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Abstract: CMOS image sensor (CIS) semiconductor products are integral to mobile phones and
photographic devices, necessitating ongoing enhancements in efficiency and quality for superior
photographic outcomes. The presence of white pixels serves as a crucial metric for assessing CIS
product performance, primarily arising from metal impurity contamination during the wafer produc-
tion process or from defects introduced by the grinding blade process. While immediately addressing
metal impurity contamination during production presents challenges, refining the handling of defects
attributed to grinding blade processing can notably mitigate white pixel issues in CIS products. This
study zeroes in on silicon wafer manufacturers in Taiwan, analyzing white pixel defects reported
by customers and leveraging machine learning to pinpoint and predict key factors leading to white
pixel defects from grinding blade operations. Such pioneering practical studies are rare. The findings
reveal that the classification and regression tree (CART) and random forest (RF) models deliver the
most accurate predictions (95.18%) of white pixel defects caused by grinding blade operations in
a default parameter setting. The analysis further elucidates critical factors like grinding load and
torque, vital for the genesis of white pixel defects. The insights garnered from this study aim to arm
operators with proactive measures to diminish the potential for customer complaints.

Keywords: CMOS image sensor; white pixel defect; machine learning; wafer; prediction

1. Introduction

Silicon wafers are fundamental in semiconductor manufacturing, undergoing multiple
processes to become semiconductor components [1]. The industry’s growth is intertwined
with the semiconductor sector’s dynamics. Recently, COVID-19 induced cautious supply-
side expansion and increased safety stocks, leading to shortages across the semiconductor
chain, affecting everything from advanced to mature wafer production capacities. This
situation has escalated wafer prices and extended to semiconductor packaging, testing,
and circuit design, highlighting the importance of collaboration between suppliers and
customers to maintain high-quality wafer production amidst shortages.

The quality of wafers, the foundational material for semiconductors, is determined
after numerous manufacturing processes and is influenced by various factors such as
equipment, personnel, and timing. Defects often become apparent only after wafers are
used by customers, causing significant losses. As semiconductor components become more
complex and smaller, the tolerance for metal contamination decreases, leading to potential
quality issues [2].

The relationship between white pixel defects in wafers and the crystal lies in the
crystalline structure’s quality and the fabrication process. White pixel defects can emerge
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due to inconsistencies or impurities within the crystal substrate of the wafer, affecting
the electrical properties essential for device functionality. High crystal quality, involving
purity and structural integrity, is vital to minimize such defects, ensuring the reliability and
performance of semiconductor devices [3].

Chien et al. [4] investigated white pixel defects in wafers using convolutional neural net-
works (CNNs) for the inspection and classification of semiconductor wafer surface defects.
Their deep learning approach demonstrates high accuracy in identifying various defect
types, offering significant improvements in yield. Ma et al. [5] reviewed the advancements
in wafer surface defect detection, emphasizing the role of these technologies in quality con-
trol. They categorize detection techniques into image signal processing, machine learning,
and deep learning, providing insights into the algorithms” strengths and limitations. The
reviews [6-8] also highlight ongoing challenges and future research directions, showcasing
the rapid development of neural networks in defect detection, aiming to boost efficiency
and accuracy while reducing manual intervention in semiconductor manufacturing.

The main cause of white pixel defects in wafers is contamination from metal impu-
rities and defects from grinding process blades. While it is challenging to reduce metal
contamination immediately, addressing blade-induced defects can significantly reduce
these issues in CIS products. This study examines how Company F (Taiwan, China), a
leading semiconductor wafer manufacturer in Taiwan, tackles white pixel defects, focusing
on enhancing response to customer complaints and defect analysis. By employing machine
learning techniques, the study aims to improve resource utilization and identify defect
causes through reverse engineering. The ultimate goal is to develop a predictive model for
white pixel defects, providing process improvement engineers with proactive strategies to
minimize these defects.

2. Preliminary
2.1. White Pixel Defects

CMOS image sensors, extending from office devices to household uses like internet
video and reversed-image assistance systems, face issues like noise and low sensitivity due
to dark current. By focusing on reducing dark current through failure mode analysis and
identifying process-related defects, improvements in the CMOS manufacturing process
could make CMOS a viable replacement for CCD. Key findings include high dark current
linked to surface damage and defects near specific components, attributed to plasma
charging-induced defects, highlighting areas for process improvement.

Defects in CMOS image sensors originate not only from the CMOS process but also
from weaknesses in the raw wafer process, leading to intrinsic defects like bulk micro
defects due to high oxygen levels. These defects, including dislocation pits, are closely
linked to white pixel occurrences. Analyzed customer returns, specifically 300 mm EPI
wafers for CIS, highlight metal contamination and the wafer’s internal recovery capability
as primary causes of white pixel defects.

White pixel defects in wafers refer to specific types of imperfections that appear on
semiconductor wafers used in the manufacturing of integrated circuits and other electronic
devices [9,10]. These defects are visible as white spots or pixels when the wafer is inspected
visually or with imaging tools. White pixel defects can result from a variety of sources,
including contamination, process deviations, material imperfections, or issues with the
equipment used in the semiconductor fabrication process. The presence of these defects can
affect the performance, reliability, and yield of semiconductor devices, making it crucial to
detect and classify them accurately for quality control and process improvement. Figure 1
is an illustration depicting a semiconductor wafer with white pixel defects. The image
shows a close-up view of the wafer, highlighting the white spots or pixels indicating defects
scattered irregularly across its surface, providing an insight into how these defects appear
in semiconductor manufacturing.
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Figure 1. A demonstration of wafer with white pixel defects.

It is not possible to immediately reduce the contamination of metal impurities during
the manufacturing process, but improving the defects caused by grinding blades can
significantly improve the white pixel defect problem of CIS products. When customers
report white pixel issues in CIS products, it is crucial to diagnose the defect’s cause, confirm
it with the responsible party, and request an improvement report for customer approval.
Insights from discussions with senior engineers from Company F, have identified key
factors affecting white pixels in wafer grinding process blades, summarized in Table 1.

Table 1. Characteristic comparison of white pixels and wafer fabrication process factors.

Phenomenon Effect Feature Quality Features Engineering Effect Factor

Polishing pressure
changes
Damage Minor scratch Grind Pad Lot

Slurry Lot

Contamination

Crystallization within the device

Material anomaly

Pad Lot
Double-edging
polishing Slurry Lot

Carrier Lot
Single-wafer Pad Lot
polishing Slurry Lot

Cleaning liquid
cleanliness

Abnormal white
pixels

Metal Bulk layer metal

Wash after

epitaxial Cleaning liquid

concentration

Environment

Equipment
abnormality

Epitaxy Gas cleanliness

Contamination in
the furnace

Crystal pulling

Gettering ability of condition

heavy metal BMD Crystallization
pollution Bron concentration

2.2. Machine Learning Approach

From the perspective of time efficiency, the advantages of machine learning models
are as follows:

1.  Machine learning models can process large amounts of image data (such as semicon-
ductor wafer scans) faster than manual inspection methods or traditional automated
methods that rely on simpler algorithms. Once trained, these models can analyze new
imagery almost instantly, which is critical to maintaining production line speeds and
meeting high demand.
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2. Machine learning models are able to learn from data and improve over time without
being explicitly programmed for each specific task. This means they can become more
efficient and accurate as more data are processed.

3. The automation provided by machine learning reduces the need for human input
during the inspection process, allowing for continuous operations without the inter-
ruptions or slowdowns typically seen with manual inspections, and reducing the
potential for human error.

4. Machine learning systems can easily scale as production volumes increase and can
easily adapt to different types of defects or changes in the manufacturing process.
Traditional methods may require significant reconfiguration or redevelopment to
handle new types of defects or changes in the manufacturing environment.

5. Machine learning models can be integrated into existing quality control systems to
enhance their functionality rather than completely replacing them. This integration
can significantly increase speed and efficiency because these models enhance the
capabilities of traditional methods by adding layers of intelligence and adaptability.

6. Inaddition to detecting existing defects, machine learning models can predict potential
future failures by identifying subtle patterns that may precede defects. This saves a
lot of time and resources.

In summary, machine learning models provide significant time efficiency advantages
by automating and accelerating the defect detection process, reducing manual labor, and
improving the adaptability and predictive capabilities of semiconductor manufacturing
quality control systems.

The choice between basic machine learning models and deep learning models depends
on the specific requirements of the task, including the need for interpretability, dataset
characteristics, computational resources, and expertise. For white pixel defect prediction,
the advantages of basic models in terms of interpretability, efficiency, and performance on
structured data make them appealing choices for initial exploration and analysis. There-
fore, C5.0 and CART, along with random forest and SVM, are selected in this study to
further investigation.

2.2.1. Decision Tree (C5.0)

The decision tree algorithm, known for its high interpretability, constructs predictive
machine learning models using straightforward rules. It operates like a Boolean function,
processing attributes to output a “yes” or “no” decision. The C5.0 algorithm, recognized
for its maturity and widespread use in prediction research, perfectly suits the construction
of models for this study’s CIS white pixel issue analysis [11].

2.2.2. CART

The CART algorithm constructs both classification and regression trees. It uses binary
splits to divide samples and bases each optimal split on a single variable. For categorical
variables, it employs the Gini index or Towing, and for continuous variables, it uses
methods like least squares. CART’s simplicity and binary-tree structure make it suitable for
both categorical and binary scenarios, with a pruning strategy to refine the model, making
it effective for diverse data types and predictive modeling [12].

The CART algorithm is advantageous for its non-reliance on data type assumptions, its
capability to manage complex data, and its flexibility in not pre-defining rules, allowing for
easy information retrieval. Its key strength lies in developing fully grown trees optimized
via pruning, making it ideal for predictive modeling across various domains. Given its
maturity and widespread application in predictive research, CART is selected for modeling
the CIS white pixel issue in this study, demonstrating its suitability for addressing complex
analytical challenges.
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2.2.3. Random Forest

The random forest (RF) algorithm, originating from Bell Labs in 1995, merges multiple
decision trees to form a collective decision based on the majority. It is celebrated for its
accuracy, ability to handle numerous input variables, and versatility across various data sets.
RF estimates missing data, ranks variable importance, and detects variable interactions,
useful for outlier detection and data visualization. While efficient, RF’s performance might
suffer from computational demands or noise in data, potentially leading to overfitting [13].

2.2.4. Support Vector Machine

The support vector machine (SVM) algorithm is a versatile supervised learning method
that excels in classifying data into distinct categories by finding the optimal separating
hyperplane. It is particularly effective for high-dimensional spaces and situations where
the number of dimensions exceeds the number of samples. However, SVM can be compu-
tationally intensive for large datasets and may struggle with noisy data. Additionally, SVM
does not inherently provide probability estimates, requiring additional steps like five-fold
cross-validation to obtain these.

3. Methodology

This study addresses semiconductor quality issues through the application of various
tools and techniques. In particular, machine learning technology is employed to develop
a prediction model for identifying white pixel defects. Decision tree algorithms such as
C5.0 and CART, along with random forest and SVM, are utilized in the R programming
language to construct the prediction model. This section provides a detailed explanation of
the research methodology.

3.1. Framework

The study’s framework, as illustrated in Figure 2, involves four key stages, each
contributing to the construction and evaluation of the predictive model.

1. First Stage—Data Selection and Integration: This stage involves outlining the data
sources utilized in the study, along with a description of how the collected data are
processed and formatted to meet the study’s requirements. It includes defining the
research dependent and independent variables. Data pre-processing: here, the study
addresses noise reduction, elimination of incomplete data, and normalization tech-
niques to enhance the accuracy of the predictive model. Research variable screening:
the methodology for variable selection is explained, including the use of a multinomial
logit regression algorithm in R to identify significant factors influencing white pixel
defects, resulting in the construction of the input model with 45 relevant variables.

2. Second Stage: At this stage, the basic model of machine learning is selected. The
choice between basic machine learning models and deep learning models depends on
the specific requirements of the task, including the need for interpretability, dataset
characteristics, computational resources, and expertise. For white pixel defect pre-
diction, the advantages of basic models in terms of interpretability, efficiency, and
performance on structured data make them appealing choices for initial exploration
and analysis. Therefore, C5.0 and CART, along with random forest and SVM, are
selected to further the investigation.

3. Third Stage: In this stage, the analyzed data are employed for model construction and
prediction procedures. The K-fold cross-validation method is employed to identify
the most accurate prediction model.

4. Fourth Stage: To compare and evaluate the R language-constructed models, the study

fixes the seed setting value at 123 in R for consistency across calculations. The decision
tree (C5.0), CART, RF, and SVM models are constructed and compared. The best-
performing prediction model is revealed. Furthermore, significant factors obtained
from models are extracted and analyzed for their impact on white pixel defects.
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Figure 2. Framework of the study.

3.2. Case Study

This case pertains to Company F, a silicon wafer manufacturing firm located in central
and southern Taiwan. In 2019, the company faced a significant issue when white pixel
defects were detected on client-side wafers, leading to a decline in the final product yield.
Typically, white pixel defects can stem from various factors such as metal contamination
on the wafer or internal defects within the wafer layers. Sources of wafer contamination
and defects may include unclean processing equipment, contaminated materials, or inade-
quate clean room conditions [14,15]. Additionally, environmental impurities or abnormal
processing parameters of the wafer material itself can contribute to such issues. These
challenges are ubiquitous across wafer manufacturing plants, affecting both upstream
and downstream clients alike. In this particular case, Company F received reports from
customers indicating abnormally high rates of white pixel defects across different products,
with a defect rate soaring as high as 80%—a stark contrast to the typical rate of around 10%,
as depicted in Table 2 below. Due to the widespread presence of white pixels covering the
entire surface of the wafer, they were compelled to halt shipments to prevent further losses.
This decision placed immense pressure on Company F’s shipping operations. Consequently,
addressing the white pixel issue promptly and effectively became paramount to mitigate
any prolonged disruption. Upon scrutinizing Company F’s processing equipment records,
it was observed that wafers exhibiting white pixels did not share the same processing
number, as illustrated in Figure 3.
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Table 2. White pixel abnormality occurrence ratio.

Product White Pixel (%) Output WIP
EU17 79.5 13L/325pcs 3L/75pcs
EU22 7/175pcs 1L/25pcs
EU11 4L/100pcs 0
EU16 36.5 13L/25pcs 8L/200pcs
EU19 12/300pcs 0
EU25 13.5 13L/325pcs 5L/125pcs
EU30 24.6 21L/525pcs 3L/75pcs
EU33 68.6 71L/1775pcs 8L/200pcs
EU34 19/475pcs 0
EU37 0.3 2L/50pcs 10L/250pcs
EU39 1L/25pcs 4L/100pcs
EU42 1L/25pcs 0
EU18 0 4L./100pcs

177L/4425pcs 46L/1150pcs

Pulling

100

E

§

i

Sub_LPD

Mosaic Plot
1o

o

2

i

Figure 3. Confirmation of equipment commonality (source: Company F).
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Due to the company need to immediately resolve the white pixel defect problem, this
study focuses solely on the impacted blade grinding process. Upon further investigation,
Company F confirmed that all materials and products used in the grinding equipment
contributed to surface defects on the wafers. Figure 4 is a simulated diagram illustrating
how the grinding process with an impacted blade can lead to the formation of white pixel
defects in a semiconductor wafer. The visualization shows the side view of the grinding
process, highlighting the relationship between the condition of the blade and the occurrence
of defects on the wafer. It was noted that, starting from August 2019, following processing
on Pad D, there was a notably higher incidence of white pixel abnormalities observed
on the client side compared to other pads. This led to the realization that the abnormal
white pixels reported by customers were strongly linked to Pad D in Company F’s grinding
machine, as depicted in Figure 5. However, there remains a possibility that other pads
may also be affected, albeit undetected thus far. This anomaly has instilled distrust among
customers towards Company F’s products, prompting them to cease shipments. Without
appropriate intervention, this situation could lead to unforeseeable losses for Company F,
including potential customer compensation. Hence, addressing the white pixel problem is
imperative and must be prioritized as a top concern.

Griinding processs
with an impacted blade

Impimpect condactiont dedect
witth an semitrocoior wafer

The inperfeul
contact ethen
an cause white

pixelel defefcts

Figure 4. A simulated impacted blade leads to white pixel defects in a wafer.

100
SMP_Month
- ® 201906
® 201907
) ) ® 201908
T 60 ® 201909
2 ® 201910
o 407 ® 201911
.‘é‘
= 204
0_
AR EEREEEEBEE BEE =
A | B | C D E

Figure 5. Survey on pad material numbers used in leaf grinding machines (Redbox means abnormal
increase in wafer white pixels).
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Currently, Company F employs cause analysis and identifying the root cause (D4:

Identify the Root Cause) within Ford’s 8D approach to pinpoint potential influencing
factors. After expert inferences and experimentation, and subsequent analysis by quality
and technical engineers, consistent results have been obtained. It is concluded that the
manufacturing parameters of the pad utilized in the grinding equipment should be adjusted,
as they are believed to directly impact the product quality during processing. The analysis
results are outlined in Figure 6 below.

SMP Slurry
Environment Device supply
system

Poor
Crew maintenance

i b lity .
.SMP pmc.ess‘““g . | — abnorma Il)evice Specific staff
environment is p \ Device is l :
4 N Vv processing
contaminated . SMP ifi
" duri abnormality, specihic
The processing uring Specific ersonnel
environment is polluted processing - Device

processing

N

WP% high

SMP Pad Raw material-| Process
‘ Raw material COA level shift | analysis D changes changes
results Raw materials Change PAD

are contaminated \ operation method

Specific Pad o _
rocessin perational
Method approach changes

Figure 6. Factor analysis of white pixels in wafer manufacturing plants.

The data collection period for this study spans from April 2019 to the end of November

2019, totaling 4980 pieces. Subsequently, the following steps were undertaken to organize
the dataset:

Step 1: Gather 4980 pieces of Company F’s process data and customer complaint pixel
data, focusing on significant periods for analysis.

Step 2: Define model variables. Following discussions with senior engineers specializ-
ing in wafer manufacturing technology, the research scope was confined to the wafer
surface grinding process. The aim was to identify input variables potentially affecting
white pixel defects in CIS products.

Step 3: Screen processing variables of the grinding process. The grinding mechanism
comprises three programs: R, C, and L. Within the wafer mirror grinding process, the
R program aims to eliminate grinding stress and remove oxide film, while the C and L
programs aim to enhance surface roughness and particle levels. The RCL program
revealed 45 influencing variables, each described in Table 3, with their interrelations
and correlations depicted in Figure 7.

Step 4: Data pre-processing. After confirming the research range of the collected case
data and deleting missing data and duplicate data.

Table 3. Description of input variables.

ID LM_ID Define Content Value Type Impact
Y1 White pixel ratio Customer response white pixel value quantitative, Affects end-user yield rate
qualitative
2 Compression ratio of the grinding L Whether the shrinkage ratio of the
L1 L_Compressibility machine’s L-axis grinding cloth quantitative grinding process affects the white pixels
. The space of the grinding cloth on the L-axis o Does the density of the grinding process
L2 L_Density of the grinding machine quantitative affect the white pixels?
- Elastic modulus of the grinding cloth for the - Does the elastic modulus during grinding
L3 L_Elasticity L-axis of the grinding machine quantitative and cracking affect the white pixels?
Lo . Whether the hardness of grinding and
L4 L_Hardness Hardnegs Of. the grmd}ng cloth for the L-axis quantitative cracking is compared with the shadow
of the grinding machine . A
warning of white pixels
. . . s Whether the open pore ratio has any effect
L5 L_Pore Rate The ratio of openings in the grinding cloth quantitative on white pixels during grinding

on the L-axis of the grinding machine

and cracking
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Table 3. Cont.

ID LM_ID Define Content Value Type Impact
. The open pore diameter of the L-axis o Whether the open pore size during
L6 LPore Size grinding cloth of the grinding machine quantitative grinding has any effect on white pixels
L7 L Thickness Thic}(ness of the glﬁinding clgth for the quantitative Gripdin_g thickness has no effect on
L-axis of the grinding machine white pixels
The size of the slurry flow during
L8 L_SLURRY_FLOW Ltable grinding with slurry flow quantitative grinding, and whether there is any
shadow of the white pixels
L9 L_CHILLER_TEMP Ltable grinding cooler temperature quantitative gffe'ct of o ol%ng effect on white pixels
uring grinding
L10 L_CHILLER_FLOW Ltable grinding slurry flow quantitative Cooling effect during grinding, presence
or absence of shadows on white pixels
Whether the amount of force loaded
L11 L_LOAD_AVE Ltable grinding load quantitative during grinding has any impact on
white pixels
Whether the amount of force loaded
L12 Z_T_TORQUE_AVE Ltable Table Torque quantitative during grinding has any impact on
white pixels
Whether the amount of force loaded
L13 L_HTORQUE_AVE Ltable Head Torque quantitative during grinding has any impact on
white pixels
L14 LT_TEMP_AVE Ltable Table Temperature quantitative gffe_ct of tl_1e qoohng effect on white pixels
uring grinding
L15  L_SLURRY_TEMP Table Slurry temperature for grinding quantitative The impact of the slurry temperature on
white pixels during grinding
. Compression rate of the grinding cloth on - The impact of the compression ratio on
Rl R_Compressibility the R-axis of the grinding machine quantitative white pixels during grinding and cracking
R2 R_Density The space of the grinc.ling cloth on the R-axis quantitative The‘ effect. of fiensity on white pixels
of the grinding machine during grinding and cracking
- Elastic modulus of the grinding cloth for the - The influence of elastic modulus on white
R3 R_Elasticity R-axis of the grinding machine quantitative pixels during grinding and cracking
R4 R_Hardness The hardness of the grinding cloth for the quantitative The' effect. of hardness on White pixels
R-axis of the grinder during grinding and cracking
Ratio of open pores on the grinding cloth on - The effect of hole ratio on white pixels
R5 R_Pore Rate the R-axis of the grinder quantitative during grinding and cracking
R6 R Pore Size Open pore dia'meter of the R-axis grinding quantitative The. impact of hole size on yvhite pixels
cloth of the grinder during grinding and cracking
R7 R Thickness.I Thicl'<ness of th.e gr.inding Clgth for the quantitative Effgct of grinding thickness on
R-axis of the grinding machine white pixels
The size of the slurry flow during
R8 R_SLURRY_FLOW tabEr Grinding with sLurry flow quantitative grinding and whether it has any impact
on white pixels
R9 R_CHILLER_TEMP RtabRe grinding cooler temperature quantitative Coghng_ effect during grinding, impact on
white pixels
R0 R CHILLER FLOW tabEr grinding with sLurry flow quantitative Cooling effect during grinding, impact on
white pixels
Whether the amount of force loaded
R11 R_LOAD_AVE RtabRe Grinding load quantitative during grinding has any impact on
white pixels
Whether the amount of force loaded
R12 RT_TORQUE_AVE RtabRe TabRe Torque quantitative during grinding has any impact on
white pixels
Whether the amount of force loaded
R13 R_H_TORQUE_AVE RtabRe Head Torque quantitative during grinding has any impact on
white pixels
R14 RTTEMP_AVE RtabRe TabRe temperature quantitative Cogling effect during grinding, impact on
white pixels
R15 RSLURRY_TEMP RtabRe For grinding sRurry temperature quantitative Thg impact of sh.1rry temperature on
white pixels during grinding
c1 C_Compressibility Compression rate of the grinding machine’s quantitative The impact of compression ratio on white

C-axis grinding cloth

pixels during grinding and cracking
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Table 3. Cont.

ID LM_ID Define Content Value Type Impact
- Elastic modulus of the C-axis grinding cloth o The influence of elastic modulus on white
C2 C_Elasticity of the grinding machine quantitative pixels during grinding and cracking
c3 C_Hardness He.ardr'less of th? C-axis grinding cloth of the quantitative The. effect' of hardness on thite pixels
grinding machine during grinding and cracking
c4 C_Pore Size Open.po,re diarr.letelj of ‘the grinding quantitative The impact of open pore size on White
machine’s C-axis grinding cloth pixels during grinding and cracking
c5 C_Thickness Thickpess of thg C-axis grinding cloth of the quantitative Eff?ct of grinding thickness on
grinding machine white pixels
o . - The flow rate of sCuCCy during grinding
Co C_SLURRY_FLOW CtabCe grinding with sCucCy flow quantitative and whether it affects white pixels
Cc7 C_CHILLER_TEMP 1  CtabCe grinding cooler tempeCatuCe quantitative Coghng effect during grinding, impact on
white pixels
C8  CCHILLER FLOW  CtabCe grinding with sCuCCy flow rate  quantitative Effect of cooling effect on white pixels
uring grinding
Whether the amount of force loaded
9 C_LOAD_AVE CtabCe Grinding load quantitative during grinding has any impact on
white pixels
Whether the amount of force loaded
C10  CILTORQUEAVE CtabCe TabCeTorque quantitative during grinding has any impact on
white pixels
Whether the amount of force loaded
C11 CHTORQUEAVE C tabCe Head torque quantitative during grinding has any impact on
white pixels
Cl2  CTLTEMP_AVE C tabCe TabCe tempeCatuCe quantitative Cooling effect during grinding, impact on
white pixels
C13  C_SLURRY_TEMP CtabCe sCuCCy tempeCatuCe for grinding  quantitative The impact of sCuCCy temperature on

white pixels during grinding

1. dependent variable 2. independent variable

[White pixel ratio [Y1 j¢——{L Pad Lot ID | L Pad Lot ID .
L SLURRY_FLOW  |L8 L_Compressibility [L1
L CHILLER TEMP |L9 L _Density L2
L. CHILLER FLOW _[LI0 L._Elasticity L3
L LOAD AVE L1l L_Hardness L4
L T TORQUE AVE [LI2 L._Pore Rate LS
L_H TORQUE AVE [L13 L_Pore Size L6
L_T TEMP AVE L14 L_Thickness L7
L SLURRY TEMP |LIS
R_Pad Lot ID b R Pad Lot ID b
R_SLURRY FLOW |L8 R_Compressibility |L1
R CHILLER TEMP |L9 R _Densit L2
R_CHILLER FLOW [L10 R_Elasticity L3
R LOAD AVE L1l R Hardness L4
|IR_T TORQUE AVE [LI2 IR_Pore Rate LS
R H TORQUE AVE |[LI3 R Pore Size L6
R_T_TEMP_AVE L4 R_Thickness L7
R SLURRY TEMP _[LIS
C_Pad Lot ID C_Pad Lot ID .
C SLURRY_FLOW [L8 C_Compressibility [L1
C CHILLEC TEMP |19 C Density 1.2
C CHILLEC FLOW [L10 C_Elasticity L3
C_LOAD_AVE L1l C_Hardness 14
C_T TORQUE AVE |LI2 C_Pore Rate LS
C_H TORQUE AVE |LI3 C_Pore Size L6
C T TEMP AVE Li4 C_Thickness L7
C_SLURRY_TEMP _ |LI5

Figure 7. The relationship between dependent variables and independent variables (*: no value).

Data Collection and Pre-Processing

e Data Attributes: The data collection for this study revolves around information con-
cerning the pad of Company F’s grinding equipment. The primary focus is on predict-
ing its degree of influence on white pixels, serving as the dependent variable. This
determination is based on the processing conditions of the grinding equipment and the
material certificate of analysis (COA) information. The white pixel result information
provided by Company F’s customers is categorized into groups, as outlined in Table 4.
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It is classified into two levels: “OK’ indicating good products and ‘NG’ indicating
seriously defective ones.

e  Variable Selection: The select variables in this study involved consultations with
senior engineers from Company F. All polishing engineering variables potentially
impacting the white pixel problem were chosen based on the processing conditions of
the individual wafer manufacturing plant. The suggested items are detailed in Table 5,
comprising a total of 45 variables utilized as initial input variables.

Table 4. White pixel severity classification of CIS product.

Defective White Pixels Description Classification
<10% Acceptable to customers OK
>10% Not acceptable to the customer NG

Table 5. Wafer fabrication factory processing conditions recommendation.

Dependent Variable
Term ID Type
Whgii};ixel Y1 qualitative
Independent Variable
Term ID Type Term ID Type
L__Compressibility L1 quantitative =~ R_CHILLER_FLOW R10 quantitative
L_Density L2 quantitative =~ R_LOAD_AVE R11 quantitative
L_Elasticity L3 quantitative R_T_TORQUE_AVE R12 quantitative
L_Hardness L4 quantitative =~ R_H_TORQUE_AVE R13 quantitative
L_Pore Rate L5 quantitative =~ R_T_TEMP.AVE R14 quantitative
L__Pore Size Lé quantitative ~ R_SLURRY__TEMP R15 quantitative
L_Thickness L7 quantitative =~ C_Compressibility C1 quantitative
L_SLURRY_FLOW L8 quantitative  C_Elasticity 2 quantitative
L_CHILLER_TEMP L9 quantitative =~ C_Hardness C3 quantitative
L_CHILLER_FLOW  L10 quantitative ~ C_Pore Size C4 quantitative
L_LOAD__AVE L.11 quantitative ~ C_Thickness C5 quantitative
L_T_TORQUE._AVE L12 quantitative ~ C_SLURRY_FLOW  Cé6 quantitative
L_H_TORQUE_AVE L13 quantitative =~ C_CHILLER_TEMP C7 quantitative
L_T _TEMP.AVE L14 quantitative =~ C_CHILLER_FLOW C8 quantitative
L_SLURRY_TEMP L15 quantitative =~ C_LOAD_AVE 9 quantitative
R_Compressibility R1 quantitative =~ C_T_TORQUE._AVE C10 quantitative
R_Density R2 quantitative =~ C_H_TORQUE_AVE C11 quantitative
R_Elasticity R3 quantitative ~ C_T_TEMP.AVE C12 quantitative
R_Hardness R4 quantitative =~ C_SLURRY__TEMP C13 quantitative
R_Pore Rate R5 quantitative
R_Pore Size R6 quantitative
R_Thickness R7 quantitative
R_SLURRY_FLOW R8 quantitative
R_CHILLER_TEMP R9 quantitative

C_SLURRY__TEMP  C13 quantitative
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This study categorizes variables into two types: OK and NG. Initially, significant
factor testing is conducted on the data comprising 45 variables. The multinomial logit
regression model is utilized as an exploratory tool for factor testing. Logit regression
testing primarily assesses the statistical hypothesis regarding the presence of a significant
correlation between the variable and the dependent variable. The Wald test is employed to
determine the significance of independent variables. With 1 degree of freedom, the critical
value of X? for a = 0.05 is 3.841. When a particular independent variable demonstrates
significance, the Wald statistic value exceeds 3.841. This criterion is utilized in this study
for selecting input variables.

3.3. Data Preprocessing

Before embarking on data exploration, it is essential to preprocess the large datasets to
make them more amenable for analysis and model building. This involves preparing the
data through cleaning, quantifying, and normalizing to fit the required format specifications.
Data preprocessing can address the following issues:

1. Handling Incomplete or Noisy Data: It is common to encounter missing fields or
incomplete data within a dataset. To address this, one approach is to outright delete
the entries or to replace them with the average value of the dataset. Alternatively,
setting missing values to a null state allows for their exclusion from analysis.

2. Data Normalization: To ensure that the dataset aligns with the requirements of the
predictive algorithm, it must undergo normalization. This process adjusts input
and output variables to fit within a specific range, often called scaling. After model
training, the output values produced during inference need to be rescaled back to
their original range. This study employs interval mapping for scaling, adjusting the
data variables’ minimum and maximum values to align with the desired range. As a
result of normalization, all input values are scaled to fall between 0 and 1.

3.4. K-Fold Cross-Validation

The K-fold cross-validation method is employed in this study for sample partitioning
when constructing a prediction model. Typically, collected samples are divided into a
training set and a test data set (Test Set), with each sample individually separated [16].
Initially, the training data set is utilized to train a model, followed by testing its performance
using the test data set to assess model consistency [17]. However, the size of the data
sample can influence the proportion of training and test data, consequently impacting the
performance of the built model. To address this, the study utilizes K-fold cross-validation.

3.5. Evaluation Metrics

Through the following evaluation metrics, the effectiveness obtained after classification
can be evaluated, and the classification results can be divided into true positive (TF), that
is, correct acceptance, true negative (TN) or correct rejection, false positive (FP) or wrong
acceptance, and false negative (FN) or wrong rejection. Accuracy, sensitivity, specificity,
and other relevant metrics can be calculated from these four metrics [18,19].

(1) Accuracy

An accuracy assessment is defined as the ratio of correctly predicted samples to the
total number of predicted samples. TP is true positive, TN is true negative, and total
represents the total number of predictions.

TP+TN)) n

Accuracy = (( Total

(2) Precision
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Precision calculates the correct classification number that is penalized for an incorrect

classification number.
TP

Precision = TP L EP (2)
(8) Specificity

Specificity is the proportion of people without an original negative test, commonly
referred to as the proportion of “true negative”.

TN

Specificity = FPLTN ©)
(4) F-Score

F-Score is the harmonic average of measurement accuracy and recall rate.

Precision x Recall
F-Score =2 x Precision + Recall @)

Choosing overall accuracy as the performance evaluation metric for white pixel defect
prediction in semiconductor wafers might not always capture the full picture. However,
overall accuracy might be initially appealing or chosen as a primary metric in simplicity
and understandability and initial benchmarking for director of Company F.

4. Experimental Results and Analysis

This study employs the Python scikit-learn library across four steps: preprocessing
data, training, and testing with 10-fold cross validation in four machine learning models as
shown in Figure 8. Data preprocessing addresses missing values and imbalance. Models
such as decision tree (C5.0), CART, RF, and SVM were trained, tested, and evaluated for
metrics such as accuracy, precision, specificity, and F-score in white pixel defect prediction.

Dataset Machine Learning Models Machine Learning Evaluation
{ ] i
1 5.4 b\ 1

<D : ’ C5.0 | CART ” RF ” SVM } | =

l Training folds  Test fold

ﬁ 1% iteration [ . |} E,

y4

) @ 2+ jteration || E; 1

G 3% iteration || E;

Data Preprocessing 10* iteration [l En ’ Accuracy ‘ Precision

10-Fold Cross Validation

e —————
| F——-

| Specificity H F-Score

White Pixels Defect Prediction

Figure 8. Block diagram of the experimental process.

Below is the detailed experimental environment for this study:

1. Hardware: Powerful CPU (Intel i9), high-performance GPU (NVIDIA RTX 3080),
ample RAM (32 GB). Fast solid-state drive (NVMe SSD).

2. Software: GUI and compatibility for the operating system Windows. Programming
language: scikit-learn, R4.3. Scikit-Learn 1.4 for general machine learning. Git is used
for source code management. GitHub online code repository and collaboration.

3. This comprehensive environment supports a wide range of machine learning activities
from data preprocessing and model training to deployment and monitoring, ensuring
experiments can run efficiently and effectively.

4.  Itis a common practice to use default parameter values when comparing multiple

machine learning models, especially in the initial stages of model evaluation. There
are usually several reasons for this approach:
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5. Default parameters provide baseline performance for each model. This allows you to
immediately see the performance of each algorithm without making any adjustments.
This is a quick way to measure how well a model suits a particular type of data
or problem.

6.  Using default settings, all models start on a level playing field. This fairness is crucial
when your goal is to compare different types of models to understand which model
inherently fits the material better and is not subject to extensive parameter optimization.

7. Use preset parameters to make your experiments more reproducible. Other re-
searchers can easily validate your results by using the same model with default
settings, ensuring that performance metrics are attributed to the model itself and not
to specific adjustments made to it.

The initial performance of default parameters can guide more targeted hyperpa-
rameter tuning in the future. It might be worth tweaking if the model shows good promise
under the defaults. Conversely, if a model performs poorly in its default settings, it may be
lowered in priority or require significant changes to its settings. It is important to realize
that while default parameters are useful for initial comparisons, they are rarely optimal for
any given task.

4.1. Sample

The total quantity of data collected for this research is 4980. To explore the predictive
ability when white pixel defects occur, the data are constrained to the period from October
2019 to November 2019—Dboth before and after the occurrence of white pixels. The primary
distinction is made between the A Zone (before a significant number of white pixel defects
occurred, totaling 1152 cases) and the B Zone (after a significant number of white pixel
defects occurred, totaling 910 cases) as shown in Figure 9.

White Pixel by shipping date AZone  BZone

3
3

White Pixel (%)

[ SRR Ry S A ———

-

)
-&7.?3_-7--—-—----1 -

0 ¢

e b
1 1

Shipping month

Figure 9. White pixel occurring period.

4.2. Variable Selection and Results

This study delineates its scope into two distinct phases: the period preceding the
abnormal increase in white pixels (the A Zone) and the phase during which an abnormality
in white pixels is observed (the B Zone).

1.  Screening Variables in the A Zone (Count: 1152): The investigation utilized 45 variables,
recommended for assessing the processing conditions within a semiconductor wafer
manufacturing facility. These variables served as input factors for conducting a screening
process. Utilizing the logistic regression algorithm [20], implemented in R programming
language, the study aimed to identify variables significantly influencing the occurrence of
white pixel defects. The analysis, focusing on the period before the notable rise in white
pixel defects (A Zone), revealed that six variables significantly impact the incidence of
these defects. These variables are distributed across three axes: two significant variables
on the L-axis, two on the R-axis, and two on the C-axis, as detailed in Table 6.
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2. Variable screening in the B Zone: In the B Zone (Count: 910, where a large number
of white pixel defects occur), 27 significant items of variable (L-axis: 7 items, R-axis:
11 items, C-axis: 9 items) were found, as shown in Table 7.

Table 6. Significant factors in the A Zone.

A Zone Significant Dependent Variable: 4
L axis Estimate Std. Error z value Pr(>1zl)
L12 —6.897 2.938 —2.347 0.0189 *
L15 14.45 7.145 2.022 0.0431 *
Raxis Estimate Std. Error z value Pr(>lzl)
R8 —15.41 3.002 —5.133 2.85 x 1077 -
R11 6.543 2.593 2.523 0.0116 *
C axis Estimate Std. Error z value Pr(>1zl)
C12 —5.7434 1.493 —3.847 0.00012 i
C13 —3.577 1.2201 —2.932 0.00337 **

* Statistically significant at p < 0.05; ** statistically significant at p < 0.01; *** statistically significant at p < 0.001.

Table 7. Significant factors in the B Zone.

B Zone Significant Dependent Variable: P

L-axis Estimate Std. Error z value Pr(>l1zl)

L8 —2.4558 0.9179 —2.676 0.007461 **
L9 —2.3089 0.6803 —3.394 0.000689 xx
L10 —3.0821 0.749 —4.115 0.0000387 xEx
L11 6.4189 0.7059 9.093 <2 x 10716 e
L12 1.7802 0.6819 2.61 0.009043 **
L13 —2.4033 0.9709 —2.475 0.013315 *
L15 7.2222 1.3262 5.446 5.16 x 1078 o
R-axis Estimate Std. Error z value Pr(>lzl)

R3 —5.0515 2.1412 —2.359 0.018317 *
R4 60.3907 9.2698 6.515 7.28 x 10°11 i
R5 —19.6195 4.5493 —4.313 0.0000161 xEE
R6 —49.0227 8.2967 —5.909 3.45 x 107° o
R8 —3.1992 1.1355 —2.817 0.004841 **
R9 —4.8164 1.2629 —3.814 0.000137 wHx
R10 —2.0074 0.9057 —2.216 0.026664 *
R11 10.7062 1.003 10.675 <2 x 10716
R12 —1.596 0.6528 —2.445 0.014491 *
R13 —2.1629 0.6962 —3.107 0.001892 **
R14 6.3412 1.2296 5.157 251 x 1077 e
C-axis Estimate Std. Error z value Pr(>1zl)

C2 6.0125 2.1692 2.772 0.00558 **
Cc3 29328 0.5219 5.619 1.92 x 1078
C4 —6.2036 0.6342 —9.781 <2 x 10716 e
Cé6 3.0909 1.0537 2.933 335 x 1073 **
c7 2.729 0.8939 3.053 0.00227 **
C8 —2.5943 0.9874 —2.627 0.00861 **
C10 5.7189 0.794 7.202 592 x 10713 i
C12 6.6029 1.4735 4481 0.00000742 Hx
C13 —1.9878 0.705 —2.82 0.00481 **

* Statistically significant at p < 0.05; ** statistically significant at p < 0.01; *** statistically significant at p < 0.001.



Sensors 2024, 24, 3144

17 of 26

Since the 27 important variables in the B Zone include all important characteristic
variables in the A Zone, this study uses all important variables in the B Zone as input
variables to proceed with machine learning. Each machine learning model written in the R
language is trained and predicted using data from these areas, and subsequently, the area
with higher accuracy in predicting white pixel defects is observed, as depicted in Figure 8.

Initially, the data sample set is divided into training and test sample sets after deter-
mining the number of samples for each overlap. Using the R language, the study seeks to
identify the most suitable proportion between the training and test sample sets. The total
data from the A Zone and B Zone (totaling 2062 records) serves as the basis. Each model is
then verified using sequential allocation ratios between the two areas, ranging from 1:9 to
9:1. The results, evaluated in Table 8 and shown in Figure 10 below, assume that the best
accuracy can be obtained in individual models when the training-to-test ratio is 9:1 by a
10-fold cross validation average.

Table 8. Test results of the ratio of training number to testing number.

Testing Accuracy (%)

Training/Testing C50 CART Random Forest SVM
1/9 89.16% 81.19% 85.70% 84.37%
2/8 90.01% 86.29% 90.16% 87.78%
3/7 88.25% 86.88% 90.46% 89.44%
4/6 89.46% 92.05% 92.45% 90.66%
5/5 90.93% 92.36% 92.60% 91.17%
6/4 90.15% 91.04% 91.04% 90.15%
7/3 92.03% 91.24% 90.84% 88.84%
8/2 93.41% 93.41% 91.62% 91.02%
9/1 93.98% 95.18% 95.18% 93.98%

Mean 90.82% 89.96% 91.12% 89.71%

Std. 0.020 0.044 0.025 0.027

96%

94% 4>

90% o — b s V =

88% ©

86%

84%

82%

80%

19 2/8 37 4/6 5/5 6/4 713 8/2 9N
+—C50 CART RF SVM

Figure 10. Average accuracy of distribution of training and test sample proportions.

It can be seen from Figure 10 that as the proportion of the test set becomes smaller,
the average accuracy rate also decreases. And, the CART and RF models have the highest
accuracy (95.18%) among the four machine learning models in the default parameter setting.
The evaluation metrics of each model are also shown in Table 9 for comparison.
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Table 9. Evaluation metrics of each model.
Model Accuracy% Precision% Specificity% F-Score
SVM 93.98 88.15 83.98 0.8350
C5.0 93.98 88.13 83.85 0.8319
RF 95.18 91.21 89.95 0.8978
CART 95.18 87.48 84.15 0.8330

4.3. Comparison of Prediction Models for the A and B Zones

This study not only examines the entire sample interval but also seeks to examine if
the accuracy of the predictive models varies between two distinct A and B Zones.

The study evaluated four predictive models: the decision tree C5.0, CART, RF, and
SVM at the A Zone in the default parameter setting. The division between training and
testing data within the K-fold cross-validation method adhered to a ratio based on the
training sample set, consisting of nine groups, with the testing sample set comprising one
group. As a result, in Table 10, the RF model outperformed the others in terms of average
prediction accuracy, achieving a training accuracy rate of 94.206% and a testing accuracy
rate of 94.940%. The models are ranked by their accuracy as follows: RF, CART, and support
vector machine (SVM), as illustrated in Table 10.

Table 10. Experimental results of each model in the A Zone.

C5.0 CART RF SVM
Method Training Testing Training Testing Training Testing Training Testing
1 98.637 96.812 98.168 96.522 98.746 97.391 97.782 97.391
2 97.646 97.971 97.975 99.130 99.036 95.652 97.878 96.522
3 98.513 97.681 97.975 98.261 98.746 99.130 97.878 96.522
4 98.265 97.391 98.264 97.391 98.554 100.000 97.589 99.130
5 98.389 97.681 98.168 96.522 98.939 97.391 97.975 95.652
6 97.770 97.681 98.168 96.522 98.650 97.391 97.782 97.391
7 98.141 98.261 98.168 96.522 98.650 98.261 97.878 96.522
8 97.893 99.130 98.168 97.391 98.843 96.522 97.782 97.391
9 97.893 98.551 98.071 98.261 98.650 98.261 97.589 99.130
10 98.761 97.391 98.264 96.522 98.746 97.391 97.686 98.261
Max (%) 98.761 99.130 98.264 99.130 99.036 100.000 97.975 99.130
Min (%) 97.646 96.812 97.975 96.522 98.554 95.652 97.589 95.652
Mean (%) 98.191 97.855 98.139 97.304 98.756 97.739 97.782 97.391
Std. 0.384 0.658 0.102 0.957 0.147 1.243 0.129 1.159

Then, the data from the B Zone are introduced into the four machine learning models
in the default parameter setting. The prediction results are shown in Table 11. Among the
four models, the prediction accuracy ranking using a 10-fold cross-validation average are
ranked by their accuracy as follows: RF, decision tree (C5.0), CART, and SVM.
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Table 11. Experimental results of each model in the B Zone.
C5.0 CART RF SVM
Method Training Testing Training Testing Training Testing Training Testing
1 92.465 92.308 93.407 91.209 97.436 90.110 88.034 87.912
2 93.407 90.476 93.284 90.110 97.192 96.703 88.278 93.407
3 93.250 88.645 92.308 90.110 97.070 92.308 89.133 82.418
4 91.366 85.714 93.040 84.615 96.825 94.505 89.255 84.615
5 93.564 88.278 93.773 89.011 97.314 93.407 89.255 85.714
6 91.994 88.645 93.773 86.813 96.947 89.011 88.156 91.209
7 92.622 89.011 93.040 85.714 96.825 89.011 89.011 85.714
8 92.308 88.645 92.430 89.011 97.192 96.703 88.034 92.308
9 92.936 87.912 93.284 92.308 97.070 95.604 88.400 89.011
10 92.936 87.912 93.651 83.516 96.825 93.407 88.400 85.714
Max (%) 93.564 92.308 93.773 92.308 97.436 96.703 89.255 93.407
Min (%) 91.366 85.714 92.308 83.516 96.825 89.011 88.034 82.418
Mean (%) 92.685 88.755 93.199 88.242 97.070 93.077 88.596 87.802
Std. 0.679 1.719 0.512 2.933 0.216 2.933 0.509 3.606

More detailed training and testing results of the four models are shown in Figures 11-14.
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Figure 11. Decision tree (C5.0) average accuracy transition chart (A and B Zones).
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Figure 12. CART average accuracy transition chart (A and B Zones).
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Figure 13. RF average accuracy transition chart (A and B Zones).

100

95

920

85

80

SVM (A Zone) SVM (B Zone)
100
.. = . 95
90
85
80
oNeNeHeNeHNeNoNeNeRe! oNeNeoNeoEeNeNoNeNoEe!

Training o Testing o [Training o Testing
Result (%) Result (%) Result (%) Result (%)

Figure 14. SVM average accuracy transition chart (A and B Zones).

4.4. Prediction Rule Extraction and Factors Discussion

In Section 4, the study revealed that CART and RF are better models for the prediction
of white pixel defects. Consequently, the focus of this evaluation and comparison will be

on th

e RF and CART models. Analysis will proceed with CART’s more recent algorithm

for in-depth discussion.

1.

0
129/138

1132012

CART: The study employs the CART algorithm for the development of a decision tree
model, as illustrated in Figure 15. An analysis of the complexity parameters and error
rates for the unpruned CART decision tree model post-training reveals insights into
the model’s error dynamics. As demonstrated in Figure 16, the model achieves its
minimum cross-validation error of 0.013780 when the tree is configured with nine leaf
nodes (indicating eight splits).

[ L12<0.81 N

L10< 0.47 — R8>20.48 j
(lﬂb-ﬂ,“j

€10< 0.084.

L14<0.92

0 0 1
18/19 24130 210/238
1 0 1 1
2527 3141 16/19 378/388

Figure 15. Visualization of the CART decision tree (before pruning).
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Figure 16. Changes in the error rate of the fitted model.
In this study, the R language prune is used to prune the CART decision tree. The cp
value is set to 0.021. The results can be obtained from the visual CART decision tree (as

shown in Figure 17). It is useful for distinguishing whether there are white pixel defects.
The important indicators are C10, L10, L11, L12, L13, R12, R14, and RS, respectively.

— L1z>n1z 112<0.81 N
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h R12>084 j
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Figure 17. Visualization of the CART decision tree (after pruning).

Figure 17 presents the CART decision tree, revealing that L_Load_AVE (L11) emerges as a
critical determinant, succeeded in importance by L_T_TORQUE_AVE (L12) and L_H_TORQUE
(L13). The rules extracted from the CART decision tree are concisely summarized in Table 12.
For example, when L11(L_LOAD_AVE) < 0.46 and L12(L_T_TORQUE_AVE) > 0.81, the prob-
ability of white pixels is 97%; when L11(L_LOAD_AVE) < 0.46 and L13(L_H_TORQUE_AVE)
> (.12, the probability of no white pixel defect is 94%, and so on.



Sensors 2024, 24, 3144 22 of 26
Table 12. CART rules.

Rule C10 L10 L11 L12 L13 RS R12 R14 White Pixel or Not CART Result
1 <0.46 >0.12 0,N 129/138, 94%
2 <0.47 <0.46 <0.12 0,N 18/19, 95%
3 >0.46 <0.81 >0.48 0,N 24/30, 80%
4 >0.46 <0.81 <0.48 >0.84 <0.92 0,N 31/41,76%
5 <0.084 >0.46 <0.81 <0.48 <0.84 0,N 9/10, 90%
6 >0.47 <0.46 <0.12 1,Y 25/27,93%
7 >0.46 >0.81 1,Y 378/388,97%
8 >0.46 <0.81 <0.48 >0.84 >0.92 1,Y 16/19, 84%
9 >0.084 >0.46 <0.81 <0.48 <0.84 1,Y 210/238, 88%

2. RF: The mean decrease Gini coefficient, often referred to in the context of random
forest and other tree-based models, measures the importance of a feature (variable)
in a predictive model. A higher mean decrease Gini indicates that a feature more
effectively splits the dataset into groups with similar outcomes, thus being more
important for the prediction. The trained random forest model can measure the
importance of variables through the mean decrease Gini coefficient. The data show
that variable L11 is the most important feature, followed by R11, L12, C10, RS8, L13,
and R14.

In addition, SHAP is a game theory approach used to explain the output of any
machine learning model. It assigns each feature an importance value for a particular
prediction, which helps in interpreting the model’s decision-making process. The key idea
behind SHAP is to use Shapley values from cooperative game theory to fairly distribute
the prediction among the features.

Shapley values provide a weighted average of the marginal contributions of each
feature across all possible feature combinations. This method ensures a consistent and
fair attribution of importance to each feature, accounting for interactions among features
within the model. By applying SHAP values, one can gain insights into how each feature
contributes to the prediction, regardless of the model complexity.

Figure 18 is a SHAP diagram illustrating the Shapley values for top 12 features. The
features are sorted by their absolute Shapley values, highlighting their impact on the
model’s prediction. This visualization helps in understanding the relative importance of
each feature in the model’s decision-making process.

0.0 0.‘1 0.‘2 0:3 Oj4 O.‘S 0i6 O.‘T
SHAP Value

Figure 18. SHAP values of features.

We summarize the ranking of important factors from the CART and RF models and
shown in Table 13, In the feature verification of CART and REF, except for the R11 item, the
other common feature items are regarded as important factors by RF and CART, and the



Sensors 2024, 24, 3144

23 of 26

L-axis torsion (L11) is the most important factor that mainly affects the occurrence of white
pixel defects.

Table 13. Factor ranking comparison between RF and CART.

Feature Detailed Item RF CART
C10 C-AXIS TABLE TORQUE 4 5
L10 L-AXIS CHILLER FLOW 9 3
L11 L-AXIS LOAD 1 1
L12 L-AXIS TABLE TORQUE 3 2
L13 L-AXIS HEAD TORQUE 6 2

R8 R-AXIS SLURRY FLOW 5 3
R11 R-AXIS LOAD 2 -
R12 R-AXIS TABLE TORQUE 8 4
R14 R-AXIS TABLE TEMP 7 5

The L-table grinding load (L11) is considered a major reason for white pixel defects in
semiconductor wafers due to several factors associated with the grinding process used in
wafer manufacturing in this study. There may be several possibilities as to why high or
uneven L-table grinding loads can lead to white pixel defects in wafers:

1. Mechanical Stress: Grinding involves applying mechanical stress to thin the wafer to
the desired thickness. An excessive load during this process can induce micro-cracks
and subsurface damage, which may not be visible immediately but can manifest as
white pixel defects later in the manufacturing process or during the operation of the
final semiconductor device.

2. Heat Generation: Grinding generates heat due to friction between the wafer and the
grinding wheel. High grinding loads increase this heat generation, potentially causing
local overheating. This can lead to slip dislocations, changes in material properties, or
other forms of damage at a microscopic level, contributing to defect formation.

3. Surface Quality Degradation: The quality of the wafer surface post-grinding is crucial
for subsequent manufacturing steps, such as lithography. High grinding loads can
degrade surface quality by introducing roughness, pits, and scratches. These surface
irregularities can interfere with subsequent processes, leading to defects, including
white pixels, in the finished product.

4.  Impurities and Contamination: The grinding process, especially under high loads, can
lead to the embedding of abrasive particles or the generation of debris that becomes
embedded in the wafer surface. These impurities can act as nucleation sites for defects.

5. Non-uniform Material Removal: Ideally, grinding should remove material uniformly
across the wafer. However, excessive or unevenly distributed grinding loads can lead
to non-uniform thickness, warping, or localized thinning, which may result in stress
concentrations. These stress concentrations can manifest as white pixel defects during
further processing or in the final product.

Mitigating these issues requires careful control of the grinding process, including
optimizing grinding parameters like load, speed, and coolant flow, to ensure the mechanical
stresses and heat generated do not exceed the material’s tolerance thresholds. Additionally,
regular maintenance of grinding equipment to ensure uniform contact and load distribution
across the wafer surface is essential in minimizing the risk of white pixel defects.

In addition, based on the findings of Das [21], the significance of variables in the CART
model is determined by summing up the scores of split improvements for each variable
across all tree splits. This method evaluates the impact of variables within the model. On
the other hand, the random forest methodology constructs multiple CART trees utilizing
bootstrap samples of the data, subsequently aggregating their predictions. This aggregation
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is typically performed by calculating the average prediction across all CART models within
the forest. Random forests are known to offer enhanced predictive capabilities and accuracy
compared to a single CART model, primarily due to their reduced variance. These insights
align with the results observed in the current study.

5. Conclusions

This study focuses on improving CMOS image sensor (CIS) products used in mobiles
and cameras by addressing white pixel defects, mainly caused by metal impurities during
wafer production. A case study from a Taiwanese silicon wafer manufacturer identifies key
factors influencing defect ratios using data analysis. The Cart and RF models proved most
accurate in predicting defects with default parameter setting, highlighting some processing
load and torque factors as significant factors. These insights offer guidance for preventive
measures to reduce defects and customer complaints.

5.1. Findings

This study applied various analytical methods, including random forest (RF), decision
tree (C5.0), classification and regression tree (CART), and support vector machine (SVM),
to investigate risk factors for white pixel defects in semiconductor wafer data. By harness-
ing machine learning techniques, the goal was to distill meaningful characteristics for a
predictive model to forecast white pixel defects on wafers.

The investigation mainly developed an optimal predictive model using RF and CART
methodologies. An initial analysis of 45 factors provided by Company F via multinomial
logistic regression revealed 27 significant factors. Subsequently, these factors were inte-
grated into both the RF and CART models for additional analysis, pinpointing around
10 significant factors with consistent results across the models. Among these, load and
torque related to the L-axis during manufacturing emerged as critical for the onset of white
pixel defects.

Discussions with senior technical engineers validated the significance of these factors
and the practicality of the study’s findings, underscoring the real-world relevance of the
identified critical factors in diagnosing the root causes of white pixel defects. The research
offers actionable insights, providing decision-makers with interpretable guidelines, notably:

1.  Loadbearing (L11, R11) and torque (C10, L12, L13, R12) during the wafer manufactur-
ing process are identified as key elements. The study indicates a direct relationship
between the grinding machinery’s applied load and torque and the probability of
causing wafer surface damage, which subsequently increases the risk of white pixel
defects. This damage aids in the adherence of external contaminants on the wafer sur-
face, which subsequent cleaning processes may not fully remove. These contaminants,
if left on the wafer surface, can infiltrate deeper layers during thermal processing,
potentially culminating in white pixel defects in the final product.

2. The study delineates two essential rules for predicting white pixel defects:

e  Ahigher likelihood of white pixel defects occurs when the SMP L-axis load value
meets or exceeds 0.46 and the L-axis Table torque value meets or exceeds 0.81,
with the CART model showcasing a 97% accuracy rate in this prediction.

e  Conversely, the probability of white pixel defects markedly decreases when the
SMP L-axis load value is less than 0.46, the L-axis chill flow is below 0.47, and
the L-axis head table torque value is under 0.12.

3. The analysis further reveals that the most critical factors predominantly pertain to the
L-axis, consistent with Company F’s observations. The significant presence of white
pixel defects was linked to the L-axis of the SMP grinding equipment, particularly
associated with using a specific batch of pads and certain grinding parameters. These
factors, related to both the equipment and materials used, were identified as the
primary contributors to the notable occurrence of white pixel defects.
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5.2. Suggestion and Future Study

In the context of CIS products, the occurrence of white pixel defects is influenced by a
multitude of factors. This study’s sample focused on analyzing the processing conditions of
Company F’s SMP grinding machine and the physical properties of the pad’s raw materials.
Although processing conditions were found to have a significant impact, the accuracy of
the data provided by the suppliers warrants closer examination. Suppliers often report
values close to the detection limit, leading to a uniformity in the raw material data that
may cause inaccuracies in model predictions and diminish their predictive capabilities.
There is also a study [22] that focuses on the major achievements of CMOS image sensors
in surveillance systems in different fields, which is also worth referencing.

In the semiconductor industry, swiftly identifying the relationships between various
factors or between factors and anomalies is crucial for improving process efficiency or prod-
uct yield. Beyond the methodologies applied in this research, employing correlation law
analysis or deep neural networks (DNNs), which represent the forefront of Al technology,
could offer valuable insights. By initially determining the correlation degrees between
factors and then dedicating resources to further analysis and research, it is possible to
achieve significant advancements in research directions and outcomes.
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