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Abstract: Hydrogen is an ideal energy carrier manufactured mainly by the natural gas steam reform-
ing hydrogen production process. The concentrations of CH4, CO, CO2, and H2 in this process are
key variables related to product quality, which thus need to be controlled accurately in real-time.
However, conventional measurement methods for these concentrations suffer from significant delays
or huge acquisition and upkeep costs. Virtual sensors effectively compensate for these shortcomings.
Unfortunately, previously developed virtual sensors have not fully considered the complex char-
acteristics of the hydrogen production process. Therefore, a virtual sensor model, called “moving
window-based dynamic variational Bayesian principal component analysis (MW-DVBPCA)” is devel-
oped for key gas concentration estimation. The MW-DVBPCA considers complicated characteristics
of the hydrogen production process, involving dynamics, time variations, and transportation delays.
Specifically, the dynamics are modeled by the finite impulse response paradigm, the transportation
delays are automatically determined using the differential evolution algorithm, and the time varia-
tions are captured by the moving window method. Moreover, a comparative study of data-driven
virtual sensors is carried out, which is sporadically discussed in the literature. Meanwhile, the
performance of the developed MW-DVBPCA is verified by the real-life natural gas steam reforming
hydrogen production process.

Keywords: hydrogen production process; data-driven virtual sensor; real-time estimation; variational
Bayesian principal component analysis

1. Introduction

Hydrogen is an ideal energy storage medium with zero carbon emissions, essential
in energy systems’ low-carbon transformation [1]. Currently, over 90% of the world’s
large-scale industrial hydrogen production process is the fossil energy reforming process,
of which more than 50% is the natural gas steam reforming process [2,3]. The natural gas
steam reforming hydrogen production process consists of feedstock purification, steam
reforming, medium temperature conversion, and pressure swing adsorption. In this
process, CH4, CO, CO2, and H2 are primary process gases, and the concentrations of these
gases are key variables (KVs) related to the product quality. Infrequent and inaccurate
measurements of these KVs risk substantial production losses, poor control performance,
and even hidden dangers to safety. Consequently, real-time measurements of these KVs are
essential and desirable.

Currently, measurements of the hydrogen production process’ KVs are classified into
offline laboratory analyses, hardware sensors, and virtual sensors. The offline laboratory
analyses give accurate measurements of the KVs, but result in significant measurement
delays [4]. The hardware sensors measure the KVs in real-time, but need colossal invest-
ment and maintenance costs [5,6]. Virtual sensors are actually predictive mathematical
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models which use explanatory variables (EVs, i.e., easily measurable variables like pressure
and flow rate) as inputs and estimates of the KVs as outputs, having the benefits of no
measurement delays and low costs [7,8]. Therefore, the virtual sensor effectively compen-
sates for the shortcomings of the offline laboratory analysis and hardware sensor [9,10]. As
a result, virtual sensors have been intensively studied and widely used in the hydrogen
production process.

Virtual sensors can generally be grouped into first-principle-based and data-driven
virtual sensors. The first-principle-based virtual sensor is established by analyzing and
explaining the physicochemical mechanisms of the hydrogen production process. For
example, Yang et al. established a predictive model of ammonia pyrolysis decomposition
rate through theoretical derivation for the reaction in the hydrogen production process [11].
Huang et al. developed a mathematical model between the EVs and the conversion
rate of methane by coupling conduction, convection, thermal radiation, and chemical
reaction kinetics [12]. Zhou et al. simulated the chemical looping hydrogen production
process by analyzing the process mechanisms [13]. However, due to the complex reaction
dynamics, precise first-principle-based models of the hydrogen production process are
challenging to obtain. Usually, laboratory-scale studies or ideal steady-state analyses are
the main applications of these first-principle-based virtual sensors. On the contrary, a
data-driven virtual sensor is constructed by process-measured data, and does not rely
on accurate mechanisms [14,15]. Therefore, it is closer to reality, and better describes the
actual operations of the hydrogen production process [16,17]. As a result, data-driven
virtual sensors are widely applied in the hydrogen production process. For example,
Tong et al. built the multi-layer perceptron (MLP) neural network to estimate the CH4
concentration in the hydrogen production process [18]. Zamaniyan et al. employed the MLP
model to predict the concentration of H2 and CO of the hydrogen production process [19].
Ögren et al. established deep neural networks (DNNs) to estimate the concentration of
CH4, CO, CO2, and H2, which have large network layers [20]. Considering the challenges
of artificial neural network models in model selection and parameter adjustment with
limited data, small-data-oriented models have been applied to the hydrogen production
process. Fang et al. used a support vector machine (SVM) to predict the hydrogen yield [21].
Zhao et al. proposed a predictive model based on the least squares SVM (LSSVM) employed
in wind power hydrogen production [22].

Despite these achievements on virtual sensors for the KVs, the hydrogen production
process is usually complicated because of practical operations. Firstly, due to the feed-
stock variations and external disturbances, the hydrogen production process shows strong
dynamics [23]. Secondly, the hydrogen production process involves many series-wound
devices (e.g., pre-reformers and pre-heaters), which requires significant time to deliver the
energies and feedstocks to the reformer [24]. That means the EVs and the KVs are recorded
simultaneously and are mismatched (i.e., there are transportation delays between the EVs
and the KVs). Thirdly, the hydrogen production process exhibits time-varying properties
because of the process drifts caused by mechanical abrasions, catalyst deactivation, or even
climatic variations [25].

The above complex properties of the hydrogen production process make it challenging
to develop high-precision virtual sensors for the KVs. As far as we know, the existing
virtual sensors developed for the hydrogen production process do not account for these
complicated characteristics. Moreover, the hydrogen production process has multiple KVs
to estimate, and the existing virtual sensors constructed multiple independent single-output
virtual sensors (one for each KV), ignoring the correlations between the KVs. To this end,
we first develop a multi-output virtual sensor model called “dynamic variational Bayesian
principal component analysis (DVBPCA)” for real-time prediction of the KVs in the hy-
drogen production process. As a further contribution, a moving window-based DVBPCA
(MW-DVBPCA) is developed to improve estimation performance while considering the
time variations of the hydrogen production process. The main contributions we make in
the article are organized as follows.
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(1) The developed DVBPCA considers both process dynamics and transportation delays
of energies and materials. Concretely, the finite impulse response (FIR) method is
employed to model the dynamics of the hydrogen production process. And the
transportation delays related to the EVs are automatically determined by differential
evolution (DE). Moreover, the DVBPCA is able to make full use of the correlations
between KVs for performance enhancement.

(2) The moving window (MW) approach is employed for updating the DVBPCA with
the latest online process information, which effectively captures the time-varying
characteristics of the hydrogen production process in real-time.

(3) A comparative study of data-driven virtual sensors is implemented for the hydrogen
production process, which is sparsely mentioned in the predecessors’ research. Fur-
thermore, the performance of the developed MW-DVBPCA is verified by the real-life
natural gas steam reforming hydrogen production process.

This article is structured as follows. The variational inference (VI) is introduced in
Section 2. Section 3 describes the developed DVBPCA and MW-DVBPCA in detail. In
Section 4, the performance of the DVBPCA and MW-DVBPCA is evaluated using the
operational data from the distributed control system (DCS) database of a real-life hydrogen
production process. Finally, Section 5 concludes the article.

2. Variational Inference

The VI and Monte Carlo–Markov Chain are common methods to study posterior
distributions over RVs in probabilistic models [26]. And the VI was used to learn the
developed DVBPCA, considering its advantages in convergence diagnosis and computa-
tional efficiency.

Denote the random variables (RVs) with unknown posterior distribution as Θ. The
equation shown as Equation (1) decomposes the log of model evidence, as follows:

ln p(D) = L(q) + KL(q ‖ p)

KL(q ‖ p) =
∫

q(Θ) ln
{

q(Θ)

p(Θ | D)

}
dΘ

L(q) =
∫

q(Θ) ln
{

p(D, Θ)

q(Θ)

}
dΘ

(1)

where KL(q ‖ p) means the Kullback–Leibler (KL) divergence between q(Θ) and p(Θ | D),
D is training dataset, q(Θ) represents any form of probability distribution over Θ, p(Θ | D)
represents the actual posterior distribution over Θ, andL(q) means the variational evidence
lower bound (ELBO) of the log of model evidence ln P(D) as KL(q ‖ p) ≥ 0.

Therefore, the posterior distributions over Θ can be found by maximizing the ELBO
L(q) as shown in Equation (2), i.e.,

p(Θ | D) = q∗(Θ) = arg max
q(Θ)

L(q(Θ)) (2)

where q∗(Θ) represents the variational solution of q(Θ).
Assume q(Θ) can factorize into the product ∏J

j=1 qj
(
θj
)
, where Θ = {θ1, θ2, · · · , θJ}.

The general rule to find the variational distribution qj
(
θj
)

is obtained as Equation (3):

ln q∗j
(
θj
)
=
∫

ln p(D, Θ)∏
i 6=j

q∗i (θi)dθi +C = Eqi(θi 6=j)
[ln p(D, Θ)] +C (3)

where Eq(θ)[ f (θ)] is the expectation of a function f (θ) of the RV θ with respect to the
distribution q(θ) over θ, θi 6=j means factors in Θ except θj, and C means constant terms.
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3. Dynamic Variational Bayesian Principal Component Analysis Based on
Moving Window
3.1. Time-Delayed Moving Average Model

Due to the flexibility of combining various regression models, the FIR paradigm is
generally employed for capturing dynamics. Moreover, the KVs are measured at a lower
frequency than the EVs in the hydrogen production process, which implies that the model
structure based on autoregression from the FIR family is unsuitable. More importantly, as
mentioned earlier, the transportation delays between the EVs and the KVs are unknown,
and require consideration. Based on these considerations, a time-delayed moving average
(MA) model structure is embedded in the virtual sensor, which is given by

y(n) = f


x1(n− l1), x1(n− l1 − 1), · · · , x1(n− l1 − p1),
x2(n− l2), x2(n− l2 − 1), · · · , x2(n− l2 − p2),

...
xS(n− lS), xS(n− lS − 1), · · · , xS(n− lS − pS)

 (4)

where y(n) ∈ RKy are the n-th measurements of the Ky-dimensional KVs, xi(n) is n-th
measurement of the i-th EV, S is the number of the EVs, li and pi refer to the transportation
delay and the order of xi, respectively, and both are non-negative integers, and f (·) means
the mathematical relationship between the EVs and KVs (but there may exist strong
colinearities between the EVs of the model f (·)). Denote l = (l1, l2, · · · , lS) and p =
(p1, p2, · · · , pS) for conciseness.

3.2. Dynamic Variational Bayesian Principal Component Analysis

Variational Bayesian principal component analysis (VBPCA) is a widely used model
to deal with the colinearities between the EVs, owing to its advantage in the automatic
determination of appropriate model dimensionality [27]. Therefore, it is ideally suited
as the model f (·). In this article, name the VBPCA combined with the model structure
shown in Equation (4) as the dynamic VBPCA (DVBPCA) due to the capability of capturing
process dynamics. Moreover, the DVBPCA can handle the overfitting resulting from highly
dimensional variable augmentation in Equation (4) through penalizing parameter values,
which are detailed as follows.

Denote the observed sequential dataset as D = (d1, d2, · · · , dN)
T, where dn =

(
xn
yn

)
∈

RK means the n-th set of samples, xn = (vl1,p1
1 (n), vl2,p2

2 (n) · · · , vlKx ,pKx
Kx

(n))T ∈ RKk and
yn = y(n) ∈ RKy are inputs and outputs, respectively, and
vli ,pi

i (n) = (xi(n− li), xi(n− li − 1), · · · , xi(n− li − pi)). Figure 1 graphically represents
the DVBPCA. where, Wx ∈ RKx×M is the loading matrix of the inputs xn, Wy ∈ RKy×M

is the loading matrix of the outputs yn, W =

(
Wx
Wy

)
, zn ∈ RM are the M-dimensional

hidden variables corresponding to the sample at time instant n, µx ∈ RKx are the mean

values of the inputs xn, µy ∈ RKy are the mean values of the outputs yn, µ =

(
µx
µy

)
, τ is

the accuracy parameter of the noise, and α = (α1, α2, · · · , αM)T is the accuracy parameter
set of the loading matrix. Moreover, denote each column of W as wm, the transpose of each
row of W as w∗k , and Z = (z1, z2, · · · , zN)

T. As illustrated in Equation (5), the observed
data point dn is assumed to be generated by

dn = Wzn + µ + εn (5)

where εn is the measurement noise.
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Figure 1. Probability graph of the DVBPCA.

As shown in Equation (6), assign conjugate prior to the hidden variables

p(zn) = N (zn | 0M, IM) (6)

where N (·) represents the normal distribution probability density function, 0M represents
an M-dimensional column vector with element 0, and IM represents an M-dimensional
unit matrix.

According to Figure 1, which shows that the samples are independently collected, the
conditional distributions of the observed samples are designed as shown in Equations (7);
that is,

p(D | Z, W , µ, τ) =
N

∏
n=1
N
(

dn |Wzn + µ, τ−1IK

)
(7)

where IK represents a K-dimensional unit matrix.
To conform with common sense and to simplify subsequent calculations, the distribu-

tions over all RVs are selected as conjugate priors as detailed in Equation (8)–(11); that is,

p(W | α) =
M

∏
m=1
N
(

wm | 0K, α−1
m IK

)
(8)

p(µ) = N
(

µ | 0K, β−1IK

)
(9)

p(α) =
M

∏
m=1
G(αm | aα, bα) (10)

p(τ) = G(τ | aτ , bτ) (11)

where 0K represents a K-dimensional column vector with element 0, β is the accuracy
parameter of the mean, aα, bα, aτ , bτ are the hyper-parameters of the distributions over
these RVs, and G(·) is the gamma distribution probability density function. Particularly,
when little or no prior information is obtained for these priors, it is suggested to set
noninformative priors for the RVs to minimize the effect on the posterior distribution. That
is, the values of hyperparameters aα, bα, aτ , and bτ are set as small as possible so that the
posteriors do not rely on the priors, but only on the data.

Remark 1. To facilitate model training, rewrite Equation (8) as p(W | α) = ∏K
k=1N

(
w∗k | 0, A−1),

where A = diag{α1, α2, ..., αM}. Each inverse variance of the wm is controlled by the corresponding
αm. Thus, if the posterior distribution of a particular αm is focused on larger values, the corresponding
wm will converge to be tiny, effectively deactivating this particular direction in the latent space.
Therefore, the effective dimensionality of the potential space is determined automatically.

According to Figure 1, the equation shown as Equation (12) represents the joint
probability density function between training data D and the RVs Θ as follows:

p(D, Θ) = p(D | Z, W , µ, τ)p(Z)p(W | α)p(µ)p(α)p(τ). (12)



Sensors 2024, 24, 3143 6 of 22

The VI is employed to train the DVBPCA to obtain the posterior distributions q(Θ) of
the RVs Θ = {Z, W , µ, α, τ}.

Assume the posterior distribution over Θ, q(Θ), can factorize into

q(Θ) = q(Z)q(W)q(µ)q(α)q(τ) (13)

According to Equation (2), the posterior distribution q∗(zn) over zn is detailed as

ln q∗(Z) = EW ,µ,α,τ [ln p(D, Θ)] +C
= EW ,µ,τ [ln p(D | Z, W , µ, τ)] +E[p(Z)] +C

=
N

∑
n=1

EW ,µ,τ [−
τ

2
(dn −Wzn − µ)T(dn −Wzn − µ)]−

N

∑
n=1

E[1
2

zT
nzn] +C

=
N

∑
n=1
{〈τ〉(dn − 〈µ〉)T〈W〉zn −

1
2
(〈τ〉〈WTW〉+ IM)zn}+C

=
N

∑
n=1

lnN
(

zn | m(n)
z , Σz

)
(14)

where m(n)
z = 〈τ〉Σz

〈
WT〉(dn − 〈µ〉), Σz =

(
〈τ〉
〈
WTW

〉
+ IM

)−1, and 〈·〉 is the expec-
tation.

Similarly, by using the general rule given by Equation (2), we can find the variational
posterior distributions over other RVs, as shown on the right side of Equation (13) one by
one, which are given as follows.

The posterior distribution q∗(W) over W is obtained as

q∗(W) =
K

∏
k=1
N
(

w∗k | m(k)
w , Σw

)
(15)

where Σw =
(

∑N
n=1〈τ〉

〈
znzT

n
〉
+ A

)−1
, and m(k)

w = ∑N
n=1〈τ〉Σw〈zn〉(dnk − 〈µk〉).

The posterior distribution q∗(µ) over µ is obtained as

q∗(µ) = N
(
µ | mµ, Σµ

)
(16)

where Σµ = (〈τ〉N + β)−1IK, and mµ = ∑N
n=1〈τ〉Σµ(dn − 〈W〉〈zn〉).

The posterior distribution q∗(α) over α is obtained as

q∗(α) =
M

∏
m=1
G(αm | cα, dα) (17)

where cα = K
2 + aα, and dα = bα +

1
2
〈
wT

mwm
〉
.

The posterior distribution q∗(τ) over τ is obtained as

q∗(τ) = G(τ | cτ , dτ) (18)

where dτ = bτ + 1
2 ∑N

n=1
{

dT
ndn − 2dT

n(〈W〉〈zn〉+ 〈µ〉) +
〈
zT

nWTWzn
〉
+ 2
〈
zT

n
〉〈

WT〉〈µ〉+ 〈µTµ
〉}

,
and cτ = NK

2 + aτ .
The ELBO L(q) is calculated using the updated posterior distributions, i.e.,

L(q) = E[ln p(D, Z, W , µ, α, τ)]−E[ln q∗(Z, W , µ, α, τ)]

= E[ln p(D | Z, W , µ, τ)] +E[ln p(Z)] +E[ln p(W | α)] +E[ln p(µ)]

+E[ln p(α)] +E[ln p(τ)]−E[ln q∗(Z)]−E[ln q∗(W)]−E[ln q∗(µ)]

−E[ln q∗(α)]−E[ln q∗(τ)]

(19)
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The convergence of the training procedure can be diagnosed with ELBO. The termi-
nation criteria for the parameter learning process are defined as detailed in Equation (20),
as follows:

|L
iter+1 −Liter

Liter+1 | < δ (20)

where Liter+1 and Liter are the values of ELBO at the (iter + 1)-th and iter-th iterative steps,
respectively, and δ is the threshold.

The main steps in training the DVBPCA model are summarized in Algorithm 1.

Algorithm 1 Pseudocode for the DVBPCA.

1: Input: The observed dataset D, M, β, tol, maximum number of iterations Itermax, prior
hyper-parameters (aα, bα, aτ , bτ).

2: Initialization: initialize mz, Σz, mw, Σw, mµ, Σµ, cα, dα, cτ , dτ .

3: for iter=1 to Itermax do
4: VB-E-Step

5: Calculate mz, Σz using Equation (14).

6: VB-M-Step

7: Calculate mw, Σw using Equation (15).

8: Calculate mµ, Σµ using Equation (16).

9: Calculate cα, dα using Equation (17).

10: Calculate cτ , dτ using Equation (18).

11: Calculate L(q) using Equation (19).

12: if the termination condition is satisfied then
13: Break

14: end if

15: end for

16: Output: the posterior distributions of RVs Θ.

3.3. Moving Window-Based Dynamic Variational Bayesian Principal Component Analysis

The moving window (MW) method is used to trace time variations and reject distur-
bances [28]. It captures the latest process information by discarding the oldest sample after
the latest sample is obtained and rebuilding a model with all data in the window. Specially,
for the first local model, as mentioned above, set noninformation priors for the RVs. For
subsequent local modeling, the prior distributions of the RVs in the MW-DVBPCA are
updated one by one and replaced with the trained posterior distributions of the RVs at the
previous moment. The MW-DVBPCA is detailed in this subsection.

Firstly, the training dataset (i.e., historical data) is preset in the MW, and the DVBPCA
is trained on the training dataset to obtain the posterior distributions of the RVs Θ. When
the test samples (i.e., online samples) are acquired, the DVBPCA generated earlier is used
to estimate the KVs, and the posterior distributions of RVs are used as the prior for the new
DVBPCA model, which is elaborated as follows.

Let xn′ and yn′ denote the observations of inputs and outputs at certain online time
instant n′, respectively, where yn′ is unknown. The hidden RVs zn′ are first introduced.

Since the outputs yn′ are unknown, the posterior distribution over zn′ is calculated
with the observation of xn′ which, based on Equation (14), is given by the equation as
shown in Equation (21) as follows:

q∗(zn′) = N
(

zn | m(n′)
z , Σn′

z

)
(21)
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where Σn′
z =

(
〈τ〉
〈
WT

x Wx
〉
+ IM

)−1, and m(n′)
z = 〈τ〉Σn′

z
〈
WT

x
〉
(xn′ − 〈µ〉).

Then, the conditional distribution of yn′ given xn′ is obtained as

p(yn′ | xn′) =
∫

p
(
yn′ | zn′ , Wy, µy, τ

)
p
(
zn′ | xq

)
q∗
(
Wy
)
q∗
(
µy
)
q∗(τ)dzdWdµdτ

=
∫
N
(

yn′ |WT
y zn′ + µy, τ−1IK

)
N
(

zn′ | m(n′)
z , Σn′

z

)
N
(

Wy | my
w, Σw

)
N
(

µy | my
µ, Σ

yy
µ

)
G(τ | cz, dz)dzdWdµdτ

(22)

where my
w and Σw are the mean and covariance calculated from the posterior distribution

q∗(Wy), respectively, and my
µ and Σ

yy
µ are the mean values and covariance matrix calculated

from the posterior distribution q∗(µy), respectively.
Equation (22) can be transformed into

p(yn′ | xn′) =
∫
N
(

yn′ | myT
w m(n′)

z + my
µ, tr

[
ΣwΣn′

z + Σwm(n′)
z m(n′)T

z + my
wmyT

w Σn′
z

]
+ Σ

yy
µ + τ−1IK

)
G(τ | cτ , dτ)dτ (23)

where tr[·] represents the trace.
The mean vector and covariance matrix of Gaussian distribution in Equation (23) are

obtained as illustrated in Equation (24) and Equation (25), respectively, as follows:

Ep(yn′ |xn′ ,τ)
[yn′ ] = E[WT

y zn′ + µy + εy] = myT
w m(n′)

z + my
µ (24)

Vp(yn′ |xn′ ,τ)
[yn′ ] = V[WT

y zn′ + µy + εy]

= V[WT
y zn′ ] +V[µy] +V[εy]

= E[WT
y zn′z

T
n′Wy]−myT

w m(n′)
z m(n′)T

z my
w + Σ

yy
µ + (τ)−1IK

= tr(E[WyWT
y zn′z

T
n′ ]−my

wmyT
w m(n′)

z m(n′)T
z ) + Σ

yy
µ + (τ)−1IK

= tr
[
ΣwΣn′

z + Σwm(n′)
z m(n′)T

z + my
wmyT

w Σn′
z

]
+ Σ

yy
µ + Σ

yy
µ + (τ)−1IK

(25)

where p(εy) = N (εy | 0, (τ)−1IK).
By replacing the distribution of τ with its expectation, the probability distribution of

the predicted KVs is approximated as

p(yn′ | xn′) ≈ N
(

yn′ | myT
w m(n′)

z + my
µ, tr

[
ΣwΣn′

z + Σwm(n′)
z m(n′)T

z + my
wmyT

w Σn′
z

]
+ Σ

yy
µ +

(
cτ

dτ

)−1
IK

)
. (26)

Therefore, based on Equation (26), the estimations ŷn′ of yn′ are given by

ŷn′ = Ep(yn′ |xn′)
[yn′ ] = myT

w m(n′)
z + my

µ (27)

and the prediction uncertainty is quantified by the variance matrix of yn′ denoted by
Vp(yn′ |xn′)

[yn′ ], which is given by Equation (28), i.e.,

Vp(yn′ |xn′)
[yn′ ] = tr

[
ΣwΣn′

z + Σwm(n′)
z m(n′)T

z + my
wmyT

w Σn′
z

]
+ Σ

yy
µ +

(
cτ

dτ

)−1
IK. (28)

Once the KVs predictions for the new sample are completed, the historical data
window is slid down to include the latest measured sample set {xn′ , yn′} and to eliminate
the oldest sample. The DVBPCA is then retrained according to the current window of
the historical dataset for online prediction. This process repeats once new samples are
obtained online.
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3.4. Differential Evolutionary-Based Model Selection

The DE is an effective and simple intelligent optimization algorithm commonly used
for solving NP-hard problems in real number fields [29]. Associated studies have demon-
strated that DE has fast convergence performance as an excellent global optimization
algorithm. Therefore, the DE is utilized for model selection (i.e., selecting the best parame-
ter) of the DVBPCA and MW-DVBPCA, involving the dynamic orders p and time delays l
given in Equation (4). Equation (29) shows the optimization problem, as follows:

min g(p, l)

s.t. pmin ≤ p ≤ pmax

lmin ≤ l ≤ lmax

(29)

where g(·) is the fitness function, pmin and pmax are the lower and upper bounds of the
dynamic orders p, respectively, and lmin and lmax are the lower and upper bounds of the
delays l, respectively.

Based on Equation (4), {p, l} are non-negative integers. Therefore, the individuals
generated by the DE need to be rounded. And the DE algorithm contains three core
evolutionary operations, i.e., mutation, crossover and selection, which are introduced in
detail as follows.

Initialization. Set the population size NP, dimension of individual (2S), and the upper
bounds (ρ(max)

1 , ρ
(max)
2 , · · · , ρ

(max)
2S ) and the lower bounds (ρ(min)

1 , ρ
(min)
2 , · · · , ρ

(min)
2S ) of the

dynamic orders and time delays, where individuals (ρ1, ρ2, · · · , ρ2S) in the population are
randomly generated in integer field by Equation (30), i.e.,

ρe = ρ
(min)
e + (ρ

(max)
e − ρ

(min)
e ) · rand(NP, 1) (30)

Mutation. In the r-th generation, DE generates a mutation vector ve for the e-th
individual, given by Equation (31); that is,

vr+1
e = ρr

e0
+ F ·

(
ρr

e1
− ρr

e2

)
(31)

where ρr
e0

, ρr
e1

, and ρr
e2

are individuals that randomly selected from population with e0 6=
e1 6= e2 6= e, and F is the mutation rate.

Crossover. A trial individual vector ue is generated by the original individual vector
or the mutation vector based on the crossover rate CR ranged in (0, 1), which is shown in
Equation (32), i.e.,

ur+1
i,e =

{
vr+1

i,e , if rand(0, 1) ≤ CR or e = rande

ρr
i,e, otherwise

(32)

where rande is a random integer ranged in (1, 2S).
Selection. According to the fitness function g(·), select the individual with a lower value

as detailed in Equation (33) as follows:

ρr+1
e =

{
ur+1

e , if g(ur+1
e ) ≤ g(ρr

e)
ρr

e, otherwise
(33)

Termination. The evolution continues until it reaches the given maximum generation
or the change in the fitness value is small. Otherwise, the above three operators should be
performed repeatedly.

Figure 2 shows the flowchart of the DVBPCA and MW-DVBPCA combined with the
DE for parameter optimization. Note that for the multi-output models, DVBPCA and
MW-DVBPCA, the average prediction error of four KVs is set as the fitness function.
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Figure 2. The flowchart of the DVBPCA and MW-DVBPCA.

4. Case Studies and Comparisons

A comparative study of data-driven virtual sensors upon a real-life natural gas steam
reforming hydrogen production process is provided in this section. Meanwhile, a case study
is useful for understanding the hydrogen production processes and data features. The
state-of-the-art virtual sensors and developed models (DVBPCA and MW-DVBPCA) are
investigated, including partial least squares (PLS) [30], VBPCA, long short-term memory
(LSTM) [31], echo state networks (ESN) [32], and dynamic PLS (DPLS) [33]. The PLS
is a classic static model with the advantages of modeling data colinearities and simple
data structure. The VBPCA is a static probabilistic model. Different from the PLS, the
VBPCA determines the number of principal components automatically, which is also the
basis of our developed models (DVBPCA and MW-DVBPCA). The LSTM and ESN are
advanced dynamic neural network models that consider the dynamics. The DPLS is the
improvement of the PLS based on the FIR paradigm, which also accounts for the dynamics
of the hydrogen production process.

4.1. Natural Gas Steam Reforming Hydrogen Production Process

The natural gas steam reforming hydrogen production process is the largest industrial
source of hydrogen, and it consists of four main processes: feedstock purification, steam
reforming, medium temperature conversion, and pressure swing adsorption. Among these
processes, steam reforming is the dominant reaction process, which is schematically shown
in Figure 3 [34]. Processed gases are mixed with steam in the pre-reformer, where all
hydrocarbons and some CH4 are converted to CO, CO2 and H2O. The temperature then
decreases, which is not conducive to promoting hydrogen generation. The pre-reformer
output is heated in a pre-heater and then continuously fed to the primary reformer for
complete reforming.

The main chemical reactions of this process are shown as follows:

CnH2n+2 + nH2O ∆←→ nCO + (2n + 1)H2

CH4 + H2O ∆←→ CO + 3H2

CO + H2O ∆←→ CO2 + H2.

(34)

According to Equation (34), the exit gases of the hydrogen production process consist
of CH4, CO, CO2, and H2, and the concentrations of these gases are KVs (as labeled “Y” in
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Figure 3) related to product quality. Therefore, these KVs need to be strictly monitored.
In practice, offline laboratory analysis and hardware sensors are traditional methods for
measuring the KVs, but have delays and high investment. Meanwhile, series-wound
devices (such as pre-reformers and pre-heaters) introduce considerable transportation
delays, which must be considered in virtual sensor modeling. Therefore, for giving real-
time predictions of the KVs, a virtual sensor considering transportation delays is desirable.

Figure 3. The flowchart of steam reforming process.

4.2. Explanatory Variable Selection and Data Collection

A total of 13 EVs for the virtual sensor development are selected based on the first prin-
ciples and the operation experience of the engineers. These EVs are easily measured vari-
ables, closely linked to the KVs and highly correlated with process variations, as shown by
labels U1–U13 in Figure 3. The descriptions of these EVs are listed in Table 1.

Table 1. EVs in the hydrogen production process.

EV Description

U1 Flow of fuel natural gas into primary reformer
U2 Flow of fuel off gas into primary reformer
U3 Pressure of fuel off gas at the exit of heat exchanger 3
U4 Pressure of furnace flue gas at primary reformer’s exit
U5 Temperature of fuel off gas at the exit of heat exchanger 3
U6 Temperature of fuel natural gas at pre-heater’s exit
U7 Temperature of process gas at primary reformer’s entrance
U8 Temperature of furnace flue gas at primary reformer’s top left
U9 Temperature of furnace flue gas at primary reformer’s top right

U10 Temperature of mixed furnace flue gas at primary reformer’s top
U11 Temperature of transformed gas at primary reformer’s left exit
U12 Temperature of transformed gas at primary reformer’s right exit
U13 Temperature of transformed gas at primary reformer’s exit
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The samples used to develop the virtual sensor of the KVs were obtained from the DCS
database. The KVs’ sampling rate is 10 min, and 2500 samples were collected. These were
divided into three parts in order of collection time: the training set, the validation set, and
the testing set, which consist of 1500 samples, 300 samples, and 700 samples, respectively.
Figures 4 and 5 show sample division and the changing trend of these EVs and four KVs,
respectively. In this article, we use scaled dimensionless data for modeling.
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Figure 4. The diagram of data partition of 13 EVs.
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Figure 5. The diagram of data partition of four KVs.

4.3. Evaluation Metrics

The root mean squares error (RMSE), the coefficient of determination (R2), and the
mean absolute error (MAE) are chosen to quantify different models’ performance, which
are defined as

RMSE =

√√√√ 1
N′

N′

∑
n′=1

(ŷn′ − yn′)
2

R2 = 1−
N′

∑
n′=1

(ŷn′ − yn′)
2
/ N′

∑
n′=1

(yn′ − ȳ)2

MAE =
1

N′
N′

∑
n′=1
|ŷn′ − yn′ |

(35)

where ŷn′ and yn′ are the estimated values and true values of the n′th testing sample,
respectively, N′ is the size of the testing dataset, and ȳ = ∑N′

n′=1 yn′/N′ are the mean of
the KVs in the testing dataset. The RMSE and MAE indexes characterize the average and
largest prediction errors on the test set, respectively, and the R2 index characterizes the
correlation between the predicted and true values. Therefore, the smaller the RMSE and
MAE or the bigger the R2, the higher the predictive accuracy.

4.4. Parameter Selection

All models’ optimal parameters need to be chosen to obtain different models’ best
prediction performance. Select the DE algorithm to minimize the average RMSE (i.e., the
mean of the RMSE of the four KVs) on the validation set for parameter optimization of
different models. For the PLS, the number of principal components and the time delays are
the parameters to be optimized. For the DPLS, the number of principal components, the
time delays and the dynamic orders are the parameters to be optimized. For the VBPCA-
based models, the time delays and the dynamic orders are the parameters to be optimized.
For the LSTM and ESN, the time delays are the parameters to be optimized.

For the VBPCA-based models, the key issue of automatic parameter determination
of the principal component number is whether each column of the loading matrix W is
either insignificant or significant, i.e., wm = 0 or wm 6= 0, which can be controlled by α
according to Equation (8). Take DVBPCA for example, the fact that the variance of each wm
can be quantified by 1/E(αm) for m = 1, ..., M, which is displayed in Figure 6. The color
distinction of the points in Figure 6 means the value of 1/E(αm) is either insignificant or
significant by setting threshold, where red means significant and blue means insignificant.
As shown in Figure 6, the appropriate dimensionality of the principal component subspace
is selected as 39.
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Figure 6. Variance of each wm by DVBPCA.

For the ESN, set the input regulation scale to 0.1, set the reservoir size to 50, and set the
spectral radius to 0.8. Considering that the ESN involves the random weights in the reservoir
computing step, 20 modeling tests were performed. For each trial, the random weights are
saved and fixed, and the DE algorithm is used to optimize the model delays further. Then,
the best results from 20 tests are picked for model performance comparison. Note that the
ESN is a single-output model; we therefore construct four ESN models, one for each KV. For
the LSTM, based on the debugging experience, set the time step to 1, set the learning rate to
0.1, set the hidden layer to 1, and set the neuron number in the hidden layer to 100, which
performs favorably empirically in each of the replicated experiments of this work.

For the MW-DVBPCA, the impact of MW size is detailed in Figure 7. The MW size is in
units of 10 mins, i.e., setting the MW size to 50 means that the MW contains 500 min of data.
As shown in Figure 7, for small MW sizes, the data in the window may not appropriately
represent the relationship between process variables. In contrast, excessive MW size covers
too much outdated sample data so that the MW-DVBPCA fails to track the process change
adequately. Therefore, according to Figure 7, the MW size was selected as 50.
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Figure 7. Impact of MW size for: (a) CH4 concentration, (b) CO concentration, (c) CO2 concentration,
and (d) H2 concentration.
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4.5. Results and Analysis

The estimations on the test set of the KVs obtained by the investigated seven virtual
sensors are visualized in Figures 8–10. In Figure 8, obviously, the PLS and VBPCA have
the poor estimation performance. Because of the significant dynamics of the hydrogen
production process, the estimation accuracy of the static models, PLS and VBPCA, is not as
satisfactory as that of the other five dynamic models (such as around the 120-th sample of
the CO2 concentration). Figure 9 shows that the estimated values of the DVBPCA tracks
real values better than the other three models (such as around the 300-th sample of the CO
concentration and around the 300-th sample of the CO2 concentration). That is because, on
the one hand, the DVBPCA can deal with the colinearities between the EVs compared with
the LSTM and ESN. On the other hand, the DVBPCA can tackle the overfitting results from
high-order variable augmentation compared with the DPLS. Moreover, the ESN constructs
four virtual sensors, one for each KV for estimation, but the DVBPCA is a multi-output
model that considers the inherent relationships between the KVs. Figure 10 illustrate that
the estimations of the four KVs by the MW-DVBPCA match the real values much better
(particularly in the localized area of the CH4 concentration around the 440-th sample)
than other models, revealing the importance of considering time variation properties in
the virtual sensor modeling of the hydrogen production process. Moreover, although
the overall predicted values do match well with the true ones when the proposed MW-
DVBPCA method was used, some discrepancies can be observed between test sample
number 200 and 300 for all the four KVs. The possible reasons for these differences in
the predicted and true values are as follows. Firstly, the characteristics of the samples
between test sample number 200 and 300 are changing rapidly, and model learning does
not accommodate such changes in time. Secondly, the samples between test sample number
200 and 300 have nonlinearities, but the local model constructed by MW-DVBPCA is linear.
Overall, it is recognized that the proposed models show noticeable advantages over the
benchmark models.
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Figure 8. Estimations of four KVs by the PLS, VBPCA, and LSTM: (a) CH4 concentration, (b) CO
concentration, (c) CO2 concentration, and (d) H2 concentration.
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Figure 9. Estimations of four KVs by the ESN, DPLS, and DVBPCA: (a) CH4 concentration, (b) CO
concentration, (c) CO2 concentration, and (d) H2 concentration.
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Figure 10. Estimations of four KVs by the MW-DVBPCA: (a) CH4 concentration, (b) CO concentration,
(c) CO2 concentration, and (d) H2 concentration.
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Figure 11 compares the seven models in terms of scatter plots. Based on Figure 11, a
further comparison of the prediction of the data-driven models can be made. As shown
in Figure 11a, the predictions of the PLS for CH4 component deviate obviously from the
real values. Figure 11b,c shows that the VBPCA model improves the prediction accuracy of
CO and CO2 concentrations somewhat compared to the PLS model. However, the overall
prediction accuracy is still very low. Figure 11d reveals that all models have relatively poor
prediction accuracy for the H2 concentration, but the MW-DVBPCA presents a better result.
As indicated in Figure 11, the scatters by MW-DVBPCA are more closely and clearly located
around the diagonal line than those of other models, thus illustrating better performance.
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Figure 11. Scatter plot comparisons between various models for: (a) CH4 concentration, (b) CO
concentration, (c) CO2 concentration, and (d) H2 concentration.

The estimation performance of all data-driven virtual sensors is quantitatively tab-
ulated in Tables 2 and 3. For a further comparison, Tables 2 and 3 show the estimations
of the data-driven virtual sensors not considering transportation delays. These models’
parameter selection is consistent with the corresponding model considering transportation
delays. Overall, the estimation results in Tables 2 and 3 provide an initial validation of
the effectiveness of the data-driven virtual sensors. However, the performances of the
different data-driven virtual sensors vary considerably. The performance of the models
that consider delays is better than that of the corresponding models that do not, as shown
in Tables 2 and 3. Take the DVBPCA as an instance. The predictive performance based
on the RMSE index of the four KVs by the model accounting for the time delays is im-
proved by 18.6%, 13.0%, 2.3%, and 5.5%, respectively, compared to the model ignoring
time delays. This is because the hydrogen production process has substantial time delays,
and it has been proven that ignoring the delays could result in significantly deteriorated
performance [29]. The R2 values for two static models, i.e., the PLS and VBPCA, are as
low as below 0.5; in contrast, the dynamic models, such as LSTM, ESN, and DPLS, show
significantly better performance than the PLS and VBPCA, indicating the dynamic model
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better fits the data features of the actual hydrogen production process. Moreover, due to
the capability of dealing with overfitting, the DVBPCA performs better than the DPLS.
Concretely, compared to the DPLS, the RMSEs of the four KVs obtained by the DVBPCA
are decreased by 13.4%, 1.8%, 3.2%, and 4.8%, respectively. Moreover, the MW-DVBPCA
further improves the estimations of the four KVs. The R2s of the CH4 and H2 concentrations
reach as high as up to 0.9. Compared with the DVBPCA, the predictive performance on the
four KVs by the MW-DVBPCA improves by 1.3%, 10.3%, 2.8%, and 33.4%, respectively, in
terms of the MAE index.

Table 2. Quantitative estimation results of various models for the concentrations of CH4 and CO.

CH4 CO

RMSE R2 MAE RMSE R2 MAE

1©

PLS 0.1915 −0.1329 0.1643 0.1944 −0.0975 0.1483
VBPCA 0.2061 −0.2566 0.1703 0.2054 −0.2259 0.1592
LSTM 0.1567 0.2733 0.1373 0.1351 0.5370 0.1080
ESN 0.1150 0.6088 0.0965 0.1148 0.6173 0.0968

DPLS 0.0942 0.7373 0.0770 0.0956 0.7348 0.0764
DVBPCA 0.0827 0.7975 0.0704 0.0826 0.8018 0.0662

MW-DVBPCA 0.0525 0.9186 0.0388 0.0709 0.8538 0.0533

2©

PLS 0.1348 0.4623 0.1077 0.1352 0.4687 0.1067
VBPCA 0.1339 0.4694 0.1092 0.1315 0.4976 0.1052
LSTM 0.1227 0.5543 0.1051 0.0829 0.8128 0.0606
ESN 0.0955 0.7301 0.0759 0.0912 0.7582 0.0730

DPLS 0.0777 0.8215 0.0647 0.0732 0.8444 0.0587
DVBPCA 0.0673 0.8659 0.0536 0.0719 0.8497 0.0574

MW-DVBPCA 0.0511 0.9228 0.0368 0.0665 0.8717 0.0515
1© The time delays are not considered, 2© the time delays are considered.

Table 3. Quantitative estimation results of various models for the concentrations of CO2 and H2.

CO2 H2

RMSE R2 MAE RMSE R2 MAE

1©

PLS 0.1930 0.0095 0.1536 0.1882 −0.0729 0.1612
VBPCA 0.1913 0.0264 0.1521 0.1973 −0.1792 0.1660
LSTM 0.1562 0.3949 0.1293 0.1302 0.4863 0.1118
ESN 0.1152 0.6471 0.0946 0.1057 0.6616 0.0895

DPLS 0.1346 0.5185 0.1099 0.0955 0.7237 0.0779
DVBPCA 0.1145 0.6514 0.0906 0.0796 0.8080 0.0676

MW-DVBPCA 0.1103 0.6765 0.0858 0.0548 0.9090 0.0425

2©

PLS 0.1724 0.2094 0.1400 0.1320 0.4722 0.1090
VBPCA 0.1648 0.2777 0.1361 0.1289 0.4964 0.1065
LSTM 0.1352 0.5137 0.1094 0.1292 0.4943 0.1015
ESN 0.1230 0.5978 0.1007 0.0823 0.7948 0.0678

DPLS 0.1156 0.6448 0.0934 0.0790 0.8107 0.0669
DVBPCA 0.1119 0.6670 0.0859 0.0752 0.8285 0.0605

MW-DVBPCA 0.1056 0.7036 0.0835 0.0531 0.9146 0.0403
1© The time delays are not considered, 2© the time delays are considered.

Furthermore, to check whether the MW-DVBPCA’s performance is significantly differ-
ent from that of other models, the Wilcoxon test is employed for statistical testing [35]. The
Wilcoxon test is a non-parametric testing method which is used to examine whether there
is significant difference in the median values of the squared estimation errors obtain by the
two virtual sensors. In Wilcoxon’s test, the likelihood that the corresponding hypothesis
will be accepted is measured by calculating the p-value. The smaller the value of p-value,
the lower the probability that the corresponding hypothesis will be accepted. Typically, the
hypothesis should be rejected if the p-value is less than the given significance level η, the
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hypothesis should be rejected; that is, statistically the median values of two virtual sensors
are different.

The Wilcoxon test results are given in Table 4, where E2
PLS, E2

VBPCA, E2
LSTM, E2

ESN,
E2

DPLS, E2
DVBPCA, and E2

MW-DVBPCA mean the median values of squared estimated errors
obtained by the PLS, VBPCA, LSTM, ESN, DPLS, DVBPCA, and MW-DVBPCA, respectively.
Additionally, set the significance level η at 5%. As shown in Table 4, all hypothesized p-
values are far below η. Hence, all hypotheses are rejected. In other words, there is statistical
significance in comparing the MW-DVBPCA with other virtual sensors in the hydrogen
production process.

Table 4. Results of the Wilcoxon test.

KV Hypothesis p-Value Decision

CH4 concentration

H0 : E2
MW-DVBPCA = E2

PLS 2.79× 10−70 RejectH0

H0 : E2
MW-DVBPCA = E2

VBPCA 1.48× 10−71 RejectH0

H0 : E2
MW-DVBPCA = E2

LSTM 1.15× 10−81 RejectH0

H0 : E2
MW-DVBPCA = E2

ESN 5.39× 10−42 RejectH0

H0 : E2
MW-DVBPCA = E2

DPLS 6.32× 10−30 RejectH0

H0 : E2
MW-DVBPCA = E2

DVBPCA 1.03× 10−56 RejectH0

CO concentration

H0 : E2
MW-DVBPCA = E2

PLS 7.67× 10−45 RejectH0

H0 : E2
MW-DVBPCA = E2

VBPCA 3.15× 10−44 RejectH0

H0 : E2
MW-DVBPCA = E2

LSTM 8.1× 10−3 RejectH0

H0 : E2
MW-DVBPCA = E2

ESN 1.43× 10−18 RejectH0

H0 : E2
MW-DVBPCA = E2

DPLS 2.3× 10−3 RejectH0

H0 : E2
MW-DVBPCA = E2

DVBPCA 2.58× 10−11 RejectH0

CO2 concentration

H0 : E2
MW-DVBPCA = E2

PLS 3.00× 10−35 RejectH0

H0 : E2
MW-DVBPCA = E2

VBPCA 1.69× 10−36 RejectH0

H0 : E2
MW-DVBPCA = E2

LSTM 8.67× 10−15 RejectH0

H0 : E2
MW-DVBPCA = E2

ESN 1.19× 10−5 RejectH0

H0 : E2
MW-DVBPCA = E2

DPLS 9.95× 10−4 RejectH0

H0 : E2
MW-DVBPCA = E2

DVBPCA 2.78× 10−4 RejectH0

H2 concentration

H0 : E2
MW-DVBPCA = E2

PLS 6.52× 10−74 RejectH0

H0 : E2
MW-DVBPCA = E2

VBPCA 4.60× 10−69 RejectH0

H0 : E2
MW-DVBPCA = E2

LSTM 3.04× 10−60 RejectH0

H0 : E2
MW-DVBPCA = E2

ESN 2.97× 10−29 RejectH0

H0 : E2
MW-DVBPCA = E2

DPLS 4.25× 10−30 RejectH0

H0 : E2
MW-DVBPCA = E2

DVBPCA 3.19× 10−50 RejectH0

4.6. Computational Efficiency Analysis

Since this article is concerned with real-time estimation, examining the runtime of the
model is desirable. The offline and online computational efficiency of the virtual sensors
is evaluated using the average over 10 independent simulations, including the CPU time
consumed offline for parameter optimization (CPTopt) and the CPU time consumed online
(CPTonline). All experiments were computed on a Core i5 (2.90 GHz × 2) with 8 GB RAM,
Windows 10 and R2021a version of MATLAB.

Table 5 lists the time taken by each virtual sensor on parameter determination. As
can be observed, the CPTopt index for the DVBPCA model is much smaller than that for
the LSTM, due to its more concise structure. The CPTopt indices for other dynamic global
models are almost the same as those for the DVBPCA, but other dynamic global models
have lower accuracy than the DVBPCA given in Table 2 and Table 3. Note that the CPTopt

index for the MW-DVBPCA is much larger than that for the DVBPCA, which is because
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the MW-DVBPCA needs to rebuild the model each time it predicts a new valid sample.
Fortunately, the parameter determination processes are carried out offline. In other words,
this process hardly affects the online calculative efficiency of the MW-DVBPCA. The last
column of Table 5 illustrates the online computation time of MW-DVBPCA. Consequently,
the online computational efficiency of the developed models is not an issue. In practice,
the CPTopt indices for all virtual sensors are less than 0.1 s/sample, significantly faster
than the minimum sampling period for the KVs in the hydrogen production process. The
results show that all data-driven virtual sensors meet the time requirements for real-time
estimation, including the developed DVBPCA and MW-DVBPCA.

Table 5. Comparison of computational efficiency of various models (seconds).

CPTopt CPTonline

PLS 3.44 <0.01
VBPCA 11.49 <0.01
LSTM 3893.01 0.04
ESN 264.38 <0.01

DPLS 255.83 <0.01
DVBPCA 210.16 <0.01

MW-DVBPCA 1877.91 0.06

5. Conclusions and Outlook

Considering the complicated properties of the hydrogen production process, we
develop virtual sensors for the KVs of the hydrogen production process in this article. The
MW-DVBPCA is developed to model complicated properties of the hydrogen production
process, including dynamics, time variations, and transportation delays. To be specific, the
FIR paradigm and MW technique are employed to extract process dynamics and to deal
with time variations, respectively. The time delays are determined automatically by the
DE. A comparative study of developed virtual sensors and other state-of-the-art virtual
sensors is carried out. Meanwhile, the performance of MW-DVBPCA is demonstrated by
the real-life natural gas steam reforming hydrogen production process.

From the industrial point of view, the online estimations of the KVs of the hydrogen
production process need further research. Some future works are given to further improve
the estimation performance of the KVs.

• Robust methods. The probabilistic model in this article is based on the traditional
Gaussian distribution assumption, which is susceptible to outliers. Therefore, the
training set must be cleaned to remove outliers. However, some outliers are indis-
tinctive and challenging to detect and remove. To this end, finding a probability
distribution insensitive to the noise and outliers can help improve the generalization
performance of predictive models. Typically, Student’s t distribution with heavier tails
is a candidate choice. As a result, designing a robust virtual sensor based on Student’s
t distribution is worth investigating.

• Data-driven approaches fused with process knowledge. In fact, the states (or the
hidden variables) of the system are influenced by variables characterizing materials
and energies fed into the process. Conventional virtual sensors take all observed
variables as inputs and the KVs as outputs, which makes it difficult to describe the
true causality between variables of the hydrogen production process, weakening
the interpretability and generalization abilities. A causal virtual sensor can better
reflect the process mechanism and thus estimate the KVs more accurately. Therefore,
equipping the MW-DVBPCA model with the causality of process variables of the
hydrogen production process is desirable.
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