamic point
cloud geometry compression. The comparative experimental results in Table 2 underscore
the importance of a meticulously crafted ME scheme. Specifically, the P(Full) approach,
acting as a context-based inter codec that omits ME in dynamic point cloud geometry
compression, demonstrates notably inferior coding performance across various sequences,
particularly in JPEG sequences characterized by simpler point cloud motions. In contrast,
our proposed ME scheme, featuring a novel motion representation and estimation ap-
proach, excels in capturing precise forward–backward jointing motion fields with minimal
overhead, thereby enhancing both the accuracy of inter-frame context and overall inter
coding performance. This enhancement is evidenced by an average geometry bitrate gain
of 16.57% over P(Full). Conversely, P(Full) without ME struggles to achieve comparable
accuracy and efficiency in compressing different point cloud sequences.
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Table 2. Geometry lossless compression performance comparison between the proposed scheme and
the states of the art.

Category Sequence
Geometry Bitrate (bpp) Geometry Bitrate Gain of Ours

Ours interEM interEM Nonrigid P(Full) interEM interEM Nonrigid P(Full)w/ME w/o ME ME w/ME w/o ME ME

MPEG

Longdress 1.0217 1.1144 1.1272 1.0456 1.1163 8.32% 9.36% 2.28% 8.47%
Loot 0.8555 0.9065 1.0118 0.9049 0.9971 5.62% 15.45% 5.46% 14.20%

Redandblack 1.0703 1.1307 1.1649 1.0854 1.2059 5.34% 8.12% 1.39% 11.24%
Soldier 0.7980 0.8365 0.8411 0.8106 0.8333 4.60% 5.12% 1.55% 4.23%

JPEG

Andrew 1.0594 1.1328 1.1161 1.0681 1.3738 6.48% 5.08% 0.81% 22.88%
David 1.0572 1.1277 1.1195 1.0701 1.3471 6.25% 5.57% 1.21% 21.52%
Phil 1.1333 1.2119 1.2076 1.1484 1.4359 6.48% 6.15% 1.31% 21.07%

Ricardo 0.9771 1.0514 1.0372 0.9868 1.2740 7.07% 5.79% 0.98% 23.30%
Sarah 1.0392 1.1098 1.0975 1.0488 1.3359 6.36% 5.31% 0.92% 22.21%

Average Results 1.0013 1.0691 1.0803 1.0187 1.2133 6.28% 7.33% 1.77% 16.57%

Moreover, the experiments highlight the efficacy of the proposed affine ME scheme in
enhancing the motion model’s capability to capture intricate motions within point cloud
sequences. As illustrated in Table 2, our ME scheme consistently outperforms the Nonrigid
ME scheme across all tests, achieving an average 1.77% geometry bitrate gain. The Nonrigid
ME scheme is our previous work on dynamic point cloud compression, which introduces a
nonrigid motion model with 16 parameters to capture point cloud complex motions. Our
proposed affine ME scheme devises an affine motion model with an enhanced patch-based
motion representation that can better depict the motion field in dynamic point clouds. With
only 12 model parameters, our affine motion model requires four fewer parameters to be
encoded into the bitstream compared to the Nonrigid ME scheme. Moreover, Figure 4
presents the frame-wise compression performance of the proposed scheme and comparative
platforms. Substantial and consistent geometry bitrate gains are obtained by the proposed
scheme across all tests, which validate the effectiveness and robustness of the proposed
scheme for compressing dynamic point clouds with diverse motion features. Moreover,
there are some peaks in geometry bitrate in Figure 4, which are attributed to the GOP
parameter. We adopt the IPPP coding structure with GOP = 8, where the first frame in
a GOP serves as the I frame, while the subsequent frames in the GOP are P frames that
utilize the previously decoded frame as the inter reference for inter prediction and coding.
Generally, the geometry bitrate in I frames tends to be larger than that in P frames, resulting
in the observed geometry bitrate peaks in Figure 4.

To further evaluate the coding ability of the proposed framework in handling dynamic
point clouds under diverse conditions, we conduct a series of experiments to test our scheme
under different frame rates on two datasets characterized by distinct noise levels. The
experiments involve performing motion estimation consecutively, then on every 5th frame,
and subsequently on every 10th, 15th, and 30th frame. These frame rates are chosen to
represent various levels of temporal granularity in the motion estimation process. We utilize
two representative datasets for evaluation: Phil, which represents a low-quality sparse point
cloud with significant noise, and Longdress, which represents a high-quality dense point
cloud. By conducting experiments on these datasets under different frame rates, we aim
to assess the robustness and effectiveness of our scheme in various scenarios encountered
in practical applications of dynamic point cloud compression. Table 3 summarizes the
compression performance of our proposed scheme under different frame rate settings for
dynamic point cloud geometry lossless compression. We use the total geometry bitrate
to denote coding performance and geometry PSNR values to represent the reconstruction
qualities of motion-compensated point clouds. The experimental results demonstrate the
consistent compression performance achieved by our scheme across point cloud sequences
with varying frame rates. As the interval between frames increases, leading to larger motion
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between frames, we observe a marginal increase in the geometry bitrate. Despite this, our
scheme effectively handles the heightened motion between consecutive frames, ensuring
high-quality motion-compensated point clouds. These findings verify the robustness and
adaptability of our proposed scheme in handling dynamic point cloud sequences with
varying frame rates.

Figure 4. Frame-wise compression performance comparison between the proposed scheme and the
state-of-the-arts on test datasets. The first 32 frames of each sequence with GOP = 8 are tested.

Table 3. The compression performance of the proposed scheme under different frame rate settings.

Category Sequence Coding Metric Frame Frame Frame Frame Frame
1 to 2 1 to 5 1 to 10 1 to 15 1 to 30

MPEG Longdress Bitrate (bpp) 1.01 1.03 1.04 1.05 1.08
PSNR (dB) 64.13 61.65 65.64 64.78 64.33

JPEG Phil Bitrate (bpp) 1.14 1.14 1.18 1.13 1.10
PSNR (dB) 56.89 52.17 57.35 55.76 56.34

Additionally, Figure 5 and Figure 6 present the reconstruction quality of motion-
compensated point clouds generated by our scheme at different frame rate settings on
Phil and Longdress, respectively. Each row within the figures showcases original point
clouds at two frame indices alongside motion-compensated point clouds from three dif-
ferent perspectives (front, left, and back). We also visualize the mean square error of the
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geometry distortion between the original and motion-compensated point clouds with error
color-coding maps. The experimental results verify the ability of our scheme to generate
high-quality motion-compensated point clouds across diverse datasets characterized by
distinct noise levels. In our paper, the GOP parameter is not manually tuned but em-
pirically set, according to the commonly adopted GOP = 8 in video coding tests. It is
crucial to highlight that our scheme utilizes the IPPP coding structure without B frames.
Consequently, variations in the GOP settings do not exert a significant influence on the
motion estimation performance of our scheme. Moreover, our proposed forward-backward
joint motion estimation approach distinguishes itself from bidirectional prediction methods.
Unlike bidirectional prediction methods that necessitate referencing both the previous and
subsequent frames, our scheme exclusively utilizes the previous frame as a reference. This
design enables our scheme to consistently deliver optimal performance across different
GOP settings, thereby ensuring robustness and stability in various coding scenarios.

Frame 

#1 to #2:

Original Point Cloud: Motion-Compensated Point Cloud:

Front View Left View Back View Front View Left View Back View

Frame 

#1 to #5:

Frame

#1 to #10:

Frame

#1 to #15:

Frame

#1 to #30:

Figure 5. The reconstruction quality of motion-compensated point clouds generated by the proposed
scheme at different frame rate settings on the dataset Phil.
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Frame 

#1 to #2:

Original Point Cloud: Motion-Compensated Point Cloud:

Front View Left View Back View Front View Left View Back View

Frame 

#1 to #5:

Frame

#1 to #10:

Frame

#1 to #15:

Frame

#1 to #30:

Figure 6. The reconstruction quality of motion-compensated point clouds generated by the proposed
scheme at different frame rate settings on the dataset Longdress.
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4.3. Compression Complexity Evaluation

Tables 4 and 5 present the second-frame and 32-frame runtime results of the proposed
scheme compared to competitive platforms in dynamic point cloud geometry lossless
compression, respectively. Analyzing the coding times of both the second frame and the
entire 32 frames in tested point cloud sequences enables a comprehensive complexity
evaluation of different compression methods. This evaluation assesses both short-term
performance and long-term stability. With the coding performance results presented in
Table 2 and the runtime results presented in Tables 4 and 5, we can conduct a comprehensive
performance analysis of our approach and the competitive platforms.

Table 4. The second-frame point cloud geometry lossless compression runtime comparison between
the proposed scheme and the states of the art.

Category Sequence

Geometry Coding Time (s) Time Reduction of Ours

Ours G-PCC Nonrigid P(Full) G-PCC Nonrigid P(Full)interEM ME interEM ME

MPEG

Longdress 102.03 76.20 238.95 – −33.89% 99.83% –
Loot 82.17 68.02 128.25 37.40 −20.81% 99.70% −242.91%

Redandblack 79.58 66.64 212.17 36.99 −19.41% 99.84% −473.59%
Soldier 54.33 46.98 56.28 58.08 −15.63% 99.03% 3.10%

JPEG

Andrew 19.86 16.30 42.22 – −21.86% 99.67% –
David 24.27 20.13 36.22 – −20.57% 99.57% –
Phil 36.09 30.67 80.55 14.73 −17.68% 99.79% −446.82%

Ricardo 11.44 10.28 30.88 – −11.24% 99.70% –
Sarah 21.30 19.58 56.11 – −8.78% 99.72% –

Average Results 47.90 39.42 97.96 – −18.88% 99.65% –

Table 5. The 32-frame point cloud geometry lossless compression runtime comparison between the
proposed scheme and the States of the art.

Category Sequence

Geometry Coding Time (s) Time Reduction of Ours

Ours G-PCC Nonrigid G-PCC Nonrigid
interEM ME interEM ME

MPEG

Longdress 2533.64 1983.41 7837.63 −27.74% 99.85%
Loot 2308.88 1757.34 3504.73 −31.38% 99.65%

Redandblack 2318.56 1777.13 7148.50 −30.47% 99.85%
Soldier 1477.08 1263.98 1589.06 −16.86% 98.95%

JPEG

Andrew 604.49 474.00 947.40 −27.53% 99.56%
David 782.61 585.41 1068.38 −33.69% 99.57%
Phil 978.38 777.80 3441.86 −25.79% 99.85%

Ricardo 366.92 318.10 1412.54 −15.35% 99.78%
Sarah 591.27 523.39 1701.01 −12.97% 99.75%

Average Results 1329.09 1051.17 3183.46 −24.64% 99.64%

Compared to G-PCC interEM, the proposed scheme exhibits an increased coding
time of 18% and 24.64% in the second-frame and 32-frame tests, respectively. These
additional time expenses are attributed to the proposed forward–backward joint motion
estimation scheme. It introduces additional computational overhead compared to the single-
direction motion estimation employed by G-PCC interEM. Despite the increased coding
time, our approach consistently achieves 6.28% geometry bitrate gains over G-PCC interEM,
validating the effectiveness of our forward–backward joint motion estimation scheme. In
contrast to Nonrigid ME, our scheme significantly reduces coding time by 99.65% and
99.64% in the second-frame and 32-frame tests, respectively. This runtime reduction stems
from our decision to avoid the iterative optimization-based motion estimation utilized in
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Nonrigid ME. Instead, we employ singular value decomposition for efficient and accurate
affine motion computation. As the source code of the platform P(Full) is unavailable, we
use the runtime results provided in the paper [22] for comparison. However, it is important
to note that only partial second-frame runtime results of P(Full) for compressing certain
representative sequences are available in the paper. In contrast to P(Full), which is a context-
based inter codec without motion estimation, our scheme typically incurs additional coding
time due to the introduction of the proposed motion estimation process in most tests.
Nonetheless, our approach consistently outperforms P(Full) with an average geometry
bitrate gain of 16.57%, confirming the effectiveness of our motion estimation scheme.
Notably, in the runtime test on Soldier, our scheme demonstrates a 3.10% coding time
reduction compared to P(Full). This reduction may be attributed to the time-consuming
spatial–temporal context construction process in P(Full), whereas our motion estimation
process proves to be more efficient.

Combining the experimental results on coding performance and time complexity,
these outcomes consistently demonstrate that, compared to G-PCC interEM, our approach
can achieve significant coding gains with an acceptable runtime increase. Moreover, in
comparison to Nonrigid ME, our approach not only enhances coding performance but
also significantly reduces coding time for dynamic point cloud geometry compression.
Moreover, when compared to P(Full), although such inter codecs without motion estimation
are effective in saving encoding time, the coding performance of our scheme surpasses
them by a significant margin.

4.4. Ablation Studies

We perform ablation studies to objectively verify the effectiveness of key modules
in the proposed framework. Validation results of all studies are presented in Table 6. We
independently analyze each module as follows.

Table 6. Ablation studies on the key modules in the proposed affine ME framework.

Category Sequence

Geometry Bitrate (bpp) Geometry Bitrate Gain of Ours

Ours w/o w/o w/o w/o w/o w/o
Joint ME Patch Affine Joint ME Patch Affine

MPEG

Longdress 1.0217 1.0775 1.0610 1.0736 5.18% 3.70% 4.83%
Loot 0.8555 0.8830 0.8651 0.8783 3.11% 1.11% 2.59%

Redandblack 1.0703 1.0996 1.0898 1.0959 2.66% 1.79% 2.33%
Soldier 0.7980 0.8129 0.8000 0.8084 1.84% 0.25% 1.28%

JPEG

Andrew 1.0594 1.0809 1.0818 1.0835 1.99% 2.07% 2.22%
David 1.0572 1.0825 1.0799 1.0829 2.34% 2.11% 2.38%
Phil 1.1333 1.1668 1.1616 1.1655 2.87% 2.43% 2.76%

Ricardo 0.9771 0.9941 0.9972 0.9983 1.71% 2.02% 2.12%
Sarah 1.0392 1.0615 1.0602 1.0626 2.10% 1.98% 2.21%

Average Results 1.0013 1.0288 1.0218 1.0277 2.64% 1.94% 2.53%

Validation of the Forward–Backward Jointing ME Strategy: Our proposed forward–
backward jointing ME scheme addresses the challenge of inaccurate block-matching pairs
encountered in the backward ME process, as discussed in Section 3. These inaccuracies
can lead to imprecise motion estimates, consequently impacting inter coding performance
negatively. In our approach, forward ME captures motions from the reference frame to the
current frame, while backward ME delineates motions from the current frame back to the
reference frame. Leveraging warping in the forward ME phase facilitates the generation of
a more refined motion-compensated reference frame, thereby improving the accuracy of
the backward ME process. Table 6 provides empirical evidence supporting the effectiveness
of our joint ME strategy, demonstrating an average geometry bitrate gain of 2.64% in our
proposed framework. This validation underscores how our ME scheme enhances the
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accuracy of geometry matching in the motion search process for dynamic point cloud
geometry compression. By exploiting warping in the forward ME phase, we achieve a more
precise representation of motion fields, surpassing conventional methods reliant solely on
forward or backward ME techniques.

Validation of the Patch-based Motion Field Representation: Given the inherent
limitations of the octree-based block structure in the interEM, which restricts motion
representation to capturing discontinuities along fixed directions, we introduce a motion-
assisted patch generation approach. Our method enables flexible motion representation,
facilitating improved alignment between the estimated motion representation and the
actual motion field in point clouds. Table 6 demonstrates that our proposed patch-based
motion representation model achieves an average geometry bitrate gain of 1.94% compared
to the block-based motion model in the interEM. These results affirm the advantages
of our proposed patch-based motion field representation, illustrating how our irregular
patch representation can more accurately capture the diverse local motions present in
point clouds. Furthermore, Figure 7 showcases the deformable patch generation results
with control point representation across all test datasets, reinforcing the advantages and
robustness of our proposed patch-based motion field representation across various point
clouds exhibiting diverse motion features.

(a) 

(b) 

(c) 

Figure 7. Point cloud patch generation results with the control point representation for all test
datasets. (a) Original point cloud. (b) Point cloud patch generation. (c) Control point representation.

Validation of the Affine Motion Model: Recognizing the limitations of the transla-
tional motion model in the interEM, which hampers its ability to capture complex motions
in point clouds, we advocate for integrating affine motion models to enable more accurate
motion approximation with increased DOFs. To assess the effectiveness of our enhanced
affine motion model for compressing point cloud sequences, we conduct a comparative test



Sensors 2024, 24, 3142 19 of 22

between the proposed affine motion model and the translational model used in the interEM.
Analysis of the experimental results presented in Table 6 reveals significant geometry bitrate
gains achieved by the proposed affine motion model, averaging 2.53% on all test datasets.
Introducing the affine motion model equips the encoder with the capability to precisely
characterize rotation, zooming, and object deformation, thereby facilitating more effective
motion-compensated prediction for efficient point cloud compression. These experimental
findings validate the efficacy of the proposed affine motion model within our framework
for dynamic point cloud geometry compression.

To further verify the effectiveness of our proposed motion model, we conduct a
detailed affine transformation analysis by visualizing selected affine transformations esti-
mated by our scheme. As depicted in Figure 8, we select two representative patches from
the original point cloud: the 4th patch representing the hair with complex geometric details
and the 183rd patch representing the foot with intricate local deformations. Our proposed
scheme efficiently estimates affine transformations with 12 parameters describing local
motions between the original and target point clouds. The resulting affine-transformed
local patches aligned excellently with the target point cloud, confirming the effectiveness
of our scheme in capturing affine motions in dynamic point clouds.
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Figure 8. An example of the affine transformation estimation by the proposed scheme on Longdress.
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5. Conclusions

In this paper, we propose a novel patch-based affine ME framework for dynamic
point cloud geometry compression. We propose a forward–backward jointing ME strat-
egy, employing affine motion-compensated frames to enhance inter-geometry references.
Leveraging the proposed ME strategy, we achieve improved ME accuracy by generating
motion-compensated frames and refining motions iteratively. Moreover, by conducting
motion analysis and segmenting point clouds into deformable patches, our motion-assisted
patch generation scheme enables flexible representation of point cloud motions, enhancing
compression efficiency. Furthermore, we introduce an affine motion model to replace the
traditional translational model to improve the ME accuracy for dynamic point clouds. These
advancements offer promising solutions for efficient dynamic point cloud compression
in various applications. Experimental results demonstrate that the proposed framework
surpasses various competitive platforms in terms of compression performance. Moreover,
ablation studies can prove the effectiveness of key modules in our scheme.
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