
Citation: Chu, L.; Wang, Y.; Li, S.;

Guo, Z.; Du, W.; Li, J.; Jiang, Z.

Intelligent Vehicle Path Planning

Based on Optimized A* Algorithm.

Sensors 2024, 24, 3149. https://

doi.org/10.3390/s24103149

Academic Editor: Yongmin Zhong

Received: 6 April 2024

Revised: 12 May 2024

Accepted: 12 May 2024

Published: 15 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Intelligent Vehicle Path Planning Based on Optimized
A* Algorithm
Liang Chu, Yilin Wang, Shibo Li, Zhiqi Guo, Weiming Du, Jinwei Li and Zewei Jiang *

State Key Laboratory of Automotive Simulation and Control, Jilin University, No. 5988, Renmin Street,
Nanguan District, Changchun 130022, China; chuliang@jlu.edu.cn (L.C.); wyl22@mails.jlu.edu.cn (Y.W.);
lisb22@mails.jlu.edu.cn (S.L.); zqguo23@mails.jlu.edu.cn (Z.G.); duwm21@mails.jlu.edu.cn (W.D.);
lijw22@mails.jlu.edu.cn (J.L.)
* Correspondence: zwjiang22@mails.jlu.edu.cn

Abstract: With the rapid development of the intelligent driving technology, achieving accurate path
planning for unmanned vehicles has become increasingly crucial. However, path planning algorithms
face challenges when dealing with complex and ever-changing road conditions. In this paper, aiming
at improving the accuracy and robustness of the generated path, a global programming algorithm
based on optimization is proposed, while maintaining the efficiency of the traditional A* algorithm.
Firstly, turning penalty function and obstacle raster coefficient are integrated into the search cost
function to increase the adaptability and directionality of the search path to the map. Secondly, an
efficient search strategy is proposed to solve the problem that trajectories will pass through sparse
obstacles while reducing spatial complexity. Thirdly, a redundant node elimination strategy based
on discrete smoothing optimization effectively reduces the total length of control points and paths,
and greatly reduces the difficulty of subsequent trajectory optimization. Finally, the simulation
results, based on real map rasterization, highlight the advanced performance of the path planning
and the comparison among the baselines and the proposed strategy showcases that the optimized A*
algorithm significantly enhances the security and rationality of the planned path. Notably, it reduces
the number of traversed nodes by 84%, the total turning angle by 39%, and shortens the overall path
length to a certain extent.

Keywords: path planning; A* algorithm; intelligent driving; turning penalty function; obstacle
raster coefficient

1. Introduction

With the rapid development of intelligence and electrification in the automobile
industry, autonomous driving technology plays a crucial role in modern traffic systems [1].
Path planning, as an important task for autonomous driving [2–4], can give the target
vehicle priori information on the traffic network, contributing to driving safety and control
robustness. However, the quality of the planning trajectory and the complexity of iterative
calculation cannot be balanced well in practice when the algorithms face a complex traffic
network environment [5–7]. Therefore, it is crucial to optimize and develop advanced path
planning algorithms to improve the efficiency of path generation in various transportation
network environments.

In the field of autonomous driving, particularly in robotic and UAV path planning,
neural network technologies like cellular neural networks and global brainstorming have
been widely applied [8]. For instance, in reference [9], by drawing an analogy between
path planning and neural dynamics and propagating through the state space using neural
dynamics, real-time collision-free planning was achieved. Its advantage lies in the lack of
prerequisite information while treating target activity as an energy source, demonstrating
parameter independence and physical validity. However, this method relies on complex
neural dynamic models, requiring substantial computational resources to process data in

Sensors 2024, 24, 3149. https://doi.org/10.3390/s24103149 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24103149
https://doi.org/10.3390/s24103149
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24103149
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24103149?type=check_update&version=1

Sensors 2024, 24, 3149 2 of 25

real time. Reference [10] proposed a heat conduction method that establishes a transient
heat conduction model and a cellular neural network to simulate heat conduction, gen-
erating the globally optimal path. Its strength lies in the natural avoidance of obstacles
through heat conduction simulation. However, its transient model may be insufficiently
responsive when dealing with dynamic environments. In the literature [11], an improved
Hopfield-type neural network model is used to represent the local connectivity of the neural
system as harmonic functions, propagating target activity via physical heat conduction.
The advantage is that it allows for real-time obstacle avoidance without prior knowledge of
dynamic environments. However, significant experimentation is needed to optimize model
parameters. In reference [12], the global-best brainstorming optimization algorithm (GBSO)
based on crossover recombination was designed to optimize paths with continuous cur-
vature. This algorithm is particularly suitable for solving complex optimization problems
with multiple constraints, but its efficiency is limited by the complexity of the constraints.

Automatic driving path planning algorithms can be categorized into two categories
according to the generating principle of vehicle trajectory, including sampling-based and
search-based trajectory planning algorithms [13,14]. To explore the principles and usage
characteristics of different types of planning algorithms, this study conducted analyses
on selected representative algorithms corresponding to the aforementioned two distinct
planning principles. Table 1 shows a series of algorithms related to intelligent vehicle
routing planning and their application scenarios.

Table 1. The algorithms of intelligent vehicle planning.

Algorithm Algorithm Type Characteristic Application Scenarios

PRM

Sampling-based

After uniform sampling,
the path selection is
realized based on A*

The target point needs to be
stable and have certain

environmental prior information.

RRT

Random tree expansion
with probability

completeness to ensure
path optimality

Tree node extension sampling
determines that it is suitable for

global path planning.

Dijkstra
Search-based

Breadth-first search

It is often used to solve the
problem of shortest path for a

single source, such as in
network routing and urban

transportation planning.

A* Heuristics enable a fast
directed search

Unable to handle dynamic and
random obstacles

In terms of the sampling-based algorithms [15–17], such as rapidly-exploring random
trees (RRT) and probabilistic roadmap (PRM), always sample the vehicle state in the test
space to find a feasible trajectory connecting the starting node and the goal node. RRT
uses random sampling and the extension of the tree structure to find feasible paths in
complex environments. It efficiently explores high-dimensional spaces and is suitable
for real-time applications. However, it cannot find the globally optimal path due to its
probabilistic nature as well as the sensitivity to parameter settings [18,19]. PRM constructs a
road network by randomly sampling points in an obstacle environment to find the optimal
path [20–23]. Nevertheless, constructing the network leads to burdensome computational
intensity [24]. Random sampling cannot guarantee that the sample points cover the op-
timal path, posing a challenge to the efficiency of path generation in planning [25,26].
In conclusion, sampling-based algorithms can avoid local minima in non-convex spaces,
and their advantage lies in their ability to handle planning problems in high-dimensional
spaces and complex environments, demonstrating good adaptability. Despite the potential
optimizations such as introducing heuristic functions, increasing sampling density, and
improving connection strategies to address the computational challenges caused by the

Sensors 2024, 24, 3149 3 of 25

excessive sampling requirements of the sampling-based algorithm. In complex environ-
ments, the quality of paths planned by sampling-based algorithms is still influenced by the
randomness in the distribution of sampling points.

In contrast to sampling-based approaches, search-based planning algorithms have
the advantage of generating high-quality paths while reducing computational time and
space complexity, such as Dijkstra’s algorithm and A* algorithm [27]. Dijkstra’s algorithm
iteratively selects the vertex closest to the source point and updates the distances of its
adjacent vertices using a priority queue [28]. The advantage of Dijkstra’s algorithm lies in
its efficient ability to find the shortest paths from a single source point to all other vertices
in the graph, provided that the edge weights in the graph are non-negative. However, a
significant limitation of Dijkstra’s algorithm is its inability to handle graphs with negative
edge weights, as the algorithm assumes that the shortest path is gradually constructed
through vertices with the smallest known distances. The A* algorithm inherits the advan-
tages of the Dijkstra algorithm, while improving search efficiency by introducing a heuristic
function [29]. Nevertheless, it has some limitations in terms of heuristic function design
and local optimal solutions, especially in the complex traffic environments encountered
by unmanned vehicles [30]. Graph-based algorithms commonly face issues such as com-
putational complexity and local optimum. The global nature of the search algorithm has
led to challenges with insufficient computing resources and issues related to finding local
optimal solutions [31]. Therefore, it is essential to address these issues through optimiza-
tion techniques such as introducing parallel computing, refining heuristic functions, and
enhancing algorithmic strategies. These measures aim to improve algorithm performance
and mitigate the problem of local optima. Therefore, many experts and scholars, both
domestically and internationally, mainly focus on improving the original algorithms and
algorithm fusion orientation as the primary research directions in path planning [32–35].

An ideal method for autonomous driving path planning should be based on obstacle
perception information, quickly and stably determining safe and reasonable paths, while
considering their applicability to subsequent trajectory optimization and speed control [36].
The A* algorithm, as a classical heuristic search algorithm, has achieved significant success
in the field of path planning [37]. However, when dealing with large-scale road networks,
the traditional A* algorithm still faces challenges [38–40]. Researchers have proposed
various methods to improve the global path quality in optimized path planning, addressing
the shortcomings of a simple heuristic search, redundant control nodes, and low safety.
Specifically, weighted heuristic functions, safety distance matrices, and key point selection
strategies have been introduced into the traditional A* algorithm and integrated into the
algorithm. In terms of the weighted heuristic function, a weighted heuristic function to
enhance the computational speed of the A* algorithm is proposed in [41]. They retained
only the turning points of the path and applied fifth-degree polynomial smoothing to
effectively address the issue of path roughness. The method offers advantages such
as improved computational speed, enhanced memory efficiency, and smoother paths.
Nevertheless, due to the simplification of the search space, it cannot always yield the
shortest path. Furthermore, its sensitivity to the initial heuristic function could lead to
suboptimal solutions. In reference [42], the safety distance matrix was introduced into the
A* algorithm, and the redundant nodes were removed from the path using a simplified
method of separate terms. They also used arc transition at turning points to improve the
safety and smoothness of the path. The advantages of this method include safer, smoother
paths and higher computational efficiency. However, a fixed safety distance may not be
suitable for complex environments or dynamic situations, and the removal of some nodes
may lead to suboptimal paths. In addition, a key point selection strategy is proposed
in the literature [43], which uses forced point-guided search to reduce the calculation of
irrelevant points, deletes redundant points through secondary programming, and smooths
dynamic tangent circles around the watershed. The advantages of this method include
reduced computational time, better path smoothing, and further removal of redundant

Sensors 2024, 24, 3149 4 of 25

points. However, the processed path may be too close to obstacles, which is not safe, and it
may also generate suboptimal paths due to the removal of some nodes.

In fact, in order to be more effectively applied to autonomous driving path planning,
the improvement of the quality of traditional A* trajectories mainly faces three challenging
problems, including the following:

(1) More absolute obstacle avoidance: In the face of the oblique arrangement and sparse
occurrence of obstacles, the global path planned by the traditional A* algorithm will
have the wrong path through the obstacles, which is a key problem affecting the
feasibility of the planned path.

(2) Trajectory safety: The path nodes based on raster maps are often represented in
the center of the grid, the distance between the nodes and the obstacles cannot be
adjusted, and safety problems are caused by ignoring the safety distance constraint in
the generated path.

(3) Concise control: The paths generated by traditional algorithms often have the prob-
lem of redundancy in control points, which leads to an unnecessary complexity of
subsequent local optimization and control.

To optimize the A* path planning algorithm, some improvements mainly focus on
reducing the number of traversed nodes, minimizing the total turning angle, incorporating
safety distance, and shortening the path distance. In this context, an optimization strategy
for A* path planning algorithm is proposed in this paper, aiming at getting the shortest
global path based on reducing the number of traversed nodes and incorporating safety
distance. To be specific, firstly, an optimized cost function based on the introduction
of an obstacle raster coefficient and turn penalty function is introduced to enhance the
adaptability and directionality of the search path to the map and minimize the total turning
angle. Secondly, in order to solve the problem that the trajectory will pass through sparse
obstacles, an efficient search strategy is designed and optimized to reduce the search
space and computational complexity. Finally, the safety distance is integrated to improve
the safety and self-adjustment performance of the path, and the redundant nodes are
eliminated from the path data, and the control points and the total length of the path are
greatly reduced, so that the path of the improved algorithm can take into account the
requirements of efficiency and safety.

To enhance the performance of the A* algorithm and address its limitations in spe-
cific scenarios, this study introduces three core improvements aimed at optimizing the
algorithm’s efficiency, safety, and applicability:

(1) By introducing an obstacle raster coefficient and a turning penalty function, this
research develops a more accurate heuristic function. This function optimizes the
cost calculation method as well as enhances the adaptability and directionality of the
search path to map features, thereby improving the precision and practicality of path
planning.

(2) In response to the issue of paths potentially traversing through sparse obstacles,
this study has designed and optimized an efficient search strategy. By reducing the
search space and computational complexity, this strategy significantly improves the
reliability of path planning. It ensures that the planned paths avoid obstacles while
also meeting the requirements for quick response.

(3) This research incorporates the concept of safety distance, substantially improving the
safety and self-adjustment capabilities of the path. By eliminating redundant nodes
from the path data and significantly reducing the number of control points and the
total path length, an optimal balance between efficiency and safety in path planning
is achieved.

The remainder of this study is organized as follows. The planning method of the
traditional A* algorithm is provided in Section 2. Section 3 elaborates on the improvement
process of the developed A* optimization algorithm. Section 4 discusses the simulation

Sensors 2024, 24, 3149 5 of 25

results and validates the superior performance of the raised strategy, followed by the main
conclusions drawn in Section 5.

2. A* Algorithm Principle

The A* algorithm is a heuristic search algorithm that combines the Dijkstra algorithm
and the greedy algorithm (depth-first). Its core concept is to find the minimum-cost path
from the starting position to the target position in a specified global path map. Prior
to planning, the A* algorithm requires a two-dimensional raster map for environment
modeling. The environment information within the vehicle’s moving area in the world
coordinate system is mapped onto a grid diagram. In Figure 1, a 30 × 50 grid map in the
world coordinate system is depicted, which will serve as the test experimental map. The
grid side length is denoted as “m = 1”, where the black areas represent obstacles, and the
white areas signify feasible regions.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 26

(3) This research incorporates the concept of safety distance, substantially improving the
safety and self-adjustment capabilities of the path. By eliminating redundant nodes
from the path data and significantly reducing the number of control points and the
total path length, an optimal balance between efficiency and safety in path planning
is achieved.
The remainder of this study is organized as follows. The planning method of the tra-

ditional A* algorithm is provided in Section 2. Section 3 elaborates on the improvement
process of the developed A* optimization algorithm. Section 4 discusses the simulation
results and validates the superior performance of the raised strategy, followed by the main
conclusions drawn in Section 5.

2. A* Algorithm Principle
The A* algorithm is a heuristic search algorithm that combines the Dijkstra algorithm

and the greedy algorithm (depth-first). Its core concept is to find the minimum-cost path
from the starting position to the target position in a specified global path map. Prior to
planning, the A* algorithm requires a two-dimensional raster map for environment mod-
eling. The environment information within the vehicle’s moving area in the world coor-
dinate system is mapped onto a grid diagram. In Figure 1, a 30 × 50 grid map in the world
coordinate system is depicted, which will serve as the test experimental map. The grid
side length is denoted as “m = 1,” where the black areas represent obstacles, and the white
areas signify feasible regions.

Figure 1. Raster test map.

In the search process, the moving cost estimation function from the start position to
the target position ()f n is defined as follows:

() () ()f n g n h n= + (1)

where, ()f n is the cost estimate from the initial state through state n to the target state,
()g n is the actual cost in the state space from the initial state to state n, and ()h n is the

heuristic function of the best path from state n to the target state, that is, the estimated
moving cost. The relationship between the planning node and the cost function in the
search process is shown in Figure 2.

0 10 20 30 40 50
0

5

10

15

20

25

30

Figure 1. Raster test map.

In the search process, the moving cost estimation function from the start position to
the target position f (n) is defined as follows:

f (n) = g(n) + h(n) (1)

where, f (n) is the cost estimate from the initial state through state n to the target state, g(n)
is the actual cost in the state space from the initial state to state n, and h(n) is the heuristic
function of the best path from state n to the target state, that is, the estimated moving cost.
The relationship between the planning node and the cost function in the search process is
shown in Figure 2.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 26

Figure 2. The schematic of A* search principle.

()s n in Figure 2 represents the actual single-step moving distance from parent node
n − 1 to current node n; (1)s n + represents the actual single-step moving distance from
the current node n to the next node n + 1; and ()g n is the sum of the real moving distance

(1)g n + from the start node to the n − 1 node and the actual single-step moving distance
()s n from the n − 1 node to the current node n, that is, the sum of the distance of each

planned path. Thus, the expression of the true moving distance function ()g n can be
given as:

1
() ()

n

i
g n s i

=

= (2)

If the evaluation value of ()h n is much less than ()g n , then ()f n will be approxi-
mately equal to ()g n . At this time, the algorithm A* is similar to Dijkstra algorithm, and
the number of traversal nodes will increase, and the search efficiency will be greatly re-
duced. If ()h n is much larger than ()g n , the A* algorithm gradually evolves into the best
first search algorithm, and the path planning speed becomes faster, but the local optimal
solution is prone to occur. Therefore, the performance of the A* algorithm depends on the
selection of heuristic functions. Common estimation methods include Euclidean distance,
Manhattan distance, and diagonal distance.

Suppose the starting point coordinates are 1 2(,)s s , and the ending point coordinates
are 1 2(,)g g .

Then the Euclidean distance heuristic function is shown as follows:

2 2
1 1 2 2() ()h s g s g= − + − (3)

The heuristic function of Manhattan distance is expressed as follows:

1 1 2 2h s g s g= − + − (4)

The heuristic function of the diagonal distance is shown as follows:

1.4 (2)h Diagonal Straight Diagonal= × + − × (5)

where,

1 1 2 2min()Diagonal s g s g= − + − (6)

1 1 2 2Straight s g s g= − + − (7)

Since the calculation accuracy of Euclidean distance is higher than that of Manhattan
and diagonal distance, it is more likely to get the optimal path. Therefore, this paper
chooses Euclidean distance as a heuristic function ()h n to predict the moving cost.

Figure 2. The schematic of A* search principle.

s(n) in Figure 2 represents the actual single-step moving distance from parent node
n − 1 to current node n; s(n + 1) represents the actual single-step moving distance from

Sensors 2024, 24, 3149 6 of 25

the current node n to the next node n + 1; and g(n) is the sum of the real moving distance
g(n + 1) from the start node to the n − 1 node and the actual single-step moving distance s(n)
from the n − 1 node to the current node n, that is, the sum of the distance of each planned
path. Thus, the expression of the true moving distance function g(n) can be given as:

g(n) =
n

∑
i=1

s(i) (2)

If the evaluation value of h(n) is much less than g(n), then f (n) will be approximately
equal to g(n). At this time, the algorithm A* is similar to Dijkstra algorithm, and the
number of traversal nodes will increase, and the search efficiency will be greatly reduced. If
h(n) is much larger than g(n), the A* algorithm gradually evolves into the best first search
algorithm, and the path planning speed becomes faster, but the local optimal solution is
prone to occur. Therefore, the performance of the A* algorithm depends on the selection of
heuristic functions. Common estimation methods include Euclidean distance, Manhattan
distance, and diagonal distance.

Suppose the starting point coordinates are (s1, s2), and the ending point coordinates
are (g1, g2).

Then the Euclidean distance heuristic function is shown as follows:

h =

√
(s1 − g1)

2 + (s2 − g2)
2 (3)

The heuristic function of Manhattan distance is expressed as follows:

h = |s1 − g1|+ |s2 − g2| (4)

The heuristic function of the diagonal distance is shown as follows:

h = 1.4 × Diagonal + (Straight − 2 × Diagonal) (5)

where,
Diagonal = min(|s1 − g1|+ |s2 − g2|) (6)

Straight = |s1 − g1|+ |s2 − g2| (7)

Since the calculation accuracy of Euclidean distance is higher than that of Manhattan
and diagonal distance, it is more likely to get the optimal path. Therefore, this paper
chooses Euclidean distance as a heuristic function h(n) to predict the moving cost.

Based on the above algorithm principle, the path planning effect of the traditional A*
algorithm displayed in the test map shown in Figure 1 is shown in Figure 3.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 26

Based on the above algorithm principle, the path planning effect of the traditional A*
algorithm displayed in the test map shown in Figure 1 is shown in Figure 3.

Figure 3. Planning trajectory of the traditional A* algorithm.

3. Optimization of A* Algorithm
To address the issues encountered in the path planning process by the A* algorithm,

such as simple heuristic search, redundant control nodes, and susceptibility to local opti-
mality, this chapter focuses on three aspects of research: redesigning the cost function,
improving the search strategy, and optimizing path nodes. This is illustrated in Figure 4,
showcasing the enhanced overall technical pathway. Specifically, in order to improve the
adaptability and heuristic performance of optimization algorithms in different planning
scenarios, barrier raster coefficient and turn penalty function are integrated into the cost
function. The barrier raster coefficient is defined to represent the distribution density of
obstacles within the range restricted by the start and end points of the planning task. The
turn penalty function steers the target vehicle towards searching in the direction of the
shortest distance to the endpoint. As for the search strategy, a four-node search strategy
is proposed to replace the original eight-node search strategy, overcoming the issue of the
original algorithm path crossing between two obstacle vertices during searches. Finally,
to enhance the safety and efficiency of the planned path, safety distance constraints are
incorporated into the initial trajectory and redundant control nodes are removed through
forward node detection and bidirectional discrete optimization.

Figure 4. Schematic diagram of the technology route of optimization A* algorithm.

Figure 3. Planning trajectory of the traditional A* algorithm.

Sensors 2024, 24, 3149 7 of 25

3. Optimization of A* Algorithm

To address the issues encountered in the path planning process by the A* algorithm,
such as simple heuristic search, redundant control nodes, and susceptibility to local op-
timality, this chapter focuses on three aspects of research: redesigning the cost function,
improving the search strategy, and optimizing path nodes. This is illustrated in Figure 4,
showcasing the enhanced overall technical pathway. Specifically, in order to improve the
adaptability and heuristic performance of optimization algorithms in different planning
scenarios, barrier raster coefficient and turn penalty function are integrated into the cost
function. The barrier raster coefficient is defined to represent the distribution density of
obstacles within the range restricted by the start and end points of the planning task. The
turn penalty function steers the target vehicle towards searching in the direction of the
shortest distance to the endpoint. As for the search strategy, a four-node search strategy is
proposed to replace the original eight-node search strategy, overcoming the issue of the
original algorithm path crossing between two obstacle vertices during searches. Finally,
to enhance the safety and efficiency of the planned path, safety distance constraints are
incorporated into the initial trajectory and redundant control nodes are removed through
forward node detection and bidirectional discrete optimization.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 26

Based on the above algorithm principle, the path planning effect of the traditional A*
algorithm displayed in the test map shown in Figure 1 is shown in Figure 3.

Figure 3. Planning trajectory of the traditional A* algorithm.

3. Optimization of A* Algorithm
To address the issues encountered in the path planning process by the A* algorithm,

such as simple heuristic search, redundant control nodes, and susceptibility to local opti-
mality, this chapter focuses on three aspects of research: redesigning the cost function,
improving the search strategy, and optimizing path nodes. This is illustrated in Figure 4,
showcasing the enhanced overall technical pathway. Specifically, in order to improve the
adaptability and heuristic performance of optimization algorithms in different planning
scenarios, barrier raster coefficient and turn penalty function are integrated into the cost
function. The barrier raster coefficient is defined to represent the distribution density of
obstacles within the range restricted by the start and end points of the planning task. The
turn penalty function steers the target vehicle towards searching in the direction of the
shortest distance to the endpoint. As for the search strategy, a four-node search strategy
is proposed to replace the original eight-node search strategy, overcoming the issue of the
original algorithm path crossing between two obstacle vertices during searches. Finally,
to enhance the safety and efficiency of the planned path, safety distance constraints are
incorporated into the initial trajectory and redundant control nodes are removed through
forward node detection and bidirectional discrete optimization.

Figure 4. Schematic diagram of the technology route of optimization A* algorithm.

Figure 4. Schematic diagram of the technology route of optimization A* algorithm.

3.1. Design of the Cost Function
3.1.1. Barrier Raster Coefficients

In the traditional A* algorithm, the value of h(n) is crucial for global path planning,
particularly in the early search process. Improving the heuristic can effectively reduce
the number of nodes traversed by A* algorithm and its cyclic traversal speed, thereby
enhancing search efficiency. However, when dealing with a path that encounters a large
number of concave obstacles, an excessively large h(n) can disrupt the balance with g(n),
leading the search step size to cross boundaries and resulting in a local optimal situation.
To address this issue, based on the adaptive factor introduced in past research [44], the
introduction form of the obstacle grid coefficient P was optimized to reflect the obstacle
distribution in the planning process. This coefficient represents the density of obstacle grids
in the local rectangular environment formed by the current node and the end point. The
obstacle grid coefficient P provides map adaptability and does not require manual tuning.
The formula is defined as follows:

P =
N

(
∣∣xs − xg

∣∣+ 1)× (
∣∣ys − yg

∣∣+ 1)
(P ∈ (0, 1)) (8)

where, (xs, ys) are the coordinates of the start node,
(

xg, yg
)

are the coordinates of the
target node, and N is the number of obstacle grids in the rectangular map formed by the
cartesian coordinates of the start node and the target node.

Sensors 2024, 24, 3149 8 of 25

The barrier grid coefficient P is incorporated into the heuristic function h(n) to get the
modified heuristic function h′(n), which is shown as follows:

h′(n) = (1 − ln P) · h(n) (9)

where, (1 − ln P) is the adaptive weight factor of the adaptive heuristic function h′(n).
The obstacle raster coefficient P is introduced in the logarithmic form so that the heuristic
function can also have a more sensitive adjustment effect on the sparse obstacle distribution.
When the density of obstacles existing in the planning task is relatively large, the obstacle
raster coefficient P is increased, and the adaptive coefficient (1− ln P) decreases accordingly,
so that the modified heuristic function h′(n) decreases compared with the original heuristic
function h(n) and the weight of g(n) is increased, so as to achieve a more reasonable
obstacle avoidance effect.

The more obstacles in the map, the more the adaptive weight factor will decrease,
and the proportion between g(n) and the heuristic function h(n) will be automatically
adjusted to realize the adaptive adjustment of the cost function f (n), so as to avoid the
local optimal situation and ensure the appropriate heuristic of the path planning and the
map adaptability. The updated cost function f (n) is shown as follows:

f(n) = g(n) + h′(n) =
n

∑
i=1

s(i) + (1 − ln P) · h(n) (10)

3.1.2. Turn Penalty Function

The traditional A* algorithm may sometimes produce local optimal solutions, resulting
in unnecessary turns in the planned path. Additionally, the path planning can exhibit
turning redundancy due to search method limitations. To address these issues, a turn
penalty function can be introduced to correct excessive corners in the path.

Firstly, the relative position from the parent node of the current node to the target node is
determined, and the initial vector is obtained from the Cartesian coordinates of the two points.
Next, the current node is connected to the target node to obtain the search vector. Finally, the
position relationship between the initial vector and the search vector is determined using the
principle of vector parallelism. Additionally, the turn penalty method is employed to align
the searched path with the optimal path, thus minimizing unnecessary turns.

If the initial vector is parallel to the search vector, the path remains straight, and the
turning cost is 0. Conversely, the turn cost function increases proportionally, aiming to
minimize unnecessary turns in the planned path and align the search direction with the
target node, ensuring global or relative optimization of the final path. The principle of path
optimization based on the turn penalty function is illustrated in Figure 5. Nodes 1 and 2 in the
figure are the child nodes of parent node n − 1. The size of the cost function of the search node
after adding the turn penalty function is observed to be dependent on the direction vector
of the child node and the target node. The turn penalty function is equal to 0 only when its
direction aligns with the direction vector of its parent node pointing towards the target node.
Ensure that the turn angle during each point search is always minimized.

Set the current node coordinates as (n1, n2), parent node as (s1, s2), and target node as
(g1, g2); then, the direction vector can be described as follows:{

dx1 = |g1 − n1|, dy1 = |g2 − n2|
dx2 = |g1 − s1|, dy2 = |g2 − s2|

(11)

According to the principle of vector parallelism, the expression of the turning penalty
function is defined as follows:

Turn_penalty(n) = |dx1 × dy2 − dx2 × dy1| · K (12)

where, K is the turning penalty coefficient.

Sensors 2024, 24, 3149 9 of 25

The value of the turning penalty function is between 0 and 1, which is used to further
improve the calculation accuracy of f (n). The updated cost function f (n) is shown as follows:

f(n) = g(n) + h′(n) + Turn_penalty

=
n
∑

i=1
s(i) + (1 − ln P) · h(n) + |dx1 × dy2 − dx2 × dy1| · K (13)

Figure 6 illustrates the path planning effect after introducing the barrier grid density P
and the turning penalty function.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 26

method is employed to align the searched path with the optimal path, thus minimizing
unnecessary turns.

If the initial vector is parallel to the search vector, the path remains straight, and the
turning cost is 0. Conversely, the turn cost function increases proportionally, aiming to
minimize unnecessary turns in the planned path and align the search direction with the
target node, ensuring global or relative optimization of the final path. The principle of
path optimization based on the turn penalty function is illustrated in Figure 5. Nodes 1
and 2 in the figure are the child nodes of parent node n − 1. The size of the cost function
of the search node after adding the turn penalty function is observed to be dependent on
the direction vector of the child node and the target node. The turn penalty function is
equal to 0 only when its direction aligns with the direction vector of its parent node point-
ing towards the target node. Ensure that the turn angle during each point search is always
minimized.

Figure 5. Turn penalty function schematic.

Set the current node coordinates as 1 2(,)n n , parent node as 1 2(,)s s , and target node as

1 2(,)g g ; then, the direction vector can be described as follows:

1 1 1 1 2 2

2 1 1 2 2 2

,

,

dx g n dy g n

dx g s dy g s

 = − = −

= − = −
 (11)

According to the principle of vector parallelism, the expression of the turning penalty
function is defined as follows:

1 2 2 1_ ()Turn penalty n dx dy dx dy K= × − × ⋅ (12)

where, K is the turning penalty coefficient.
The value of the turning penalty function is between 0 and 1, which is used to further

improve the calculation accuracy of ()f n . The updated cost function ()f n is shown as
follows:

1
1

2 1

'

2

f () () ()

() (1 ln)

_

()
n

i

Turn penalty

dx dy dx dy K

n g n h n

s i P h n
=

= + +

= + − + × − ×⋅ ⋅
 (13)

Figure 6 illustrates the path planning effect after introducing the barrier grid density
P and the turning penalty function.

Figure 5. Turn penalty function schematic.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 26

Figure 6. Planning trajectory after adding barrier raster coefficient and turn penalty function.

3.2. Search Policy Improvements
The traditional A* algorithm exhibits an unsatisfactory planning effect when dealing

with an oblique arrangement and sparse distribution of obstacles, as depicted in Figure 7.
This collision problem significantly affects the feasibility of the planned path. The

underlying reason for this problem is that the conventional eight-node search strategy of
A* does not match well the appearance pattern of obstacles in the raster map. During the
trajectory planning process, obstacles arranged diagonally are considered passable at the
vertices of the grid, leading to collisions between the planned trajectory and the obstacles.

Figure 7. Diagram of the wrong condition where the path passes between two obstacles.

To overcome the collision problem, this paper analyzes and simplifies the algorithm’s
search strategy, introducing a novel search point selection strategy. This strategy excludes
certain suboptimal child nodes, and the traditional eight-node search strategy is trans-
formed into a more efficient four-node search strategy, as illustrated in Figure 8.

Figure 8. Schematic diagram of replacing the search policy.

In the two-dimensional Euclidean space, the traditional A* algorithm expands the
surrounding eight nodes in each search process, as illustrated in the left diagram of Figure

Figure 6. Planning trajectory after adding barrier raster coefficient and turn penalty function.

3.2. Search Policy Improvements

The traditional A* algorithm exhibits an unsatisfactory planning effect when dealing
with an oblique arrangement and sparse distribution of obstacles, as depicted in Figure 7.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 26

Figure 6. Planning trajectory after adding barrier raster coefficient and turn penalty function.

3.2. Search Policy Improvements
The traditional A* algorithm exhibits an unsatisfactory planning effect when dealing

with an oblique arrangement and sparse distribution of obstacles, as depicted in Figure 7.
This collision problem significantly affects the feasibility of the planned path. The

underlying reason for this problem is that the conventional eight-node search strategy of
A* does not match well the appearance pattern of obstacles in the raster map. During the
trajectory planning process, obstacles arranged diagonally are considered passable at the
vertices of the grid, leading to collisions between the planned trajectory and the obstacles.

Figure 7. Diagram of the wrong condition where the path passes between two obstacles.

To overcome the collision problem, this paper analyzes and simplifies the algorithm’s
search strategy, introducing a novel search point selection strategy. This strategy excludes
certain suboptimal child nodes, and the traditional eight-node search strategy is trans-
formed into a more efficient four-node search strategy, as illustrated in Figure 8.

Figure 8. Schematic diagram of replacing the search policy.

In the two-dimensional Euclidean space, the traditional A* algorithm expands the
surrounding eight nodes in each search process, as illustrated in the left diagram of Figure

Figure 7. Diagram of the wrong condition where the path passes between two obstacles.

Sensors 2024, 24, 3149 10 of 25

This collision problem significantly affects the feasibility of the planned path. The
underlying reason for this problem is that the conventional eight-node search strategy of
A* does not match well the appearance pattern of obstacles in the raster map. During the
trajectory planning process, obstacles arranged diagonally are considered passable at the
vertices of the grid, leading to collisions between the planned trajectory and the obstacles.

To overcome the collision problem, this paper analyzes and simplifies the algorithm’s
search strategy, introducing a novel search point selection strategy. This strategy excludes
certain suboptimal child nodes, and the traditional eight-node search strategy is trans-
formed into a more efficient four-node search strategy, as illustrated in Figure 8.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 26

Figure 6. Planning trajectory after adding barrier raster coefficient and turn penalty function.

3.2. Search Policy Improvements
The traditional A* algorithm exhibits an unsatisfactory planning effect when dealing

with an oblique arrangement and sparse distribution of obstacles, as depicted in Figure 7.
This collision problem significantly affects the feasibility of the planned path. The

underlying reason for this problem is that the conventional eight-node search strategy of
A* does not match well the appearance pattern of obstacles in the raster map. During the
trajectory planning process, obstacles arranged diagonally are considered passable at the
vertices of the grid, leading to collisions between the planned trajectory and the obstacles.

Figure 7. Diagram of the wrong condition where the path passes between two obstacles.

To overcome the collision problem, this paper analyzes and simplifies the algorithm’s
search strategy, introducing a novel search point selection strategy. This strategy excludes
certain suboptimal child nodes, and the traditional eight-node search strategy is trans-
formed into a more efficient four-node search strategy, as illustrated in Figure 8.

Figure 8. Schematic diagram of replacing the search policy.

In the two-dimensional Euclidean space, the traditional A* algorithm expands the
surrounding eight nodes in each search process, as illustrated in the left diagram of Figure

Figure 8. Schematic diagram of replacing the search policy.

In the two-dimensional Euclidean space, the traditional A* algorithm expands the
surrounding eight nodes in each search process, as illustrated in the left diagram of Figure 8.
Using a two-dimensional vector, the movement towards the eight nodes from the current
node can be represented. For vector

→
a = (a1, a2), the calculation formula for its Euclidean

norm is shown as follows: ∥∥∥→a ∥∥∥
2
= (

2

∑
i=1

|ai|2)
1
2

(14)

Based on the magnitude of the Euclidean norm, the eight vectors can be divided into
two groups, nodes 1–4 and nodes 5–8, representing two different search step lengths, as
shown in the following:

∥∥∥→a ∥∥∥
2
= (

2
∑

i=1
|ai|2)

1
2

=
√

12 + 02 = 1, node 1 − 4∥∥∥→a ∥∥∥
2
= (

2
∑

i=1
|ai|2)

1
2

=
√

12 + 12 =
√

2, node 5 − 8

(15)

To avoid collisions with diagonally arranged obstacles, the forward movement options
for nodes 5–8 are excluded, retaining nodes 1–4, which maintain the search step of 1. This
transition changes the search strategy to a four-node search strategy, as shown in the right
image in Figure 8.

The comparison of the improved search strategy’s effect on path planning is presented
in Figure 9. This approach not only reduces the search time and scope for each step, thereby
enhancing running speed, but also effectively addresses the mismatch between the search
method and the raster map. By avoiding paths that pass through the vertices of obstacles,
the likelihood of collisions between the driverless car and obstacles is reduced. However,
this optimization Inevitably results in some negative impacts, including an increase in the
number of turns, traversed nodes, and path length. Nonetheless, these negative effects are
confined to a small and concentrated range, which will be addressed in the subsequent
third part of path optimization.

Sensors 2024, 24, 3149 11 of 25

Sensors 2024, 24, x FOR PEER REVIEW 11 of 26

8. Using a two-dimensional vector, the movement towards the eight nodes from the cur-
rent node can be represented. For vector ()1 2a ,a a= , the calculation formula for its Eu-
clidean norm is shown as follows:

12
2 2

2
1

()i
i

a a
=

= (14)

Based on the magnitude of the Euclidean norm, the eight vectors can be divided into
two groups, nodes 1–4 and nodes 5–8, representing two different search step lengths, as
shown in the following:

12
2 2 22

2
1

12
2 2 22

2
1

() 1 0 1, node 1 4

() 1 1 2, node 5 8

i
i

i
i

a a

a a

=

=

= = + = −

 = = + = −

 (15)

To avoid collisions with diagonally arranged obstacles, the forward movement op-
tions for nodes 5–8 are excluded, retaining nodes 1–4, which maintain the search step of
1. This transition changes the search strategy to a four-node search strategy, as shown in
the right image in Figure 8.

The comparison of the improved search strategy’s effect on path planning is pre-
sented in Figure 9. This approach not only reduces the search time and scope for each step,
thereby enhancing running speed, but also effectively addresses the mismatch between
the search method and the raster map. By avoiding paths that pass through the vertices
of obstacles, the likelihood of collisions between the driverless car and obstacles is re-
duced. However, this optimization Inevitably results in some negative impacts, including
an increase in the number of turns, traversed nodes, and path length. Nonetheless, these
negative effects are confined to a small and concentrated range, which will be addressed
in the subsequent third part of path optimization.

Figure 9. Planning trajectory after improving the search strategy.

3.3. Optimization of Path Nodes
3.3.1. Safe Distance Constraints

The traditional A* algorithm restricts path nodes to be located at the center of the
grid, resulting in the distance between the path nodes and obstacles being solely deter-
mined by the precision of the grid map. Specifically, when the path passes through grid
vertices, the distance between the path and obstacles is 0, which leads to insufficient safety
in path planning. Therefore, other research [45] has detected nodes with obstacles around
them and moved the node to a grid in the opposite direction to achieve the purpose of the
principled obstacle. On this basis, the improved A* algorithm incorporates the constraint

Figure 9. Planning trajectory after improving the search strategy.

3.3. Optimization of Path Nodes
3.3.1. Safe Distance Constraints

The traditional A* algorithm restricts path nodes to be located at the center of the grid,
resulting in the distance between the path nodes and obstacles being solely determined
by the precision of the grid map. Specifically, when the path passes through grid vertices,
the distance between the path and obstacles is 0, which leads to insufficient safety in path
planning. Therefore, other research [45] has detected nodes with obstacles around them and
moved the node to a grid in the opposite direction to achieve the purpose of the principled
obstacle. On this basis, the improved A* algorithm incorporates the constraint of a safe
distance, offsetting the path nodes to positions that are sufficiently safe from obstacles.

In the case of a planning problem in two-dimensional Euclidean space, where the
planned path consists of n sequential connections of two-dimensional nodes, the i-th path
node σi can be represented as follows:

σi = (σix, σiy) ∈ R2×1, i = 0, · · · , n (16)

For the traditional A* algorithm, after setting the starting point S and the target point
T, the global planning result ΓST obtained through the search can be represented as follows:

ΓST = (σ0, σ1, · · · , σn−1, σn)
T ∈ Rn×2 (17)

where σ0 = S, σn = T.
Similarly, the set of obstacles can be represented as follows:

Φ = (ς0, ς1, · · · , ςm−1, ςm)
T ∈ Rm×2 (18)

Taking the i-th path node σi as an example, find the obstacle node ς j that is closest
to the path node and calculate the distance between the obstacle grid center and the path
node, as shown in the following:

sd(σi, ς j) = min
∥∥∥∥ →
(σi, ς j)

∥∥∥∥
2
, j = 0, · · · , m (19)

The safe distance represents the minimum required distance between the path control
points and obstacle edges. A safety distance evaluation function is used to assess each
control path point, and the path points are adjusted individually to obtain a safe path
that meets the safety requirements while avoiding unnecessary redundant paths caused

Sensors 2024, 24, 3149 12 of 25

by the vehicle being far away from obstacles. The safety distance judgment function and
adjustment strategy are represented as the following:

σix = σix −
(

sa f e_dist − d
2

)
, sd(σi, ς j) ≺ sa f e_dist + d

2 &ςix = σix + 1

σix = σix +
(

sa f e_dist − d
2

)
, sd(σi, ς j) ≺ sa f e_dist + d

2 &ςix = σix − 1

σiy = σiy −
(

sa f e_dist − d
2

)
, sd(σi, ς j) ≺ sa f e_dist + d

2 &ςiy = σiy + 1

σiy = σiy +
(

sa f e_dist − d
2

)
, sd(σi, ς j) ≺ sa f e_dist + d

2 &ςiy = σiy − 1

σi = σi, sd(σi, ς j) ≥ sa f e_dist + d
2

(20)

According to Equation (20), each path node can be offset based on the safety distance
constraint. The path planning results considering the safe distance and waypoint offset
handling are shown in Figure 10.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 26

Figure 10. The effect of the path point offset.

3.3.2. Extraction of Necessary Nodes
Based on the current improvements, there are still issues regarding excessive tra-

versal nodes and redundant turning points. These aspects can result in numerous unnec-
essary control points during actual driving, leading to higher vehicle energy consump-
tion. To address this problem, this section proposes the elimination of redundant nodes
in the same direction. Meanwhile, obstacle collision detection and bidirectional discrete
smoothing optimization are integrated to reduce the number of turning points and the
overall length of the path, thereby enhancing the smoothness of the planning outcome.
(a) Elimination of co-redundant nodes

When the vehicle is moving in a straight line, the intermediate nodes used for con-
trolling the driving direction become redundant. To eliminate these unnecessary nodes in
the same direction, a same direction detection method is proposed for the current path
nodes. A set of direction vectors are generated by using three adjacent nodes. If the cross
product result of the two vectors is zero, it indicates that the three points are collinear, and
the central redundant node should be eliminated. Conversely, if the result is non-zero, the
central node is essential and should be retained as a new starting point. By repeating this
process, all of the same direction redundant nodes are eliminated, thus reducing the num-
ber of control points.

Suppose that the coordinates of the three consecutive points of the planned path are
xA 1 1（ ,y）, 2 2xB（ ,y）, and 3 3xC（ ,y）, and direction vectors can be written as follows:

2 1 2 1

3 1 3 1

(,)

(,)

AB x x y y

AC x x y y

 = − −

= − −

 (21)

The cross product of the two vectors is written as follows:

2 1 3 1 3 1 2 1() () () ()AB AC x x y y x x y y× = − ⋅ − − − ⋅ −

 (22)

If 0AB AC× =

, point B is abandoned, point C is retained and the test continues with
point C as the vector starting point; if 0AB AC× ≠

, point B is retained and the test contin-

ues with point B as the vector starting point. The path planning effect after the elimination
of redundant nodes in the same direction is shown in Figure 11.

Figure 10. The effect of the path point offset.

3.3.2. Extraction of Necessary Nodes

Based on the current improvements, there are still issues regarding excessive traversal
nodes and redundant turning points. These aspects can result in numerous unnecessary
control points during actual driving, leading to higher vehicle energy consumption. To
address this problem, this section proposes the elimination of redundant nodes in the same
direction. Meanwhile, obstacle collision detection and bidirectional discrete smoothing
optimization are integrated to reduce the number of turning points and the overall length
of the path, thereby enhancing the smoothness of the planning outcome.

(a) Elimination of co-redundant nodes

When the vehicle is moving in a straight line, the intermediate nodes used for con-
trolling the driving direction become redundant. To eliminate these unnecessary nodes
in the same direction, a same direction detection method is proposed for the current path
nodes. A set of direction vectors are generated by using three adjacent nodes. If the cross
product result of the two vectors is zero, it indicates that the three points are collinear, and
the central redundant node should be eliminated. Conversely, if the result is non-zero,
the central node is essential and should be retained as a new starting point. By repeating
this process, all of the same direction redundant nodes are eliminated, thus reducing the
number of control points.

Suppose that the coordinates of the three consecutive points of the planned path are
A(x1, y1), B(x2, y2), and C(x3, y3), and direction vectors can be written as follows:

→
AB = (x2 − x1, y2 − y1)
→

AC = (x3 − x1, y3 − y1)
(21)

Sensors 2024, 24, 3149 13 of 25

The cross product of the two vectors is written as follows:

→
AB ×

→
AC = (x2 − x1) · (y3 − y1)− (x3 − x1) · (y2 − y1) (22)

If
→

AB ×
→

AC = 0, point B is abandoned, point C is retained and the test continues

with point C as the vector starting point; if
→

AB ×
→

AC ̸= 0, point B is retained and the
test continues with point B as the vector starting point. The path planning effect after the
elimination of redundant nodes in the same direction is shown in Figure 11.

Sensors 2024, 24, x FOR PEER REVIEW 14 of 26

Figure 11. Planning trajectory after eliminating redundant nodes in the same direction.

(b) Bidirectional discrete optimization
To further optimize the path points and address the issue of redundant paths caused

by nodes being only in the center of the grid, this study proposes a combination of obstacle
collision detection and bidirectional discrete smoothing optimization. First, analyze each
line segment of the current path and discretize it to obtain a series of discrete path control
points separated by a small interval K. Each discrete point is then reconstructed, and ob-
stacle collision detection is performed in combination with the safety distance. The goal is
to find the minimum turning path that meets the safety requirements.

Figure 12 illustrates the post-discrete collision detection of a single line segment in
the bidirectional discrete smooth optimization process. The green path represents the path
to be optimized, and the discrete points represent a series of dense points along the path.
The obstacle grid center nearest to each line segment is identified to compare the distance
between the vertical segment from the center to the line segment with the safety distance.
If the safety requirements are met, repeat the process for the next line segment. When the
line segment is cut from the safe distance circle, the previous discrete point is regarded as
a necessary inflection point. Then connect it with the discrete point of the next line seg-
ment to form a new node, and repeat the process until reaching the target node. This pro-
cess is performed in each direction to maximize the approximation of the optimal path
planning and reduce the number of traversing nodes, thus compensating for the negative
optimization effect mentioned in Section 3.2.

Figure 12. The schematic of discrete smoothing optimization.

Figure 11. Planning trajectory after eliminating redundant nodes in the same direction.

(b) Bidirectional discrete optimization

To further optimize the path points and address the issue of redundant paths caused
by nodes being only in the center of the grid, this study proposes a combination of obstacle
collision detection and bidirectional discrete smoothing optimization. First, analyze each
line segment of the current path and discretize it to obtain a series of discrete path control
points separated by a small interval K. Each discrete point is then reconstructed, and
obstacle collision detection is performed in combination with the safety distance. The goal
is to find the minimum turning path that meets the safety requirements.

Figure 12 illustrates the post-discrete collision detection of a single line segment in
the bidirectional discrete smooth optimization process. The green path represents the path
to be optimized, and the discrete points represent a series of dense points along the path.
The obstacle grid center nearest to each line segment is identified to compare the distance
between the vertical segment from the center to the line segment with the safety distance.
If the safety requirements are met, repeat the process for the next line segment. When the
line segment is cut from the safe distance circle, the previous discrete point is regarded
as a necessary inflection point. Then connect it with the discrete point of the next line
segment to form a new node, and repeat the process until reaching the target node. This
process is performed in each direction to maximize the approximation of the optimal path
planning and reduce the number of traversing nodes, thus compensating for the negative
optimization effect mentioned in Section 3.2.

At this point, the three-layer optimization process of traditional A* has been completed,
and the final path planning effect is shown in Figure 13.

Sensors 2024, 24, 3149 14 of 25

Sensors 2024, 24, x FOR PEER REVIEW 14 of 26

Figure 11. Planning trajectory after eliminating redundant nodes in the same direction.

(b) Bidirectional discrete optimization
To further optimize the path points and address the issue of redundant paths caused

by nodes being only in the center of the grid, this study proposes a combination of obstacle
collision detection and bidirectional discrete smoothing optimization. First, analyze each
line segment of the current path and discretize it to obtain a series of discrete path control
points separated by a small interval K. Each discrete point is then reconstructed, and ob-
stacle collision detection is performed in combination with the safety distance. The goal is
to find the minimum turning path that meets the safety requirements.

Figure 12 illustrates the post-discrete collision detection of a single line segment in
the bidirectional discrete smooth optimization process. The green path represents the path
to be optimized, and the discrete points represent a series of dense points along the path.
The obstacle grid center nearest to each line segment is identified to compare the distance
between the vertical segment from the center to the line segment with the safety distance.
If the safety requirements are met, repeat the process for the next line segment. When the
line segment is cut from the safe distance circle, the previous discrete point is regarded as
a necessary inflection point. Then connect it with the discrete point of the next line seg-
ment to form a new node, and repeat the process until reaching the target node. This pro-
cess is performed in each direction to maximize the approximation of the optimal path
planning and reduce the number of traversing nodes, thus compensating for the negative
optimization effect mentioned in Section 3.2.

Figure 12. The schematic of discrete smoothing optimization. Figure 12. The schematic of discrete smoothing optimization.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 26

At this point, the three-layer optimization process of traditional A* has been com-
pleted, and the final path planning effect is shown in Figure 13.

Figure 13. Test effect of the optimized A* algorithm.

3.4. The Flow of A* Optimization Algorithm
To enable the A* optimization algorithm to plan the optimal path in complex maps,

effectively reducing the number of traversing nodes, total turning angle, search speed,
and path distance, this study integrates three strategies: the adaptive heuristic cost func-
tion strategy, the improved neighborhood priority search strategy, and the redundant
node smoothing strategy. These strategies culminate in the proposed improved A* algo-
rithm presented in this paper. The algorithm pseudocode is depicted in Table 2.

Table 2. The pseudocode of improved A* algorithm.

Improved A* Algorithm
Input: Environment Data A, Start Node S, Target Node T, Safe Distance SD, Dispersion t
Output: Optimized Path OP

1:
11 1

1

; [0,1]
n

i j

m mn

a a
a

a a

 Α = ∈

 // Quantify environment information to A

2: ();rasterize AE = // Rasterize map based on A

3: (, ,);_P barrie o E Sr c e Tf= // Calculate barrier raster coefficient P using S and T
4: Add S to IP; // Initialize path IP with S
5: CN = S; // Set current node CN to S
6: while CN ≠ T // Terminating criteria for the search
7: EN = 4node_mode (CN, E); // Finding neighborhood nodes
8: () () ();ENf P g EN h EN TP ENα= ⋅ + + + // Recalculate f using cost function CF

9: min ;ENEN
CN f= // Set CN to the node with smallest f in O

10: Add CN to IP; // Add to initial path IP
11: end;
12: 2

1 1(, , , ,);k iIP S p p T p−= ∈ // Retrieve initial path IP from S to T

13: _ (, ,);SP safe dis IP SD E= // Apply SD to IP to get safe path SP

14: _ ();RP co eli SP= // Remove redundant nodes from SP to get RP

15: (,);DP discrete t RP= // Discretize the RP route with discreteness t

16: while j ≠ T // , ;i j DP∈

Figure 13. Test effect of the optimized A* algorithm.

3.4. The Flow of A* Optimization Algorithm

To enable the A* optimization algorithm to plan the optimal path in complex maps,
effectively reducing the number of traversing nodes, total turning angle, search speed, and
path distance, this study integrates three strategies: the adaptive heuristic cost function
strategy, the improved neighborhood priority search strategy, and the redundant node
smoothing strategy. These strategies culminate in the proposed improved A* algorithm
presented in this paper. The algorithm pseudocode is depicted in Table 2.

Table 2. The pseudocode of improved A* algorithm.

Improved A* Algorithm

Input: Environment Data A, Start Node S, Target Node T, Safe Distance SD, Dispersion t

Output: Optimized Path OP

1:
A =

 a11 . . . a1n
...

. . .
...

am1 · · · amn

; aij ∈ [0, 1] // Quantify environment information to A

2: E = rasterize(A); // Rasterize map based on A

3: P = barrier_coe f (E, S, T); // Calculate barrier raster coefficient P using S and T

4: Add S to IP; // Initialize path IP with S

Sensors 2024, 24, 3149 15 of 25

Table 2. Cont.

5: CN = S; // Set current node CN to S

6: while CN ̸= T // Terminating criteria for the search

7: EN = 4node_mode (CN, E); // Finding neighborhood nodes

8: fEN = α · P + g(EN) + h(EN) + TP(EN); // Recalculate f using cost function CF

9: CN = min
EN

fEN ; // Set CN to the node with smallest f in O

10: Add CN to IP; // Add to initial path IP

11: end;

12: IP = (S, p1, · · · , pk−1, T); pi ∈ R2 // Retrieve initial path IP from S to T

13: SP = sa f e_dis(IP, SD, E); // Apply SD to IP to get safe path SP

14: RP = co_eli(SP); // Remove redundant nodes from SP to get RP

15: DP = discrete(t, RP); // Discretize the RP route with discreteness t

16: while j ̸= T // i, j ∈ DP;

17: if collision_dete(i, j, E) = f alse // Collision detection

18: i = j;

19: Add i to OP; // Node i is necessary, add it to result path OP

20 end;

21: j = j + 1;

22: end;

23: Repeat the process of lines 17–23 in the opposite direction

24: Return OP;

4. Testing & Evaluation
4.1. No Obstacle Test Results

In order to explore the performance benchmark of the optimized A* algorithm com-
pared with the traditional A* algorithm in ideal conditions, a 40 × 70 raster test scenario is
established, and the planning effect of the optimized algorithm on an accessible raster map
is shown in Figure 14.

Sensors 2024, 24, x FOR PEER REVIEW 16 of 26

17: if _ (, ,)collision dete i j E false= // Collision detection
18: i = j;
19: Add i to OP; // Node i is necessary, add it to result path OP
20 end;
21: j = j + 1;
22: end;
23: Repeat the process of lines 17–23 in the opposite direction
24: Return OP;

4. Testing & Evaluation
4.1. No Obstacle Test Results

In order to explore the performance benchmark of the optimized A* algorithm com-
pared with the traditional A* algorithm in ideal conditions, a 40 × 70 raster test scenario is
established, and the planning effect of the optimized algorithm on an accessible raster
map is shown in Figure 14.

Figure 14. Comparison of traditional A* algorithm and A* optimization algorithm on maps without
obstacles.

As shown in Figure 14, the red line represents the planning path of the traditional A*
algorithm under the barrier-free object map, and the blue line represents the planning
path of the optimized A* algorithm under the barrier-free object map. Due to the im-
proved A* algorithm with a series of optimization processes such as discrete smoothing
optimization, the optimized A* algorithm plans a more reasonable and smooth global
path in the face of the map without obstacles. The performance indicators of the algorithm
before and after the improvement in path planning are compared in Table 3.

Figure 14. Comparison of traditional A* algorithm and A* optimization algorithm on maps with-
out obstacles.

Sensors 2024, 24, 3149 16 of 25

As shown in Figure 14, the red line represents the planning path of the traditional A*
algorithm under the barrier-free object map, and the blue line represents the planning path
of the optimized A* algorithm under the barrier-free object map. Due to the improved A*
algorithm with a series of optimization processes such as discrete smoothing optimization,
the optimized A* algorithm plans a more reasonable and smooth global path in the face of
the map without obstacles. The performance indicators of the algorithm before and after
the improvement in path planning are compared in Table 3.

Table 3. Performance indicators of planning algorithms.

Test Items Traditional A*
Algorithm

A* Optimization
Algorithm

Performance
Optimization Rate

Path nodes 68 2 97.1%
Total turning angle (◦) 45 0 100.0%

Path length (m) 1023 1006 1.7%

As shown in Table 3, the optimized A* algorithm has greatly improved the number of
control nodes and the total turning angle, and has reached the shortest distance between
the starting and ending points in terms of the total length of the path. In summary, the
optimized A* algorithm shows more significant planning advantages than the traditional
A* algorithm in the barrier-free map environment.

4.2. Establishment of Unstructured Test Environment

To verify the optimization effect of the traditional A* algorithm in an unstructured
environment, the real satellite map image of the South District of Jilin University was acquired
by using Google Map, as illustrated in Figure 15a. The map satisfies the testing requirements
for global path planning algorithms in the unstructured environment in terms of its area,
large number of buildings, and clear division of feasible areas. Additionally, it meets the
requirements for mapping a raster map. To create a suitable environment for testing, moving
pedestrians and vehicles were excluded. Figure 15b–d shows the image after filtering and
reducing noise, as well as the re-coloring process to extract color points from the map.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 26

Table 3. Performance indicators of planning algorithms.

Test Items Traditional A*
Algorithm

A* Optimization
Algorithm

Performance
Optimization Rate

Path nodes 68 2 97.1%
Total turning angle (°) 45 0 100.0%

Path length (m) 1023 1006 1.7%

As shown in Table 3, the optimized A* algorithm has greatly improved the number
of control nodes and the total turning angle, and has reached the shortest distance be-
tween the starting and ending points in terms of the total length of the path. In summary,
the optimized A* algorithm shows more significant planning advantages than the tradi-
tional A* algorithm in the barrier-free map environment.

4.2. Establishment of Unstructured Test Environment
To verify the optimization effect of the traditional A* algorithm in an unstructured

environment, the real satellite map image of the South District of Jilin University was ac-
quired by using Google Map, as illustrated in Figure 15a. The map satisfies the testing
requirements for global path planning algorithms in the unstructured environment in
terms of its area, large number of buildings, and clear division of feasible areas. Addition-
ally, it meets the requirements for mapping a raster map. To create a suitable environment
for testing, moving pedestrians and vehicles were excluded. Figure 15b–d shows the im-
age after filtering and reducing noise, as well as the re-coloring process to extract color
points from the map.

Figure 15. The extraction process of satellite maps. Figure (a) represents the satellite map of the
testing environment, figure (b) illustrates the image after extracting color points from the original
map, figure (c) depicts the image after processing with a filtering and noise reduction function, and
figure (d) shows the re-colored map image.

Figure 15. The extraction process of satellite maps. Figure (a) represents the satellite map of the
testing environment, figure (b) illustrates the image after extracting color points from the original
map, figure (c) depicts the image after processing with a filtering and noise reduction function, and
figure (d) shows the re-colored map image.

Sensors 2024, 24, 3149 17 of 25

Based on the processing results, a portion of the region with a better recognition effect
was selected to create a raster map for the optimization effect test platform. Figure 16
shows the satellite map of the selected area, while Figure 17 displays the corresponding
raster map which is established from this captured part.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 26

Based on the processing results, a portion of the region with a better recognition effect
was selected to create a raster map for the optimization effect test platform. Figure 16
shows the satellite map of the selected area, while Figure 17 displays the corresponding
raster map which is established from this captured part.

Figure 16. Intercepted satellite map.

Figure 17. Raster map of the avant-garde south area of Jilin University.

4.3. Display of Unstructured Test Results
The experimental scenario involved a path planning problem from the entrance to

the school gate to the apartment building. This scenario was mapped to the raster map,
and the starting point coordinates were set as (17, 70), while the end coordinates were set

Figure 16. Intercepted satellite map.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 26

Based on the processing results, a portion of the region with a better recognition effect
was selected to create a raster map for the optimization effect test platform. Figure 16
shows the satellite map of the selected area, while Figure 17 displays the corresponding
raster map which is established from this captured part.

Figure 16. Intercepted satellite map.

Figure 17. Raster map of the avant-garde south area of Jilin University.

4.3. Display of Unstructured Test Results
The experimental scenario involved a path planning problem from the entrance to

the school gate to the apartment building. This scenario was mapped to the raster map,
and the starting point coordinates were set as (17, 70), while the end coordinates were set

Figure 17. Raster map of the avant-garde south area of Jilin University.

4.3. Display of Unstructured Test Results

The experimental scenario involved a path planning problem from the entrance to the
school gate to the apartment building. This scenario was mapped to the raster map, and the
starting point coordinates were set as (17, 70), while the end coordinates were set as (20, 3).
The path planning effects of the improved A* algorithm before and after optimization are
illustrated in Figure 18.

Sensors 2024, 24, 3149 18 of 25

Sensors 2024, 24, x FOR PEER REVIEW 19 of 26

as (20, 3). The path planning effects of the improved A* algorithm before and after opti-
mization are illustrated in Figure 18.

Figure 18. Comparison of traditional A* algorithm and A* optimization algorithm in an unstruc-
tured map.

In Figure 18, the red line represents the planned path using the traditional A* method,
while the blue line represents the path planning effect using the improved A* method.
The local enlarged image in the figure demonstrates that the improved A* algorithm can
effectively avoid the incorrect planning of the path passing through the gap of the grid
while maintaining a certain safe distance from obstacles. Additionally, it retains the ad-
vantage of the traditional A* algorithm in always searching in the shortest direction of the
path. The performance indicators of the algorithm before and after the improvement in
path planning are compared in Table 4.

Table 4. Performance indicators of planning algorithms.

Test Items
Traditional A*

Algorithm
A* Optimization

Algorithm
Performance

Optimization Rate
Path nodes 75 12 84.0%

Safe distance (m) 0 1 -
Total turning angle (°) 855.1 522.3 39.0%

Planning time (ms) 709.2 986.6 −39.1%
Path length (m) 1314 1332 −1.4%

As shown in Table 4, the optimized A* algorithm significantly reduces the number
of traversed nodes and the total turning angle of the path, while also considering the safe
distance from obstacles. This simplifies the control points, reduces turning, and improves
energy consumption, driving experience, and driving safety. Although the total path
length increases compared to that of traditional planning methods, the local enlarged fig-
ure indicates that the optimized algorithm employs reasonable obstacle avoidance plan-
ning to prevent the wrong “through the wall” type of path planning that the traditional
algorithm may produce. This results in a notable increase in the path length of the

Figure 18. Comparison of traditional A* algorithm and A* optimization algorithm in an unstruc-
tured map.

In Figure 18, the red line represents the planned path using the traditional A* method,
while the blue line represents the path planning effect using the improved A* method.
The local enlarged image in the figure demonstrates that the improved A* algorithm can
effectively avoid the incorrect planning of the path passing through the gap of the grid while
maintaining a certain safe distance from obstacles. Additionally, it retains the advantage of
the traditional A* algorithm in always searching in the shortest direction of the path. The
performance indicators of the algorithm before and after the improvement in path planning
are compared in Table 4.

Table 4. Performance indicators of planning algorithms.

Test Items Traditional A*
Algorithm

A* Optimization
Algorithm

Performance
Optimization Rate

Path nodes 75 12 84.0%
Safe distance (m) 0 1 -

Total turning angle (◦) 855.1 522.3 39.0%
Planning time (ms) 709.2 986.6 −39.1%

Path length (m) 1314 1332 −1.4%

As shown in Table 4, the optimized A* algorithm significantly reduces the number of
traversed nodes and the total turning angle of the path, while also considering the safe
distance from obstacles. This simplifies the control points, reduces turning, and improves
energy consumption, driving experience, and driving safety. Although the total path
length increases compared to that of traditional planning methods, the local enlarged figure
indicates that the optimized algorithm employs reasonable obstacle avoidance planning to
prevent the wrong “through the wall” type of path planning that the traditional algorithm
may produce. This results in a notable increase in the path length of the optimized algorithm
in this case. However, this increase is higher than the difference in the total planned path
lengths shown in Table 4. Thus, the optimized A* algorithm still outperforms the traditional
algorithm in reducing the total path length. As for the planning time, the optimized A*
algorithm requires an additional traversal of the initial trajectory due to the presence of a

Sensors 2024, 24, 3149 19 of 25

discrete smoothing optimization process, resulting in a longer planning time. However,
the global planning process typically occurs only at the beginning of autonomous driving
tasks or when the vehicle significantly deviates from the planned trajectory and requires
replanning. Additionally, global paths with fewer control nodes will significantly reduce
the time required for backend trajectory optimization. Therefore, the sacrificed planning
time by this optimization algorithm is acceptable.

As depicted in Figure 19, several tests are conducted with different starting and ending
coordinates to evaluate the robustness and efficiency of the improved algorithm in handling
various complex road conditions and planning requirements. Figure 19a, Figure 19b, and
Figure 19c, respectively, illustrate the planning performance of the enhanced A* algorithm
in long-distance planning tasks, medium-distance planning tasks, and short-distance
planning tasks. The three insets provide a detailed magnification of the local regions,
demonstrating that compared to the traditional A* algorithm, the enhanced A* algorithm
exhibits superior efficiency and rationality in planning paths across three different scales of
planning tasks. The planning results demonstrate that the improved algorithm performs
consistently well across different scenarios.

Sensors 2024, 24, x FOR PEER REVIEW 20 of 26

optimized algorithm in this case. However, this increase is higher than the difference in
the total planned path lengths shown in Table 4. Thus, the optimized A* algorithm still
outperforms the traditional algorithm in reducing the total path length. As for the planning
time, the optimized A* algorithm requires an additional traversal of the initial trajectory
due to the presence of a discrete smoothing optimization process, resulting in a longer
planning time. However, the global planning process typically occurs only at the begin-
ning of autonomous driving tasks or when the vehicle significantly deviates from the
planned trajectory and requires replanning. Additionally, global paths with fewer control
nodes will significantly reduce the time required for backend trajectory optimization.
Therefore, the sacrificed planning time by this optimization algorithm is acceptable.

As depicted in Figure 19, several tests are conducted with different starting and end-
ing coordinates to evaluate the robustness and efficiency of the improved algorithm in
handling various complex road conditions and planning requirements. Figure 19a, Figure
19b, and Figure 19c, respectively, illustrate the planning performance of the enhanced A*
algorithm in long-distance planning tasks, medium-distance planning tasks, and short-
distance planning tasks. The three insets provide a detailed magnification of the local re-
gions, demonstrating that compared to the traditional A* algorithm, the enhanced A* al-
gorithm exhibits superior efficiency and rationality in planning paths across three differ-
ent scales of planning tasks. The planning results demonstrate that the improved algo-
rithm performs consistently well across different scenarios.

Table 5 provides specific performance indicators for each test case. It shows that the
optimized A* algorithm maintains its effectiveness in reducing the number of traversal
nodes and the total turning angle, while ensuring a safe distance from obstacles. The al-
gorithm’s ability to simplify control points, minimize turning, and improve energy con-
sumption and driving safety remains evident in all test scenarios.

Figure 19. Robustness test effect of optimized A* algorithm: (a) shows the planning result in a long-
distance environment, (b) shows the planning result in a medium-distance environment, and (c)
shows the planning result in a short-distance environment.

Figure 19. Robustness test effect of optimized A* algorithm: (a) shows the planning result in a
long-distance environment, (b) shows the planning result in a medium-distance environment, and
(c) shows the planning result in a short-distance environment.

Table 5 provides specific performance indicators for each test case. It shows that the
optimized A* algorithm maintains its effectiveness in reducing the number of traversal
nodes and the total turning angle, while ensuring a safe distance from obstacles. The
algorithm’s ability to simplify control points, minimize turning, and improve energy
consumption and driving safety remains evident in all test scenarios.

Sensors 2024, 24, 3149 20 of 25

Table 5. Robustness test performance indicators.

Test
Conditions

Start and
Target
Node

Test Items
Traditional

A*
Algorithm

A*
Optimization

Algorithm

Performance
Optimization

Rate

Long-
distance
planning

(6, 66),
(30, 2)

Path nodes 78 11 85.9%
Safe distance (m) 0 1 -

Total turning
angle (◦) 800.1 601.3 24.8%

Path length (m) 1303.5 1285.5 1.4%

Medium-
distance
planning

(17, 27),
(3, 51)

Path nodes 28 5 82.1%
Safe distance (m) 0 1 -

Total turning
angle (◦) 405.3 234.7 42.1%

Path length (m) 496.5 492 0.9%

Short-
distance
planning

(35, 61),
(6, 65)

Path nodes 28 3 89.3%
Safe distance (m) 0 1 -

Total turning
angle (◦) 270.1 56.2 79.2%

Path length (m) 460.5 447 2.9%

As shown in Table 5, when the algorithm is provided with three different planning
requirements, namely short, medium, and long paths, the improved A* algorithm demon-
strates significant optimization compared to the traditional A* algorithm. Across all three
scenarios, the improved A* algorithm consistently plans shorter paths, reduces cumulative
turning angles, minimizes the number of traversing nodes, and maintains a safe distance
from obstacles.

In summary, the optimized A* algorithm exhibits remarkable path planning efficiency
and satisfactory performance indices in comparison to the pre-optimized version. Its
enhanced robustness and adaptability enable it to handle diverse path conditions with
varying planning requirements. The improved A* algorithm represents a valuable contri-
bution to the field of path planning, offering a reliable and effective solution for optimizing
vehicle trajectories in complex environments.

4.4. Exploration of the Influence of Obstacle Grid Coefficient P on Planning

To further explore the impact of obstacle grid coefficient P on planning effectiveness,
this section attempts to change the determination of P from being determined by the start
node and target node to being determined by the current node and target node, aiming
to achieve dynamic parameter adjustment. In the unstructured grid map environment
shown in Figure 17, the starting point coordinates were set as (17, 70), while the end
coordinates were set as (20, 3). A comparative verification test was conducted on the
improved algorithm before and after modification, with the test results shown in Figure 20.

In Figure 20a, the green line in the graph represents the testing result after dynamically
adjusting P, while the red line represents the planning result of the traditional A* algorithm.
In Figure 20b, the blue line depicts the testing result under a constant P, while the red
line represents the planning result of the traditional A* algorithm. It can be observed that
under the dynamically adjusted parameter P, the planning algorithm tends to choose routes
that are farther but with lower obstacle density. To further compare the effects of setting
P as a dynamic parameter or a constant term on planning effectiveness, Table 6 presents
simulation data for the three methods.

Sensors 2024, 24, 3149 21 of 25Sensors 2024, 24, x FOR PEER REVIEW 22 of 26

Figure 20. Comparison of the planning effect of the dynamic obstacle raster coefficient P: (a) shows
the optimization effect under dynamic adjustment parameter P, and (b) shows the optimization
effect under static parameter P.

In Figure 20a, the green line in the graph represents the testing result after dynami-
cally adjusting P, while the red line represents the planning result of the traditional A*
algorithm. In Figure 20b, the blue line depicts the testing result under a constant P, while
the red line represents the planning result of the traditional A* algorithm. It can be ob-
served that under the dynamically adjusted parameter P, the planning algorithm tends to
choose routes that are farther but with lower obstacle density. To further compare the
effects of setting P as a dynamic parameter or a constant term on planning effectiveness,
Table 6 presents simulation data for the three methods.

Table 6. Performance indicators of planning algorithms.

Test Items
Traditional A*

Algorithm

A* Optimization
Algorithm with

Constant P

A* Optimization
Algorithm with

Dynamically Adjusted
P

Path nodes 75 12 10
Safe distance (m) 0 1 1

Total turning angle (°) 855.1 522.3 574.6
Path length (m) 1314 1332 1421

As shown in Table 6, the paths planned with the updated obstacle grid coefficient P
exhibit fewer control nodes, yet they also demonstrate longer path lengths and increased
total turning angles. This indicates suboptimal optimization outcomes. Consequently, the
measure of altering the starting node to the current node for dynamic parameter adjust-
ment enables each search iteration in the planning process to select more open paths based
on the obstacle density ahead, resulting in a superior number of control nodes. However,
in the test maps utilized in this study, this adjustment leads to an increase in both the total
path length and total turning angles.

In summary, the obstacle grid coefficient P is intended to represent the obstacle den-
sity between two nodes, thereby allowing the planning direction to be adjusted based on
the density of obstacles ahead, enhancing the heuristic nature of the search process. In this
study, P is fixed as a constant determined by the starting and target nodes to adjust the
ratio of weights between g and h in the heuristic function, making the heuristic search

Figure 20. Comparison of the planning effect of the dynamic obstacle raster coefficient P: (a) shows
the optimization effect under dynamic adjustment parameter P, and (b) shows the optimization effect
under static parameter P.

Table 6. Performance indicators of planning algorithms.

Test Items Traditional A*
Algorithm

A* Optimization
Algorithm with

Constant P

A* Optimization
Algorithm with

Dynamically Adjusted P

Path nodes 75 12 10
Safe distance (m) 0 1 1

Total turning angle (◦) 855.1 522.3 574.6
Path length (m) 1314 1332 1421

As shown in Table 6, the paths planned with the updated obstacle grid coefficient P
exhibit fewer control nodes, yet they also demonstrate longer path lengths and increased
total turning angles. This indicates suboptimal optimization outcomes. Consequently, the
measure of altering the starting node to the current node for dynamic parameter adjustment
enables each search iteration in the planning process to select more open paths based on
the obstacle density ahead, resulting in a superior number of control nodes. However, in
the test maps utilized in this study, this adjustment leads to an increase in both the total
path length and total turning angles.

In summary, the obstacle grid coefficient P is intended to represent the obstacle density
between two nodes, thereby allowing the planning direction to be adjusted based on the
density of obstacles ahead, enhancing the heuristic nature of the search process. In this
study, P is fixed as a constant determined by the starting and target nodes to adjust the
ratio of weights between g and h in the heuristic function, making the heuristic search
process more adaptive and heuristic, aiming to obtain the shortest path in unstructured
scenarios. However, adjusting P as a dynamic parameter tends to plan paths with fewer
obstacles and more open roads, which is suitable for some planning scenarios in structured
road networks.

4.5. Exploration of the Influence of Turning Penalty Function on Planning

To further explore the impact of turning penalty function on planning effectiveness,
this section tries to remove the turning penalty function and compare it with the previous
planning effect in the unstructured grid map environment shown in Figure 17; the starting
point coordinates were set as (17, 70), while the end coordinates were set as (20, 3). A

Sensors 2024, 24, 3149 22 of 25

comparative verification test was conducted on the improved algorithm before and after
modification, with the test results shown in Figure 21.

Sensors 2024, 24, x FOR PEER REVIEW 23 of 26

process more adaptive and heuristic, aiming to obtain the shortest path in unstructured
scenarios. However, adjusting P as a dynamic parameter tends to plan paths with fewer
obstacles and more open roads, which is suitable for some planning scenarios in struc-
tured road networks.

4.5. Exploration of the Influence of Turning Penalty Function on Planning
To further explore the impact of turning penalty function on planning effectiveness,

this section tries to remove the turning penalty function and compare it with the previous
planning effect in the unstructured grid map environment shown in Figure 17; the starting
point coordinates were set as (17, 70), while the end coordinates were set as (20, 3). A
comparative verification test was conducted on the improved algorithm before and after
modification, with the test results shown in Figure 21.

Figure 21. Comparison of the planning effect of adjusting the turning penalty function: (a) shows
the optimization effect without the turning penalty function, (b) shows the optimization effect with
the turning penalty function, and (c) shows two paths of adjusting the turning penalty function.

As shown in Figure 21a, the green line represents the testing performance after re-
moving the turn penalty function, while the red line denotes the planning performance of
the traditional A* algorithm. In Figure 21b, the blue line illustrates the testing performance
with the inclusion of the turn penalty function, juxtaposed with the red line depicting the
planning performance of the traditional A* algorithm. Figure 21c presents a schematic
diagram of the planning paths concurrently retaining both the blue and green lines. It is
observable that their trajectories completely overlap, indicating that in this study, incor-
porating the turn penalty term into the cost function does not affect node selection. This
is because the magnitude of the turn penalty function depends on the angle of the devia-
tion of the search node. In the neighborhood node search mode of the A* algorithm, the
angle of node deviation is proportional to the distance between the node and the target
node. Therefore, in the cost function f, the turn penalty function and the h term increase
or decrease simultaneously, achieving the same node selection effect. However, the turn
penalty function, as a factor proportional to the deviation direction of the path, can be
beneficial in specific planning scenarios, directing the path towards a direction more fa-
vorable to the target node. Consequently, this facilitates a quicker approach of the path
towards the target node, leading to a more significant heuristic effect.

Figure 21. Comparison of the planning effect of adjusting the turning penalty function: (a) shows the
optimization effect without the turning penalty function, (b) shows the optimization effect with the
turning penalty function, and (c) shows two paths of adjusting the turning penalty function.

As shown in Figure 21a, the green line represents the testing performance after remov-
ing the turn penalty function, while the red line denotes the planning performance of the
traditional A* algorithm. In Figure 21b, the blue line illustrates the testing performance
with the inclusion of the turn penalty function, juxtaposed with the red line depicting the
planning performance of the traditional A* algorithm. Figure 21c presents a schematic
diagram of the planning paths concurrently retaining both the blue and green lines. It is
observable that their trajectories completely overlap, indicating that in this study, incorpo-
rating the turn penalty term into the cost function does not affect node selection. This is
because the magnitude of the turn penalty function depends on the angle of the deviation
of the search node. In the neighborhood node search mode of the A* algorithm, the angle
of node deviation is proportional to the distance between the node and the target node.
Therefore, in the cost function f, the turn penalty function and the h term increase or de-
crease simultaneously, achieving the same node selection effect. However, the turn penalty
function, as a factor proportional to the deviation direction of the path, can be beneficial in
specific planning scenarios, directing the path towards a direction more favorable to the
target node. Consequently, this facilitates a quicker approach of the path towards the target
node, leading to a more significant heuristic effect.

5. Conclusions

In this paper, an optimized A* algorithm is designed for global path planning, building
on the traditional A* algorithm. Key findings include the following:

1. The heuristic function is refined by the obstacle raster coefficient and the turning
penalty function. This enhancement improves the adaptability and directionality
of the search path relative to terrain features, avoiding sharp turns and efficiently
navigating around obstacles.

2. The design of efficient search strategy addressed the problem of planning the path
through sparse obstacles. By strategically reducing the search space and computational
complexity, this approach has significantly enhanced the algorithm’s performance.

Sensors 2024, 24, 3149 23 of 25

3. The optimization of the initial path nodes ensures a necessary safety margin from
obstacles while significantly reducing the number of path nodes, effectively balancing
the objectives of safety and efficiency.

The limitations are expressed as follows:

1. The performance of the optimized algorithm in extremely complex environments or
under conditions of limited computational resources remains a challenging frontier.

2. The study lacks the capability to handle dynamic obstacle environments and overlooks
the constraints related to dynamic obstacle avoidance.

Looking forward to the future, future research work will develop a backend local
trajectory optimization algorithm based on the rough initial path obtained in this algorithm,
combined with vehicle dynamics constraints, static obstacle avoidance constraints, and
dynamic obstacle avoidance constraints, and explore the performance of the algorithm in
real-world scenarios with dynamic and unpredictable obstacles. It aims to plan a trajectory
planning algorithm that is more efficient, safer, and easy for vehicles to smoothly follow.

Author Contributions: Methodology, L.C., Y.W., S.L., Z.G., W.D., J.L. and Z.J. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the State Scholarship Funding of CSC (202206170067), the
Changsha Automotive Innovation Research Institute Innovation Project-Research on Intelligent Trip
Planning System of Pure Electric Vehicles Based on Big Data (CAIRIZT20220105), the science and
technology planning project in Yibin city (2020GY001), and the science and technology planning
project in Tianjin city (20YFZCGX00770).

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Data Availability Statement: No data was used for the research described in the article.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Arab, A.; Yu, K.; Yu, J.; Yi, J. Motion Planning and Control of Autonomous Aggressive Vehicle Maneuvers. IEEE Trans. Autom. Sci.

Eng. 2024, 21, 1488–1500. [CrossRef]
2. Chen, Y.; Veer, S.; Karkus, P.; Pavone, M. Interactive Joint Planning for Autonomous Vehicles. IEEE Robot. Autom. Lett. 2024, 9,

987–994. [CrossRef]
3. Wang, D. Indoor mobile-robot path planning based on an improved A* algorithm. J. Tsinghua Univ. Sci. Technol. 2012, 52,

1085–1089.
4. Liu, Y.; Pei, X.; Zhou, H.; Guo, X. Spatiotemporal Trajectory Planning for Autonomous Vehicle based on Reachable Set and

Iterative LQR. IEEE Trans. Veh. Technol. 2024, 1–16. [CrossRef]
5. Zhang, G.; Hu, X.; Chai, J. Summary of Path Planning Algorithm and Its Application. Mod. Mach. 2011, 5, 85–90.
6. Pan, H.; Luo, M.; Wang, J.; Huang, T.; Sun, W. A Safe Motion Planning and Reliable Control Framework for Autonomous Vehicles.

IEEE Trans. Intell. Veh. 2024, 1–14. [CrossRef]
7. Hadi, B.; Khosravi, A.; Sarhadi, P. Adaptive Formation Motion Planning and Control of Autonomous Underwater Vehicles Using

Deep Reinforcement Learning. IEEE J. Ocean. Eng. 2024, 49, 311–328. [CrossRef]
8. Wu, Q.; Chen, Z.; Wang, L.; Lin, H.; Jiang, Z.; Li, S.; Chen, D. Real-Time Dynamic Path Planning of Mobile Robots: A Novel

Hybrid Heuristic Optimization Algorithm. Sensors 2020, 20, 188. [CrossRef]
9. Zhong, Y.M.; Shirinzadeh, B.; Yuan, X.B. Optimal Robot Path Planning with Cellular Neural Network. Int. J. Intell. Mechatron.

Robot. 2011, 1, 20–39. [CrossRef]
10. Hills, J.; Zhong, Y. Cellular neural network-based thermal modelling for real-time robotic path planning. Int. J. Agil. Syst. Manag.

2014, 7, 261. [CrossRef]
11. Zhong, Y.M.; Shirinzadeh, B.; Tian, Y.L. A New Neural Network for Robot Path Planning. In Proceedings of the 2008 IEEE/ASME

International Conference on Advanced Intelligent Mechatronics, Xi’an, China, 2–5 July 2008; Volume 1, pp. 1361–1366.
12. Zhou, Q.; Gao, S.S.; Qu, B.Y.; Gao, X.; Zhong, Y.M. Crossover recombination-based global-best brain storm optimization algorithm

for UAV path planning. Proc. Rom. Acad. Ser. A Math. Phys. Technol. Sci. Inf. Sci. 2022, 23, 207–216.
13. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–894. [CrossRef]
14. Yu, F.; Shang, H.; Zhu, Q.; Zhang, H.; Chen, Y. An efficient RRT-based motion planning algorithm for autonomous underwater

vehicles under cylindrical sampling constraints. Auton. Robot. 2023, 47, 281–297. [CrossRef]

https://doi.org/10.1109/tase.2023.3245948
https://doi.org/10.1109/lra.2023.3332474
https://doi.org/10.1109/tvt.2024.3371184
https://doi.org/10.1109/tiv.2024.3360418
https://doi.org/10.1109/joe.2023.3278290
https://doi.org/10.3390/s20010188
https://doi.org/10.4018/ijimr.2011010102
https://doi.org/10.1504/ijasm.2014.065351
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1007/s10514-023-10083-y

Sensors 2024, 24, 3149 24 of 25

15. Umari, H.; Mukhopadhyay, S. Autonomous Robotic Exploration Based on Multiple Rapidly-Exploring Randomized Trees. In
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada,
24–28 September 2017; pp. 1396–1402.

16. Kuffner, J.; LaValle, S. RRT-connect: An efficient approach to single-query path planning. In Proceedings of the 2000 ICRA. Mil-
lennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),
San Francisco, CA, USA, 24–28 April 2000; pp. 995–1001.

17. Karaman, S.; Frazzoli, E. Incremental Sampling-based Algorithms for Optimal Motion Planning. Comput. Sci. 2010.
18. Liao, B.; Hua, Y.; Wan, F.; Zhu, S.; Zong, Y.; Qing, X. Stack-RRT*: A Random Tree Expansion Algorithm for Smooth Path Planning.

Int. J. Control Autom. Syst. 2023, 21, 993–1004. [CrossRef]
19. Christian, Z.; van Erik-Jan, K. Comparison Between A* and RRT Algorithms for 3D UAV Path Planning. Unmanned Syst. 2022, 10,

129–146.
20. Zhu, B.; Han, J.; Zhao, J.; Liu, S.; Deng, W. Path planning method for intelligent vehicles based on improved RRT algorithm for

safety field. Automot. Eng. 2020, 42, 1145–1150.
21. Hsu, D.; Latombe, J.-C.; Kurniawati, H. On the Probabilistic Foundations of Probabilistic Roadmap Planning. Int. J. Robot. Res.

2012, 25, 627–643. [CrossRef]
22. Elbanhawi, M.; Simic, M. Sampling-Based Robot Motion Planning: A Review. IEEE Access 2014, 2, 56–77. [CrossRef]
23. Hsu, D.; Latombe, J.-C.; Motwani, R.; Agarwal, P.K. Path planning in expansive configuration spaces. Int. J. Comput. Geom. Appl.

1999, 9, 495–512. [CrossRef]
24. Long, H.; Li, G.; Tan, X.; Xue, C.; Yi, J. Improved RRT robotic arm path planning by fusion A*. Comput. Eng. Appl. 2024, 60,

366–374.
25. Osman, I.H. Metastrategy simulated annealing and tabu search algorithms for the vehicle routing problem. Ann. Oper. Res. 1993,

41, 421–451. [CrossRef]
26. Ding, S.; Li, C.; Xu, X.; Ding, L.; Zhang, J.; Guo, L.; Shi, T. A Sampling-Based Density Peaks Clustering Algorithm for Large-Scale

Data. Pattern Recognit. 2023, 136, 109238. [CrossRef]
27. Ma, Y.; Zhao, Y.; Li, Z.; Yan, X.; Bi, H.; Królczyk, G. A new coverage path planning algorithm for unmanned surface mapping

vehicle based on A-star based searching. Appl. Ocean Res. 2022, 123, 103163. [CrossRef]
28. Wang, H.; Sun, Z. Research on Multi-Constraint Multicast Routing Algorithm Based on Dijkstra Algorithm. Comput. Technol. Dev.

2011, 12, 5–8.
29. Feng, T.; Li, J.; Jiang, H.; Yang, S.X.; Wang, P.; Teng, Y.; Chen, S.; Fu, Q.; Luo, B. The Optimal Global Path Planning of Mobile

Robot Based on Improved Hybrid Adaptive Genetic Algorithm in Different Tasks and Complex Road Environments. IEEE Access
2024, 12, 18400–18415. [CrossRef]

30. Lian, Y. Improved A* path planning algorithm for vision-guided multi-AGV system. Control. Decis. 2011, 36, 1881–1890.
31. Yu, W.; Zhang, Z.; Fu, X.; Wang, Z. Path planning based on map preprocessing and improved A* algorithm. High Tech Commun.

2020, 30, 383–390.
32. Yao, M.; Deng, H.; Feng, X.; Li, P.; Li, Y.; Liu, H. Improved dynamic windows approach based on energy consumption management

and fuzzy logic control for local path planning of mobile robots. Comput. Ind. Eng. 2024, 187, 109767. [CrossRef]
33. Cheng, Y.; Xiao, H. Dynamic path planning of mobile robot fusing improved A* algorithm and Morphin algorithm. J. Intell. Syst.

2020, 15, 546–552.
34. Chen, Y.; Wu, J.; He, C.; Zhang, S. Intelligent Warehouse Robot Path Planning Based on Improved Ant Colony Algorithm. IEEE

Access 2023, 11, 12360–12367. [CrossRef]
35. Zhu, B.; Zhang, J.; Li, J.; Chen, L.; Wu, J.; Farisi, Z. Path Planning of Energy Robot Based on Improved Ant Colony Algorithm.

Wirel. Commun. Mob. Comput. 2022, 2022, 3216045. [CrossRef]
36. Fransen, K.; van Eekelen, J. Efficient path planning for automated guided vehicles using A* (Astar) algorithm incorporating

turning costs in search heuristic. Int. J. Prod. Res. 2023, 61, 707–725. [CrossRef]
37. Wang, P.; Yang, J.; Zhang, Y.; Wang, Q.; Sun, B.; Guo, D. Obstacle-Avoidance Path-Planning Algorithm for Autonomous Vehicles

Based on B-Spline Algorithm. World Electr. Veh. J. 2022, 13, 233. [CrossRef]
38. Liao, T.; Chen, F.; Wu, Y.; Zeng, H.; Ouyang, S.; Guan, J. Research on Path Planning with the Integration of Adaptive A-Star

Algorithm and Improved Dynamic Window Approach. Electronics 2024, 13, 455. [CrossRef]
39. Yu, M.; Luo, Q.; Wang, H.; Lai, Y. Electric Logistics Vehicle Path Planning Based on the Fusion of the Improved A-Star Algorithm

and Dynamic Window Approach. World Electr. Veh. J. 2023, 14, 213. [CrossRef]
40. Cui, S.; Chen, Y.; Li, X. A Robust and Efficient UAV Path Planning Approach for Tracking Agile Targets in Complex Environments.

Machines 2022, 10, 931. [CrossRef]
41. Wang, W.; Pei, D.; Feng, Z. The shortest path planning for mobile robots using improved A* algorithm. J. Comput. Appl. 2018, 38,

1523–1526.
42. Duan, S.; Wang, Q.; Han, X.; Liu, G. Improved A-star algorithm for safety insured optimal path with smoothed corner turns. J. Mech.

Eng. 2020, 56, 205–215.
43. Liu, Z.; Zhao, J.; Liu, C. Path planning of indoor mobile robot based on improved A* algorithm. Comput. Eng. Appl. 2021, 57,

186–190.

https://doi.org/10.1007/s12555-021-0440-2
https://doi.org/10.1177/0278364906067174
https://doi.org/10.1109/access.2014.2302442
https://doi.org/10.1142/S0218195999000285
https://doi.org/10.1007/BF02023004
https://doi.org/10.1016/j.patcog.2022.109238
https://doi.org/10.1016/j.apor.2022.103163
https://doi.org/10.1109/ACCESS.2024.3357990
https://doi.org/10.1016/j.cie.2023.109767
https://doi.org/10.1109/ACCESS.2023.3241960
https://doi.org/10.1155/2022/3216045
https://doi.org/10.1080/00207543.2021.2015806
https://doi.org/10.3390/wevj13120233
https://doi.org/10.3390/electronics13020455
https://doi.org/10.3390/wevj14080213
https://doi.org/10.3390/machines10100931

Sensors 2024, 24, 3149 25 of 25

44. Shen, K.; You, Z.; Liu, Y.; Huang, T. Path planning of Mobile Robot based on improved A* Algorithm. Appl. Res. Comput. 2023, 40,
76–79.

45. Chen, Y.; Jiang, W.; Yang, L.; Luo, Z. Path Planning for Mobile Robots Based on Motion Constraints. Comput. Integr. Manuf. Syst.
2019, 29, 1187–1193.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	A* Algorithm Principle
	Optimization of A* Algorithm
	Design of the Cost Function
	Barrier Raster Coefficients
	Turn Penalty Function

	Search Policy Improvements
	Optimization of Path Nodes
	Safe Distance Constraints
	Extraction of Necessary Nodes

	The Flow of A* Optimization Algorithm

	Testing & Evaluation
	No Obstacle Test Results
	Establishment of Unstructured Test Environment
	Display of Unstructured Test Results
	Exploration of the Influence of Obstacle Grid Coefficient P on Planning
	Exploration of the Influence of Turning Penalty Function on Planning

	Conclusions
	References

