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Abstract: Psychiatric disorders often require pharmacological interventions to alleviate symptoms
and improve quality of life. However, achieving an optimal therapeutic outcome is challenging due
to several factors, including variability in the individual response, inter-individual differences in drug
metabolism, and drug interactions in polytherapy. Therapeutic drug monitoring (TDM), by measuring
drug concentrations in biological samples, represents a valuable tool to address these challenges, by
tailoring medication regimens to each individual. This review analyzes the current landscape of TDM
in psychiatric practice, highlighting its significance in optimizing drug dosages, minimizing adverse
effects, and improving therapeutic efficacy. The metabolism of psychiatric medications (i.e., mood
stabilizers, antipsychotics, antidepressants) often exhibits significant inter-patient variability. TDM
can help address this variability by enhancing treatment personalization, facilitating early suboptimal-
or toxic-level detection, and allowing for timely interventions to prevent treatment failure or adverse
effects. Furthermore, this review briefly discusses technological advancements and analytical methods
supporting the implementation of TDM in psychiatric settings. These innovations enable quick and
cost-effective drug concentration measurements, fostering the widespread adoption of TDM as a
routine practice in psychiatric care. In conclusion, the integration of TDM in psychiatry can improve
treatment outcomes by individualizing medication regimens within the so-called precision medicine.

Keywords: therapeutic drug monitoring; mood stabilizers; psychiatric disorders

1. Introduction

Therapeutic drug monitoring (TDM) quantifies medications in biological tissues (usu-
ally in plasma or serum), generally under steady-state conditions [1]. The scope of TDM is
to increase the safety and management of different drugs and to aid clinicians in decision-
making regarding tailored therapy (Figure 1) [2,3].

In the past decades, a task force of the Arbeitsgemeinschaft für Neuropsychophar-
makologie und Pharmakopsychiatrie (AGNP) was created to define the TDM consensus
guidelines, which were initially published in 2004 [4] and then updated in 2018 [5]. The
AGNP defines four levels of recommendation for performing TDM in different drug classes,
depending on the existing evidence in support of drug monitoring: level 1, or “strongly
recommended”, level 2, or “recommended”, level 3, or “useful”, and level 4, or “probably
useful”. Level 1 includes drugs with well-established therapeutic reference ranges, for
which TDM represents a useful tool in terms of dose titration, regular monitoring, and
safety. Level 2 includes drugs with therapeutic ranges that have been acquired from drug
concentrations at effective doses, and in which the use of TDM has an advantage, mainly
in dose titration or problem solving. Level 3 includes drugs in which TDM can be used for
special indications or problem solving, while level 4 refers to drugs for which the benefits of
routinary TDM have not been established, but for which TDM could be potentially useful
in particular cases [1].
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could be potentially useful in particular cases [1]. 

A recent systematic review by Yi and colleagues evaluated the quality of more than 
90 guidelines for TDM based on the Appraisal of Guidelines for Research and Evaluation 
(AGREE) II Instrument [6,7]. Considering the TDM guidelines for Central Nervous 
System (CNS) drugs, the overall quality of Hiemke and colleagues’ work was among the 
highest, with a score of 66.67%. The AGNP TDM task force also implemented another 
guideline, specifically on antipsychotic TDM, which scored 72.22% overall in the same 
systematic review and was therefore recommended for its usefulness [8]. 

 
Figure 1. Schematization of the therapeutic drug monitoring (TDM) process. 

In the field of neuropsychopharmacology, TDM in mental health treatments 
represents an important topic within the scope of treatment individualization, minimizing 
adverse drug reactions (ADRs) and maximizing drug efficacy [5]. Moreover, treatment 
adherence can be monitored, thus reinforcing patient–clinician dialogue in a shared 
decision-making approach. The role of TDM is of particular importance when considering 
pharmacokinetic variables (Figure 2). The importance of TDM in patients with psychiatric 
disorders has been underlined for decades, with different studies reporting not only its 
efficacy for specific medications, but also its cost-effectiveness [9–11]. In the real-world 
clinical practice, however, the implementation of regular TDM is not always possible. For 
example, research conducted by Al Mutarid and colleagues found that although the 
practice of TDM was well known among doctors in Saudi Arabia, its actual use was poorly 
applicated, especially in smaller hospitals, mainly because of lack of resources [12]. 
Another study, conducted in Turkey by Eryılmaz and colleagues, found a positive 
approach in the frequency of TDM use among Turkish clinicians for mood stabilizers, with 
98.4% of clinicians declaring regular use of TDM, especially for lithium and valproate, but 
with significantly lower rates of monitoring for other classes of psychotropic medications 
[13]. A survey conducted in China among psychiatric facilities by Guo and colleagues 
found that even when TDM was used to monitor the patients’ drug levels, in most cases, 
this was not followed with recommendations on dose adjustment, underlining the fact 
that sometimes there could be a lack of communication between clinicians and laboratory 
professionals [14]. These findings show that there is still room for improvement in the 
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A recent systematic review by Yi and colleagues evaluated the quality of more than
90 guidelines for TDM based on the Appraisal of Guidelines for Research and Evaluation
(AGREE) II Instrument [6,7]. Considering the TDM guidelines for Central Nervous System
(CNS) drugs, the overall quality of Hiemke and colleagues’ work was among the highest,
with a score of 66.67%. The AGNP TDM task force also implemented another guideline,
specifically on antipsychotic TDM, which scored 72.22% overall in the same systematic
review and was therefore recommended for its usefulness [8].

In the field of neuropsychopharmacology, TDM in mental health treatments represents
an important topic within the scope of treatment individualization, minimizing adverse
drug reactions (ADRs) and maximizing drug efficacy [5]. Moreover, treatment adherence
can be monitored, thus reinforcing patient–clinician dialogue in a shared decision-making
approach. The role of TDM is of particular importance when considering pharmacokinetic
variables (Figure 2). The importance of TDM in patients with psychiatric disorders has
been underlined for decades, with different studies reporting not only its efficacy for spe-
cific medications, but also its cost-effectiveness [9–11]. In the real-world clinical practice,
however, the implementation of regular TDM is not always possible. For example, research
conducted by Al Mutarid and colleagues found that although the practice of TDM was
well known among doctors in Saudi Arabia, its actual use was poorly applicated, especially
in smaller hospitals, mainly because of lack of resources [12]. Another study, conducted in
Turkey by Eryılmaz and colleagues, found a positive approach in the frequency of TDM use
among Turkish clinicians for mood stabilizers, with 98.4% of clinicians declaring regular
use of TDM, especially for lithium and valproate, but with significantly lower rates of
monitoring for other classes of psychotropic medications [13]. A survey conducted in
China among psychiatric facilities by Guo and colleagues found that even when TDM
was used to monitor the patients’ drug levels, in most cases, this was not followed with
recommendations on dose adjustment, underlining the fact that sometimes there could
be a lack of communication between clinicians and laboratory professionals [14]. These
findings show that there is still room for improvement in the implementation of TDM
in clinical practice in different settings around the world, and that there is a compelling
need for information about correct TDM practices among health-care professionals. Drug
monitoring also represents a way to minimize adverse events in patients taking psychi-
atric medications because it helps the clinician during the titration phase and follow-up,
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especially with drugs such as clozapine, which can be associated with potentially serious
adverse events [15,16].
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Figure 2. The role of therapeutic drug monitoring (TDM) in the process that leads to pharmacological
response.

Appropriate use of TDM in this particular population is also of major importance
because, in numerous circumstances, a combination therapy of multiple drugs is needed to
achieve clinical stability, so both efficacy and safety must be thoughtfully considered, as
well as drug–drug interactions [17,18]. Lastly, although these issues are often underesti-
mated and possibly underdiagnosed, the interactions between psychiatric drugs and other
substances, such as alcohol, tobacco, or other compounds, should be taken into account in
order to monitor (and possibly predict) correctly changes in plasmatic drug levels [19,20].

The aim of this narrative review is to analyze the state of the art of TDM among
medications used in psychiatric disorders. We will discuss the role and evidence of TDM
for each medication under examination, based on the most recent literature. We will also
analyze if and how TDM is implemented in the real-world clinical practice, based on the ex-
isting literature. Lastly, we will also briefly mention the novel and less-invasive monitoring
approaches that could facilitate TDM in the future for both clinicians and patients.

2. TDM and Mood Stabilizers

In mood disorders, such as bipolar disorders, the most used medications backed
by the current guidelines are lithium, valproate, lamotrigine, carbamazepine, and oxcar-
bazepine [21,22]. Table 1 shows the main mood stabilizers, with their therapeutic ranges,
AGNP recommendation levels, and their principal sampling methods, including the exper-
imental ones.
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Table 1. Mood stabilizers used in psychiatric disorders with reference ranges, AGNP recommendation
levels, and their main sampling methods.

Drug Class
Therapeutic
Drug Range

(Blood)

TDM AGNP
Recommendation

Levels

Preferred
Sampling
Method

Other
Sampling
Methods

Lithium Mood stabilizer 0.5–1.2 mmol/L 1 Plasma

Saliva, urine, sweat,
interstitial fluid, dried
blood/plasma spots

[23,24]

Valproate

Antiseizure
medication/mood
stabilizer/migraine

prevention

50–100 µg/mL 2 Plasma Saliva, urine, dried
blood spots [25–27]

Carbamazepine

Antiseizure
medication/mood

stabilizer/neuropathic
pain

4–12 µg/mL 1 Serum Saliva, urine [28–32]

Oxcarbazepine
Antiseizure

medication/mood
stabilizer

10–35 µg/mL 2 Plasma Urine [33]

Lamotrigine
Antiseizure

medication/mood
stabilizer

3–15 µg/mL 2 Plasma Saliva, dried blood
spots [34–37]

The history of lithium therapy goes back in time to the 19th century, even though
introducing lithium for the treatment of manic episodes is credited to John Cade in 1949 [38].
To this day, lithium remains the most effective therapy for maintenance treatment and
relapse prevention in bipolar disorder, but it can also be used in recurrent depression [39].
The downside of lithium treatment is a low therapeutic index (approximately 2); in other
words, lithium has a low ratio between the dose (and therefore its serum levels) associated
with toxicity and the dose that promotes a beneficial effect [40]. Lithium toxicity includes a
wide variety of presentations, such as renal, cardiac, neurological, and endocrine disorders;
at the same time, a suboptimal treatment with lithium because of excessively low dosages,
scarce adherence, or abrupt discontinuation can lead to relapse [41].

This limitation leads to the necessity of keeping serum levels in a strict range, hence
the importance of TDM. A systematic review of optimal lithium serum levels found that,
based on current research, serum levels of adult patients should remain between 0.6 and
0.8 mmol/L, but they could be lowered to 0.4–0.6 mmol/L in case of sufficient response
and poor tolerance, and they could be at the higher range of 0.8–1.0 mmol/L in case of
suitable tolerance but suboptimal response [42]. The AGNP consensus guidelines accept a
therapeutic range between 0.5 and 1.2 mmol/L but suggest that higher plasmatic levels
should be used in the treatment of the acute phases, while in a maintenance treatment
setting, it is advised to keep lithium plasma levels in the 0.5–0.8 mmol/L range. TDM is
mandatory for lithium for safety reasons, and it is nowadays considered a standard of care,
with a level 1 recommendation [5].

Considering lithium half-life (14–30 h), steady-state concentrations are reached in
about 5–7 days from the beginning of treatment, and blood sampling should be performed
after 12 + 1 h from the last administration (usually the evening dose) [42]. A cross-sectional
study suggested that a 24 h sampling after the last dose may be more accurate for once-
daily formulations to avoid overestimating plasmatic levels [43]. According to Mahli and
colleagues, lithium monitoring should be performed after the first two days of treatment,
then on the 7th day, at two weeks, after a month, at three and six months, after one year,
and then at least yearly, at every dosage change, or whenever there is suspicion of toxicity,
relapse, or lack of adherence. Cardiac, renal, and thyroid functions should be monitored
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as well in order to prevent organ damage [44]. The National Institute for Health and Care
Excellence guidelines, on the contrary, suggest that lithium should be monitored every
3 months, with the organ function parameters to be monitored twice a year [45], while
the British Association for Psychopharmacology guidelines suggest that lithium should be
tested every 3–6 months [46].

Despite the importance of lithium monitoring, the frequent assessments can be per-
ceived as inconvenient by patients, and clinicians may be discouraged from prescribing
this life-saving medication [47,48]. In recent years, alternatives to blood testing, such
as saliva sampling and machine learning approaches, have been proposed to facilitate
lithium adherence and acceptance. Specifically, a recent study by Parkin and colleagues
evidenced a good correlation between saliva and blood samples in patients taking lithium,
opening the possibility for easier monitoring, which could be performed at the patients’
home [23]. Other biological fluids that are being tested for possible future applications
in routinary lithium sampling include urine, sweat, interstitial fluid, and dried blood or
plasma spots [24].

Another study by Hsu and colleagues showed that the use of machine learning
algorithms such as the Support Vector Machine (SVM) could predict lithium concentrations
in patients, and these models could soon be implemented in clinical practice, potentially in
order to reduce the need to take samples from the patients’ blood [49].

Different studies have shown that lithium monitoring is often underused, despite
the existing recommendations [50,51], even though, in some instances, the importance of
regular TDM has been acknowledged by clinicians, with promising results in terms of ADR
prevalence [52]. In other cases, while TDM seems correctly used in terms of frequency, it
does not induce the clinician to adjust lithium dosages in the case of suboptimal plasma
levels, possibly due to concerns about ADRs [45,53–55].

Valproate has also been used for decades, having been first introduced in the 1960s
for the treatment of epilepsy and later for the treatment of manic episodes in bipolar
disorder [56]. The level of recommendation for valproate TDM is 1, and the valproate
therapeutic range is usually between 50 and 100 µg/mL. However, in patients with acute
mania, higher plasma concentrations (up to 120 µg/mL) are acceptable if tolerated [5]. It is
crucial to regularly monitor valproate, especially if the patient is taking other medications,
because valproate is a cytochrome p450 inhibitor and can increase the concentration and,
therefore, the effects of other concomitant drugs, possibly increasing the incidence of
ADRs [57].

Valproate ADRs include neurological, gastrointestinal, hepatological, and hemato-
logical symptoms, which are usually more common in the first phases of treatment. It is
the first cause of drug-induced hyperammonemia, and idiosyncratic hepatotoxicity and
pancreatitis have been described [58,59]. Valproate should be avoided during pregnancy,
and its use in women with childbearing potential should be carefully evaluated (and, if
feasible, alternative drugs should be considered) because of its increased teratogenicity [60].
Valproate has been associated with increased risks of neural tube defects, cognitive im-
pairment, craniofacial and orofacial cleft, cardiac malformations, and skeletal and limb
defects [61].

Before initiating valproate therapy, liver function, ammonia levels, the body mass in-
dex (BMI), coagulation, whole blood and platelet count, and pregnancy should be assessed.
Liver function, blood count, and the BMI should be assessed at three and six months, after
one year of treatment, and at least annually after that. Valproate plasma concentration
should be monitored every three to six months, and whenever a change in dosage is needed
or other conditions occur [21,46]. The presence of hypoalbuminemia should also be moni-
tored because, in this case, valproate levels may be inaccurate, considering that the albumin
binding rate can be up to 90% [62]. The appropriate time to draw blood samples is 12 h after
the last administration for regular valproate and 24 h for once-daily formulations [21,63].
In order to facilitate regular monitoring, alternatives to blood sampling are in the process
of being implemented, such as saliva sampling and machine learning algorithms, which
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have the potential to reduce the required number and frequency of samplings. In particular,
in 2015, Dwivedi and colleagues demonstrated a good correlation between saliva and
serum samples in valproate monitoring. The study included patients with epilepsy and
was conducted with the intention of helping to establish less-invasive means of TDM [25].
Future research is needed to further confirm these findings and to expand this correlation
to patients with other disorders, such as affective disorders. Other researchers have found
good reliability in dried blood spots and urine monitoring in patients with epilepsy [26,27].
Another way to reduce the need for frequent valproate monitoring is the use of predictive
models, such as linear regression, logistic regression, SVM, random forest, and extreme
gradient boosting (XGBoost), as successfully demonstrated by Hsu and colleagues in a
recent paper [64].

Despite its proven benefits, valproate TDM is still an underused or misused tool for
the clinician: some studies show low frequency of monitoring, while others show that
valproate levels are often found underdosed or at the lowest-end limits in patients with
mood disorders, which could either indicate a low adherence to therapy, or the use of low
dosages by clinicians for the treatment of psychiatric disorders [55,65–68].

Carbamazepine is an effective drug for the treatment of acute mania, bipolar depres-
sion, and maintenance treatment in bipolar disorder. The safety risks and the general low
tolerability of this drug, however, have made carbamazepine a second-line treatment (and
third-line treatment for bipolar depression) for mood disorders [21].

As with lithium, TDM for carbamazepine is mandatory for safety reasons (level of
recommendation: 1), and it is considered standard of care [5]. Carbamazepine ADRs can
include vision problems, hyponatremia, confusion, urinary retention, and agranulocytosis.
Hyponatremia and agranulocytosis, in particular, can be life-threatening conditions, al-
though uncommon [69]. Another potential long-term effect of carbamazepine is decreased
bone density, which may lead to osteoporosis [70]. The use of carbamazepine during preg-
nancy has been associated with an increased risk of spina bifida in the newborn, although
it seems that the risk is milder compared to valproate [71]. More recently, carbamazepine
during pregnancy has been associated with poorer academic performances in teenagers
who had been exposed to the drug in utero compared to unexposed peers [72]. These
concerns show the importance of scrupulous monitoring of this drug.

The accepted therapeutic drug range of carbamazepine is 4–12 µg/mL, and the com-
pound bounds strongly to plasma proteins. The pharmacokinetic of carbamazepine is
non-linear, as it auto-induces itself. It is important to remember that carbamazepine-10,11-
epoxide, its metabolite, is an active compound which contributes to the drug effects, and
that it can be increased when other anticonvulsant drugs, such as valproate, are used in
concomitance [5,73]. Although the monitoring of the active metabolite itself does not seem
necessary in monotherapy, it should be considered in patients taking other drugs that could
have a pharmacokinetic interaction with carbamazepine to reduce the risk of ADRs [74].

When initiating carbamazepine therapy, patients should be instructed about the risk
for skin rashes and the rare Stevens–Johnson syndrome, which are more common during
the first weeks [21]. The risk for Stevens–Johnson syndrome seems higher in the population
with the HLA-B*1502 allele [75]. Sodium levels should be checked at least annually,
while blood pressure, lipid profile, and fasting glucose should be assessed at three and
six months from the start of the treatment, and then annually. The BMI should also
be checked, especially if the patient is on concomitant atypical antipsychotic therapy.
Blood sampling for carbamazepine monitoring should be taken 12 h after the last dose,
every six to twelve months [21]. Saliva sampling has also been considered as a valid
alternative to standard blood sampling in carbamazepine TDM [28]. A study conducted
in Indian patients with epilepsy revealed a good correlation between saliva and serum
sampling, although the significance was lost in the case of polytherapy with more than
three antiepileptic medications [29]. The validity of this less-invasive method was also
more recently confirmed by another group of researchers, who demonstrated a good
repeatability of saliva sampling [30]. Other studies have shown the possibility to measure
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carbamazepine levels in urine samples with good accuracy [31,32]. As for other drugs, the
TDM of carbamazepine (and often the other required screening tests) is not performed
enough, especially in mental-health settings [76,77], despite being a mandatory assessment.

The role of oxcarbazepine in the treatment of mood disorders is less documented. Its
use was studied mainly in the 1980s for the treatment of manic episodes and was found
to be comparable to other medications. It could be used in patients who do not tolerate
carbamazepine [69]. The role of oxcarbazepine in treating depressive episodes and in
maintenance is still unclear [78]. It has been proposed as an effective adjunctive treatment
for lithium [79,80]. The ADRs of oxcarbazepine are pretty similar to carbamazepine; there
seems to be a comparable risk for hyponatremia, as well as the risk of Stevens–Johnson
syndrome, which is mainly present in specific Asian populations [69]. Teratogenicity
seems lower compared to carbamazepine, and it is not dissimilar to that of the general
population [81]. Because of its lower ability to induce CYP3A4 and to inhibit CYP2C19,
compared to carbamazepine, oxcarbazepine does not induce itself, and it has fewer interac-
tions with other drugs; this metabolic difference could make oxcarbazepine more tolerable
than carbamazepine [82]. The oxcarbazepine plasmatic therapeutic range is 10–35 µg/mL,
and it is usually measured with 10-hydroxycarbazepine, which is the active compound
in vivo; the oxcarbazepine monitoring recommendation level is 2 [5]. Other researchers
have proposed urine sampling as a reliable and alternative method to plasma sampling [33].
The necessity for routine TDM is still not entirely clear. However, it is beneficial in specific
situations [83]. It is important to note that the majority of research regarding oxcarbazepine
TDM is conducted on epilepsy treatment rather than psychiatric disorders.

Lamotrigine is an antiseizure drug approved for the treatment of bipolar disorder
in monotherapy or adjunctive maintenance therapy, especially for the treatment and pre-
vention of depressive episodes [84]. Lamotrigine, on the contrary, does not seem valid
for the treatment of manic episodes, and it is therefore not recommended [21]. Relatively
common ADRs are dizziness, nausea, and vomiting. It can cause mild-to-severe skin rashes,
more commonly when co-administered with other medications, such as valproate, and
less likely to occur with a slow titration (limiting its use in acute settings) [85]. The risk for
Stevens–Johnson syndrome in patients taking lamotrigine has to be mentioned even if it
is relatively low, often associated with specific HLA alleles (particularly the HLA-B*1502
allele), and it does not represent per se an absolute contraindication for the reintroduction
of lamotrigine [75]. In recent years, the Food and Drug Administration (FDA) has released
a warning to avoid lamotrigine in patients with known or suspected cardiac disorders
because it appeared that lamotrigine could act as a class Ib antiarrhythmic [86]. However,
these findings were based on in vitro data, and a task force was created to examine the
existing literature regarding lamotrigine and possible cardiologic risks. A new advisory
was released after a few months, removing the warning [87]. Lamotrigine appears to be a
safe drug during pregnancy. The previously believed increased risk of palatal cleft or other
major malformations in utero has not been confirmed in the latest research, making it a
valuable maintenance treatment option for patients during pregnancy [88,89].

Lamotrigine’s therapeutic range is 3–15 µg/mL, and the level of recommendation for
TDM is 2; it is essential to remember that valproate can increase the elimination half-life
of lamotrigine, while carbamazepine can reduce it [5]. The importance of lamotrigine
monitoring in the treatment of bipolar disorder remains unclear due to the scarcity of data;
the existing literature shows that there might be a correlation between plasma concen-
trations and response (expressed with an improvement in depressive symptoms scales),
but not all studies support these findings [90,91]. It is commonly accepted that blood
count, urea, and electrolyte levels, as well as liver function, should be assessed before
starting treatment, while lamotrigine plasma concentration may be checked in case of lack
of response, suspected lack of adherence, or toxicity [5]. Some older studies also suggest a
correlation between serum and saliva sampling in measuring lamotrigine concentrations,
so this could be a good alternative in order to minimize the invasiveness of monitoring;
however, it should be noted that these studies were conducted either in healthy volunteers
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or in patients with epilepsy, so the validity of saliva sampling in patients with psychiatric
disorders is yet to be demonstrated [34–36]. Other researchers have recently proposed dried
blood spots as an alternative to plasma sampling, with good results in terms of reliability
and reduction of invasiveness [37].

Real-world research has shown that lamotrigine TDM, even when routinely followed,
does not translate into dose adjustment by clinicians in case of samples under the rec-
ommended range [92]. Retrospective studies show that when used for the treatment of
bipolar disorder, clinicians tend to keep daily lamotrigine dosages (and therefore plasma
concentrations) at lower levels, which could result in underdosing or falling at the lower
end of the therapeutic range, compared to epilepsy treatment [93,94].

3. TDM and Antipsychotics

Antipsychotics, also known as “neuroleptics”, are a diverse class of medications,
primarily designed to manage symptoms associated with psychotic disorders. They are
commonly prescribed for conditions such as schizophrenia, bipolar disorder, and other
brain diseases characterized by hallucinations, delusions, and disorganized thinking.

These drugs are usually divided into two main classes: typical (or first-generation
antipsychotics, FGAs) and atypical (or second-generation antipsychotics, SGAs). While
both types aim to modulate neurotransmitter activity, atypical antipsychotics are character-
ized by their reduced risk of extrapyramidal side effects such as parkinsonism and tardive
dyskinesia and a better profile in terms of cognitive improvement [95]. On the other hand,
treatment with some atypical antipsychotics has been associated with a substantial risk
of metabolic effects, such as weight gain, hyperglycemia, and lipid dysregulation [96], as
well as cerebrovascular adverse events, such as stroke [97], and cardiovascular adverse
events [98].

In medical practice, haloperidol and phenothiazines are the most widely prescribed
typical antipsychotics, and they act primarily as dopamine D2 receptor antagonists, man-
aging the positive symptoms of psychosis. Conversely, clozapine, olanzapine, quetiapine,
aripiprazole, and risperidone are the broadly used atypical antipsychotics and can treat
both the positive and negative symptoms of psychosis. Antipsychotic prescription patterns
can vary depending on the geographical region of the world, with a preference for older
(and therefore less costly) molecules in developing countries, and on the use of the drug,
with a preference for atypical antipsychotics in off-label settings [99–102].

The atypical antipsychotic mechanism of action goes beyond the D2 receptor blockade,
involving serotonin (5-HT), muscarinic, adrenergic, and glutamatergic receptors. Besides
the central role of dopamine in psychoses, serotonin (5-HT) and glutamate are strongly
relevant for the physiopathology of these mental disorders. In 2018, a review revisited the
mechanism of action of atypical antipsychotic drugs and, based on the different clinical
characteristics of compounds belonging to the same category, grouped them into different
levels of ‘atypia’. Indeed, a continuum spectrum of atypia has been proposed, ranging
from risperidone, the least atypical (Level I), up to clozapine, the most atypical (Level III),
while all others fall within these two extremes of the spectrum (Level II). The molecular
targets increase moving from Level I to Level III, whereas clinical characteristics relate to
their different molecular profiles. In detail, besides the canonical D2 and serotoninergic
5-HT2A/2C receptor antagonism, other mechanisms, such as D2 and 5-HT1 partial ago-
nism, D3 antagonism, H1 antagonism, α2 antagonism, moderate muscarinic antagonism,
M1 positive allosteric modulation, BDNF production, and GlyT blocking, have received
particular attention to explain atypia [7,103].

TDM plays a crucial role in optimizing the effectiveness and safety of antipsychotic
medications. It is worth noting that the plasma concentration of a drug is a good predictor
for drug cerebral concentration, especially for lipophilic drugs, where the blood–brain
barrier efflux transporters are poorly involved. By measuring the blood levels of these
drugs, clinicians can ensure that patients receive the proper dosage, tailoring the treatment
to individual needs. Furthermore, TDM helps identify variations in drug metabolism,
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potential interactions, and adherence issues, allowing for timely adjustments. This person-
alized approach enhances treatment outcomes while minimizing side effects and the risk
of relapse in individuals with psychiatric disorders. It also helps simplifying therapeutic
schemes and has the potential to reduce unnecessary polypharmacy [104].

PET studies have demonstrated that motor side effects, such as tremors and stiffness,
may occur when more than 80% of the D2 receptors in the striatum are blocked [105].
Conversely, receptor occupancy between 65 and 80% seems to be the best condition for
antipsychotic effectiveness, with a lower probability of inducing extrapyramidal side
effects [106]. Notably, a correlation was found between D2 receptor occupancy and the
plasma concentration of some antipsychotics [107], whereas such a relationship with dosage
was less clear. This correlation between receptor occupancy and plasma concentrations
was confirmed by different studies, which also showed that D2 receptor occupancy can
be predicted by the antipsychotic concentration in plasma [108,109]. Studies have also
found that the relationship between plasma concentration and D2 receptor occupancy is
fit by a hyperbolic saturation curve, where risperidone and olanzapine, at higher concen-
trations, may exceed 80% of receptor occupancy. These curves show a good correlation
between predicted and observed receptor occupancy and drug plasma concentration. The
prediction of D2 receptor occupancy with plasma concentration is particularly valid for
haloperidol and olanzapine, less so for risperidone, and not significant for clozapine [110].
For risperidone, the blood–brain barrier efflux transporters such as P-glycoprotein (P-gp)
may be responsible for lowering its concentration in the brain, reducing the correlation, as
mentioned earlier [111].

In vivo studies have recently analyzed the possible relationship between plasma
concentration and receptor occupancy for other targets, such as the 5-HT2A receptor in
the cortex and GlyT1 transporters. However, the information is too preliminary [112–114].
Furthermore, a statistically significant correlation between H1, muscarinic, and 5-HT2C
receptor occupancies and metabolic side effects such as weight gain and diabetes mellitus
type II has been demonstrated [115].

The dose–effect relationships of several drugs, including antipsychotics, vary consid-
erably between patients, mainly owing to pharmacokinetic differences influenced by age,
changes in the first-pass effect, and the induction or inhibition of the microsomal metabolic
system. The primary source of pharmacokinetic variability is drug oxidation, a metabolic
pathway catalyzed by the cytochrome P450 (CYP) enzyme system, whose activity varies
widely among subjects because of environmental influences and genetic differences [116].

The AGNP group consensus guidelines [5] include haloperidol, amisulpride, cloza-
pine, olanzapine, and some phenothiazines in level 1 recommendations regarding the
routine monitoring of plasma concentrations. Many studies related to the variability be-
tween antipsychotic dose and plasma concentration have been carried out with clozapine,
which nowadays is frequently monitored because of its relevant side effects. Predicting
clozapine plasma concentration is challenging due to its inter-individual variability, con-
tributed to by factors such as sex, age, weight, smoking, and concomitant use of other
medications that influence CYP450 activity (e.g., CYP1A2) [117]. In particular, a fixed
dose of clozapine of 400 mg/day showed substantial plasma concentration variability
among patients [118]. Moreover, smoking lowers the plasma concentration of clozapine by
inducing CYP1A2 [119], while CYP inhibitors, such as fluvoxamine, were shown to increase
the plasma concentration of clozapine up to 10 times. On the other hand, co-administration
with carbamazepine (a CYP3A4- and CYP1A2-inducing drug) resulted in a substantial
decrease in the plasma concentration of clozapine [120].

Similar interactions were found with other atypical antipsychotics such as olanzapine
and risperidone when they were co-administered either with carbamazepine or selective
serotonin reuptake inhibitors fluoxetine and paroxetine, which are mostly CYP2D6- and
CYP2C19-inhibiting drugs [121]. Regarding efficacy, the effective plasma clozapine window
is still debated [122]. The study by Perry and colleagues showed for the first time that a
clozapine plasma concentration greater than 350 ng/mL in treatment-resistant patients
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with schizophrenia resulted in a 64% clinical response, while below this level, the response
was only 22%. Other studies have also confirmed a cut-off point for clozapine efficacy
at 350 ng/mL [123] or 420 ng/mL [124]. According to the AGNP-TDM expert group
consensus guidelines [5], the recommended therapeutic range of clozapine plasma concen-
tration is 350–600 ng/mL. Plasma concentrations greater than 1000 ng/mL can increase
the risk of epileptic seizures. Therapeutic drug monitoring is also strongly recommended
in pediatric patients under clozapine treatment [125]. Furthermore, dose adjustment in
female individuals might also be reasonable, according to sex-related differences in serum
concentrations [126].

Regarding olanzapine, studies have investigated the relationship between the daily
olanzapine dose and plasma concentrations, showing that the latter increases linearly
with the daily oral dose [127,128]. Moreover, some authors have demonstrated a linear
relationship between the prescribed daily dose and the plasma concentration of the primary
N-desmethyl olanzapine metabolite [129]. At commonly used daily olanzapine doses
(5–30 mg/day), mean plasma concentrations range from 10 to 54 ng/mL. Considerable
inter-patient variability has been observed, depending on co-medications, inter-individual
variability in drug metabolism and/or clearance, and gender [130].

The therapeutical range of plasma concentration for amisulpride has been poorly in-
vestigated. A study by Piacentino [131] considered optimal therapeutic plasma amisulpride
concentrations of about 367 ng/mL to be associated with stable clinical improvement [131].
However, further investigations are required to verify the association between plasma
concentrations and responses and whether there is a correlation between plasma drug
concentrations and prolactin levels. This information would help support the therapeutic
range of 100–320 ng/mL proposed by the AGNP-TDM.

These data clearly show that regular TDM assessments contribute to the precision
and success of antipsychotic therapy, fostering a balance between therapeutic benefits and
potential adverse effects.

In regard to “third generation” antipsychotics (TGAs), and in particular aripipra-
zole (level 2 of recommendation), the established recommended therapeutic range is
120–270 ng/mL (180–380 ng/mL for its active metabolite dehydroaripiprazole), even
though the relationship between concentration and efficacy, as well as the correlation
between concentration and adverse effects, remains unclear [132]. However, a recent study
by Tien and colleagues, based on a Chinese population of patients taking aripiprazole,
found a higher response rate in patients with a serum concentration over 300 ng/mL,
suggesting that increasing aripiprazole concentrations above the current recommended
range could potentially improve patients’ response to treatment [133].

In regard to alternatives to blood sampling, in the past decade, there has been an in-
creased interest in evaluating less-invasive methods for antipsychotics TDM. Dziurkowska
and Wesolowski implemented a novel method to enable the quantification of olanzap-
ine, risperidone, clozapine, quetiapine, and aripiprazole in small biological samples such
as saliva with good accuracy, although the number of patients included in this study
was relatively small [134]. Another group evaluated the stability of oral fluid samples of
chlorpromazine, levomepromazine, cyamemazine, clozapine, haloperidol, and quetiap-
ine and found that under certain conditions (i.e., at a stable 4 ◦C temperature, in a dark
environment, and with low acidic concentrations), the samples exhibited good stability
over time, with ranges between 14 and 146 days [135]. Saliva sampling has also been
recently proposed for amisulpride [136]. Urine sampling has been evaluated as a monitor-
ing technique for risperidone, haloperidol, quetiapine, and olanzapine [137]. Minimally
invasive sampling methods, such as dried blood spots sampling, have also been evaluated
in recent years for several antipsychotic medications [138]. Table 2 summarizes the main
sampling methods of some of the most used antipsychotic medications, along with the
therapeutic reference ranges and the AGNP recommendation levels. A recent preclinical
study by Yan and colleagues implemented a smart lollipop-like sensing system that can be
connected to a smartphone and that could decentralize TDM for clozapine samples, po-
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tentially allowing patients to monitor themselves at home [139]. The further development
of these methods could represent a cost-effective and non-invasive way to strengthen the
relationship between clinicians and patients, therefore leading to a more personalized and
human-centered approach.

Table 2. Frequently used antipsychotic medications, with their therapeutic reference ranges, AGNP
recommendation level, and sampling methods, including experimental ones. FGA: first generation
antipsychotics; SGA: second generation antipsychotics; TGA: third generation antipsychotics.

Drug Class Therapeutic Drug
Range (Blood)

TDM AGNP
Recommendation

Levels

Preferred
Sampling Method

Other Sampling
Methods

Amisulpride SGA 100–320 ng/mL 1 Plasma Saliva, dried blood spots
[136,138]

Aripiprazole TGA 100–350 ng/mL 2 Plasma Saliva, dried blood spots
[134,138]

Chlorpromazine FGA 30–300 ng/mL 2 Plasma Saliva [135]

Clozapine SGA 350–600 ng/mL 1 Plasma Saliva, dried blood spots
[134–136,138]

Haloperidol FGA 1–10 ng/mL 1 Plasma Saliva, dried blood spots,
urine [135,137,138]

Olanzapine SGA 20–80 ng/mL 1 Plasma Saliva, dried blood spots,
urine [134,135,137,138]

Quetiapine SGA 100–500 ng/mL 2 Plasma Saliva, dried blood spots,
urine [134,135,137]

Risperidone SGA 20–60 ng/mL 2 Plasma Saliva, dried blood spots,
urine [134,137,138]

4. TDM and Antidepressant Medications

TDM for antidepressant medications can improve treatment optimization in order
to monitor treatment adherence and avoid or limit ADRs or toxicity; however, the use
of TDM for this wildly used class of drugs is limited compared to other drugs, such as
mood stabilizers or antipsychotic medications [140]. TDM currently applies to numerous
antidepressants, and serum drug concentrations might represent a better index than drug
dosage [141].

For Tricyclic Antidepressants (TCAs), TDM’s usefulness has been wildly accepted due
to the risk of several troublesome side effects and for safety reasons, mainly because they are
potentially cardiotoxic. Most of them fall into category 1 of TDM recommendation, except
for trimipramine and desipramine, which are included in category 2 [5]. An older study
by Müller and colleagues on the use of TDM in patients taking TCAs showed that despite
clinicians often being “non-compliant” to TDM recommendations, there was a clinical
benefit in performing early TDM in patients, with an increase in depressive symptoms
scales, although a direct effect on cost-effectiveness was not found [142]. A focus on TDM
in antidepressants confirmed the utility of TDM in TCAs, mainly as an aid for the clinician
to avoid intoxications that may be deadly for patients [143].

Regarding selective serotonin reuptake inhibitors (SSRIs), there is a correlation be-
tween serotonin reuptake inhibition and the concentration of the drug in plasma [144].
However, most serotonin reuptake inhibition occurs at what is usually considered the
“minimum effective dose” [141]. SSRIs fall either in category 2 (escitalopram, paroxetine,
fluvoxamine, sertraline) or 3 (fluoxetine) of evidence regarding TDM recommendations.
The only SSRI for which there is a level 1 recommendation is citalopram, which has a
therapeutic range between 50 and 110 ng/mL [5]. For this drug, a reduction in hospitaliza-
tion (and a subsequent cost reduction) when using TDM in the early stages of treatment
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was observed, and a positive correlation between plasma concentrations and response to
treatment has been shown [145,146]. For other SSRIs, TDM might have a role in checking
for treatment adherence or fast and slow metabolizers. It could also be helpful in assessing
the presence of its metabolite, norfluoxetine, after fluoxetine discontinuation [141].

Serotonin–norepinephrine reuptake inhibitors (SNRIs), specifically, venlafaxine and
duloxetine, are included in the category 2 level of recommendation [5]. TDM might be
helpful for dose titration in both venlafaxine and duloxetine treatment, especially in the
elderly [147,148]. Other antidepressant medications have not been thoroughly studied
regarding TDM’s usefulness. Mirtazapine exhibits a linear (but weak) relationship between
plasma concentration and oral doses; however, a clear concentration–effect relationship
has not yet been established [149]. Bupropion TDM may help increase treatment safety
and effectiveness, but its monitoring is not routinely performed; measuring plasma con-
centrations of monoamine oxidase inhibitors (MAOIs) is costly and rarely feasible [141].
The newer antidepressant vortioxetine has been classified in the category 2 level of recom-
mendation; however, the literature on the utility of TDM for this novel medication is still
lacking [150].

The development of alternatives to blood samples has also been carried out for an-
tidepressant medications. The use of the Supported Liquid Extraction method has proven
to be good in measuring saliva concentrations of amitriptyline, mianserin, duloxetine,
mirtazapine, sertraline, citalopram, and venlafaxine [151]. Dried-saliva spot sampling
has been proposed as a valid method for measuring the concentrations of fluoxetine, ven-
lafaxine, O-desmethylvenlafaxine, citalopram, sertraline, and paroxetine, representing a
valid alternative to blood drawing [152]. Oral fluid microsampling also gave satisfying
results in the monitoring of sertraline, fluoxetine, citalopram, and vortioxetine [153]. Urine
can be used as a matrix for monitoring escitalopram, citalopram, fluoxetine, paroxetine,
and bupropion, and it has also been proposed for the monitorization of fluvoxamine and
moclobemide [154–161]. For TCAs, urine sampling can be used, even though mostly for
forensic studies rather than for routinary monitoring [162]. For vortioxetine, both urine and
saliva could be used with reliability for monitoring [163]. As for in silico monitoring, the
algorithm XGBoost has shown promising results in predicting the best medication regimen
in patients with depression [164]. Further research is needed to confirm these findings, in
order to achieve a wider implementation of these methods in clinical practice. A summary
of the main sampling methods used for the most used antidepressants can be found in
Table 3.

Table 3. Some of the main antidepressant medications with their therapeutic reference range, the
AGNP recommendation level, and the most used and the experimental sampling methods. SSRI:
selective serotonin reuptake inhibitor; SNRI: serotonin–norepinephrine reuptake inhibitor; NDRI:
norepinephrine–dopamine reuptake inhibitor; TCA: tricyclic antidepressant; NaSSA: noradrenergic
and specific serotonergic antidepressants; MAOI: monoamine oxidase inhibitor; SMS: serotonin
modulator and stimulator.

Drug Class
Therapeutic
Drug Range

(Blood)

TDM AGNP
Recommendation

Levels

Preferred
Sampling Method Other Sampling Methods

Amitriptyline TCA 80–200 ng/mL 1 Plasma Saliva, urine [162]

Bupropion NDRI 10–100 ng/mL 2 Plasma Urine [156]

Citalopram SSRI 50–110 ng/mL 1 Plasma, serum Saliva, dried saliva spots, urine
[151–153,159]

Clomipramine TCA 230–450 ng/mL 1 Plasma Urine [162]

Desipramine TCA 100–300 ng/mL 2 Plasma Urine [162]

Duloxetine SNRI 30–120 ng/mL 2 Plasma Saliva [151,152]
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Table 3. Cont.

Drug Class
Therapeutic
Drug Range

(Blood)

TDM AGNP
Recommendation

Levels

Preferred
Sampling Method Other Sampling Methods

Escitalopram SSRI 15–80 ng/mL 2 Plasma, serum Urine [154,155]

Fluoxetine SSRI 120–500 ng/mL 3 Plasma, serum Urine, dried saliva spots
[152,153,159]

Fluvoxamine SSRI 60–230 ng/mL 2 Plasma, serum Urine [157,161]

Imipramine TCA 175–300 ng/mL 1 Plasma Urine [162]

Mirtazapine NaSSA 30–80 ng/mL 2 Plasma Saliva [151]

Moclobemide MAOI 300–1000 ng/mL 3 Plasma Urine [158]

Nortriptyline TCA 70–170 ng/mL 1 Plasma Urine [162]

Paroxetine SSRI 20–65 ng/mL 3 Plasma, serum Urine, dried saliva spots [152,160]

Sertraline SSRI 10–150 ng/mL 2 Plasma, serum Saliva, dried saliva spots
[151–153]

Venlafaxine SNRI 100–400 ng/mL 2 Plasma Saliva, dried saliva spots [151,152]

Vortioxetine SMS/SSRI 15–60 ng/mL 2 Plasma Saliva, urine [153,163]

5. Conclusions

TDM is a valuable asset in the correct treatment of patients with psychiatric disorders,
as it helps to choose the appropriate drug dosages to maximize the desired effects and
minimize ADRs, while checking for correct adherence to the treatment. In our review, we
analyzed the role of TDM in the main pharmacological classes of psychiatric medications
and how it should be implemented in clinical practice. We did not include the use of TDM
for anxiolytic medications, for drugs such as methylphenidate or atomoxetine, or for drugs
used to treat substance use disorder because the usefulness of monitoring these particular
drugs is still uncertain, as these medications have level 3 or 4 recommendations in the
AGNP-TDM consensus guidelines [150]. Therefore, more research is needed to study the
utility and the possibility of implementing TDM in these drug categories. Future research
should also focus on implementing cost-effective and less-invasive methods to perform
TDM, such as saliva sampling, to increase patients’ adherence to treatment and monitoring.
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