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Abstract: The emergence of combination antiretroviral therapy (cART) has greatly transformed the
life expectancy of people living with HIV (PWH). Today, over 76% of the individuals with HIV have
access to this life-saving therapy. However, this progress has come with a new challenge: an increase
in age-related non-AIDS conditions among patients with HIV. These conditions manifest earlier in
PWH than in uninfected individuals, accelerating the aging process. Like PWH, the uninfected aging
population experiences immunosenescence marked by an increased proinflammatory environment.
This phenomenon is linked to chronic inflammation, driven in part by cellular structures called
inflammasomes. Inflammatory signaling pathways activated by HIV-1 infection play a key role in
inflammasome formation, suggesting a crucial link between HIV and a chronic inflammatory state.
This review outlines the inflammatory processes triggered by HIV-1 infection and aging, with a
focus on the inflammasomes. This review also explores current research regarding inflammasomes
and potential strategies for targeting inflammasomes to mitigate inflammation. Further research
on inflammasome signaling presents a unique opportunity to develop targeted interventions and
innovative therapeutic modalities for combating HIV and aging-associated inflammatory processes.
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1. Introduction

According to WHO reports, since the beginning of the human immunodeficiency
virus (HIV) epidemic 40 years ago, around 85.6 million individuals have been affected,
resulting in an estimated 40.4 million lives lost due to HIV-related causes. At present,
approximately 40 million people worldwide are estimated to be living with HIV infection,
comprising roughly 20 million men, 17.4 million women, and 1.5 million children under
15. While sub-Saharan Africa has the most people living with HIV, new infections are
rising faster in Europe, South America, North America, and other regions [1]. According to
the CDC, white individuals in the United States have HIV incidence rates (new infections
per 100,000 population) that are 7.8 times lower than those of Black/African American
persons and 3.9 times lower than those of Hispanic/Latino persons. Consequently, HIV
prevalence among Black/African American individuals is seven times higher than among
white individuals. Low-income countries still bear the primary burden of HIV/AIDS
globally, with individuals living with HIV in these regions facing challenges in accessing
healthcare services, such as timely HIV testing and consistent ART treatment [2]. The
administration of combination antiviral therapy (cART), which involves treating patients
with a combination of drugs, is an effective method for suppressing HIV replication [3].
Continuous cART has been shown to lead to the durable suppression of viral replication,
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likely providing lifelong effectiveness [4]. The early diagnosis and initiation of cART can
bring the life expectancy of patients close to that of the general population [5]. Due to
cART’s effectiveness in extending life expectancy, over half of the people with HIV (PWH)
in the US are now over 50, with this number projected to reach 70% by 2030 [6]. Despite
this, overall health differences between individuals with HIV and those uninfected persist,
as individuals with HIV have a higher-than-expected risk of health problems including
metabolic, cardiovascular, and neurological diseases [7,8]. Women, particularly PWH face
a greater burden of age-related health problems compared to men, with the types of these
issues also differing by sex [9]. The higher rates of co-morbidities in individuals with HIV
are caused by several factors: the lingering effects of HIV infection itself, the complex side
effects of ART drugs, the increased risk of opportunistic infections, and living longer with
HIV. The presence of age-related comorbidities in PWH has led to the hypothesis that
patients treated with ART may experience accelerated aging [10–12].

Although the mechanisms underlying age-related health issues in both the aging
population and PWH are not yet clearly understood, it is well established that a persistent
inflammatory state, driven by ongoing immune activation, is a major contributing factor to
premature immunosenescence and accelerated aging observed in untreated PWH [10,13,14].
Studies in PWH indicate an increase in biological age of approximately five years in blood
cells and seven years in the brain compared to uninfected individuals [15]. Similarly,
aging populations are impacted by the rise in systemic inflammation, referred to as in-
flammaging, which occurs even in the absence of overt infection, and serves as a risk
factor for age-related morbidity and mortality [16,17]. Furthermore, studies in centenarians
suggest that managing chronic low-grade inflammation through a balanced regulation of
inflammatory and anti-inflammatory responses might be crucial in promoting longevity
and overall health [18,19]. The healthy aging observed in centenarians is attributed to
a specific genetic characteristic that regulates inflammatory pathways differently from
other elderly individuals affected by various age-related illnesses [19]. Overall, these stud-
ies support the concept that similar mechanisms of chronic inflammatory pathways are
triggered by HIV infection and aging. Elevated levels of inflammasome signaling have
been documented alongside chronic inflammation in both elderly individuals and PWH.
However, in the field of inflammasome research, existing reviews have mostly examined
the roles of inflammasomes in HIV infection and aging separately, shedding light on their
individual impacts and implications. This review aims to bridge this gap by providing a
comprehensive analysis of the interplay between inflammasomes, aging, and HIV infection,
with a particular focus on the elderly population affected by HIV and PWH undergoing
accelerated aging. Through our analysis, we seek to provide valuable insights that inform
the development of novel therapeutic interventions and improve the overall well-being of
elderly individuals living with HIV and those experiencing accelerated aging. By delving
into the complex interactions between inflammasomes, aging, and HIV pathogenesis, we
aim to provide valuable insights that will inform future research and ultimately lead to
improved health outcomes for this vulnerable population.

2. HIV-Associated Chronic Inflammation

After entering the human body, HIV infects cells by utilizing CD4 and CCR5/CXCR4
as primary and secondary receptors, respectively, leading to infection in its primary target
cells such as T cells, macrophages, and dendritic cells, thereby establishing a long-term
infection. As viral replication and dissemination reach peak levels, it leads to the depletion
of CD4+ T lymphocytes from the blood, lymphoid organs, and mucosal tissues [20]. The
gastrointestinal (GI) tract, home to a substantial number of T lymphocytes, experiences a
disproportionately higher depletion of CD4+ T-cells compared to peripheral blood [21].
Chronic HIV infection-driven immune activation, characterized by the elevated levels
of HIV-specific CD8+ T cells, B cells, NK cells, pDCs, monocytes, and proinflammatory
cytokines, happens in parallel with CD4+ T cell depletion in HIV infection [22,23]. The
disruption of the GI tract’s immune system compromises the mucosal barrier, facilitating
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the translocation of microbial products into the bloodstream, which in turn is associated
with chronic inflammation and sustained immune activation. Furthermore, alcohol abuse
among people living with HIV exacerbates the disruption of the microbiota composition and
compromises the integrity of the intestinal barrier, leading to elevated levels of microbial
translocation and chronic immune activation [24].

Upon entry into the host cell, HIV is recognized by DNA sensors such as the en-
doplasmic reticulum adaptor stimulator of interferon genes (STING) in the cytosol, and
it triggers the expression of IFN-α and IFN-β [25,26]. HIV sensing and viral replication
involves cyclic GMP–AMP synthase (cGAS) and interferon γ-inducible protein 16 (IFI16)
in macrophages and their expressions are elevated during the viral replication [26–28].
These cytoplasmic DNA sensors also recognize the reverse transcription products such
as cDNA, ssDNA, DNA/RNA hybrids, and dsDNA [27,29]. The capsid proteins of HIV
serve as target molecules for innate immune factors, including Tripartite Motif-containing
protein 5 (TRIM5) and NONO [30,31]. Following the breach of initial defenses and viral
replication, innate immune cells including NK cells, NKT cells, γδ T cells, dendritic cells,
and macrophages respond to newly produced viral particles, triggering the activation of
CD4+ and CD8+ T lymphocytes [32].

The hyperactive immune state emerges with the elevated proliferation of both spe-
cific and non-specific T cells alongside the increased production of proinflammatory cy-
tokines [33]. The rapid turnover of CD4+ T cells provides numerous targets for HIV, leading
to a surge in HIV viral loads. The elevated levels of HIV DNA and protein activate toll-like
receptors (TLRs) and caspase-1, resulting in the release of proinflammatory cytokines
and chemokines including type I IFNs, IL-6, TGFβ, IL-8, IL-1α, IL-1β, MIP-1α, MIP-1β,
and RANTES into circulation [34,35]. GI mucosa disruption and microbial translocation
further fuel the production of proinflammatory cytokines and immune activation. Mi-
crobial products like peptidoglycan, lipoteichoic acid, lipopolysaccharide (LPS), flagellin,
and DNA engage with TLRs and nucleotide-binding oligomerization domains (NODs) to
trigger robust proinflammatory responses [36]. Soluble CD14 (sCD14) which is a marker of
LPS-induced monocyte or macrophage activation has a positive relationship with the high
levels of LPS in PWH [37]. The persistent elevation of sCD14 and proinflammatory effector
memory T cells reported in PWH implicates the synergistic role of aging and HIV infection
in sustained low-grade inflammation, as well as gut barrier damage and permeability [38].

Unhealthy lifestyles among PWH exacerbate inflammation. Poor diet, alcohol con-
sumption, smoking, and the lack of exercise can contribute to increased inflammation and
the risk of various morbidities. These factors also elevate the risk of heart disease and
hypertension among PWH [39]. Among PWH, engaging in injection drug use heightens
the likelihood of progressing to AIDS, experiencing elevated immune activation, and facing
increased mortality rates due to AIDS-related complications, comorbidities, and other infec-
tions, even with adherence to cART [40]. Substance abuse facilitates HIV replication and the
infection of new cells, and amplifies bacterial translocation in PWH [41,42]. HIV infection
and chronic opioid use are individually linked to systemic inflammation. However, chronic
opioid use exacerbates systemic inflammation among PWH, with those who are HIV-
positive and use opioids exhibiting the highest levels of systemic inflammation [43]. Several
studies showed opioid exposure exacerbates the release of proinflammatory cytokines and
chemokines induced by both HIV-1 Tat protein and gp120 envelope protein [44,45].

The chronic immune activation and inflammation caused by HIV infection remain
unresolved despite achieving viral suppression with cART [46,47]. This is attributed
to the failure of cART to completely restore gut barrier dysfunction despite effective
viral suppression to undetectable levels in the blood [48–50]. Immune activation and
inflammatory biomarkers are still significantly elevated in ART-treated and untreated
patients with HIV than those in individuals without HIV [51–54]. Even amongst individuals
effectively treated with ART for HIV, the persistence of low-grade chronic inflammation
emerges as a significant contributor to the development of various age-related diseases,
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potentially impacting both morbidity and mortality, mirroring trends observed in the wider
elderly population.

3. Inflammation of Aging

While several factors contribute to aging and associated comorbidities, a weakened
immune environment, chronic inflammation, and compromised immune regulation are
major contributors. These changes in the aging immune system are collectively termed
as immunosenescence, which contributes to inflammaging, characterized by the elevated
levels of inflammatory markers in both cellular and tissue compartments [55]. The process
of immunosenescence promotes chronic inflammation, triggering the release of associated
molecular patterns that further exacerbate immune senescence, thereby establishing a detri-
mental positive feedback loop. Senescent hematopoietic stem cells (HSCs) are attributed to
imbalanced myelopoiesis and lymphopoiesis, leading to the release of proinflammatory
cytokines such as IL-1, IL-3, IL-6, TNF-α, interferons, and GM-CSF. These cytokines and
growth factors, in turn, promote HSC myeloid differentiation bias [56–58]. In aging mice,
HSC exhibits a diminished capacity for self-renewal but in higher numbers which may
be associated with the elevated levels of IFN-γ [59–61]. Exposure to microbial products
like LPS, which triggers a proinflammatory environment, has been shown to impair HSC
self-renewal and competitive repopulation activity [62].

Furthermore, increased microbial translocation and systemic inflammation in older
vervet monkeys with poorer intestinal barrier function mimic the effects of HIV infec-
tion [63,64]. In accordance with the endotoxemic burden, innate immune responses, mea-
sured as circulating secretory IgA and antimicrobial peptide α-defensin 5, were both greater
in old monkeys [64]. An analysis of colonic tissue from older baboons revealed a decreased
expression of tight junction proteins zonula occluden-1, occludin, and junctional adhesion
molecule-A, while claudin-2 expression increased. Colonic biopsies from older baboons dis-
played upregulated miR-29a and inflammatory cytokines IFN-γ, IL-6, and IL-1β compared
to biopsies from young animals [65]. Additionally, a significant age-related increase in
human and rhesus monkey plasma IL-6 and IL-1β, even in the absence of inflammation or
infection, indicates that proinflammatory cytokines IL-6 and IL-1β are important mediators
of the age-associated increase in intestinal permeability [66,67]. These studies suggest that
an increased colonic permeability, caused by changes in intestinal epithelial tight junction
proteins, might be a major factor contributing to inflammation in elderly individuals.

The aging process exerts a multifaceted influence on the immune system, impacting
both its adaptive and innate arms. Antigen presentation by dendritic cells to CD4+ T cells
is severely impaired and proinflammatory cytokines negatively influence the reactivity
of the CD4+ T cells in aging. Aging CD4+ T-cells show several distinctive characteristics
including the loss of proliferative capacity, low production of IL-2, and a loss of the
expression of CD28 molecule [68]. CD4+ T cells in aged mice produce elevated levels of
IL-17 compared to young populations [69], which is associated with several inflammatory
conditions [70–72]. IL-17-producing γδ17 T cells dominate the γδ T-cell pool of aged mice
mediated by increased IL-7 expression in the T-lymphocytes of old mice [73]. Aged skin
exhibits an increase in IL-17-producing γδ T cells and innate lymphoid cells (ILCs), while
blocking IL-17 signaling during this process attenuates the proinflammatory state and
delays the onset of age-related characteristics [74].

4. Inflammaging and HIV Infection

As observed in aged individuals, HIV infection exhibits progressive immune function
decline and the long-term disruption of immune homeostasis, mirroring immunosenes-
cence typically seen with aging. Immunosenescence is characterized, in part, by inflam-
maging, and is considered a key contributor to age-related morbidity and mortality also
exhibited by PWH [75]. Studies in nonhuman primates demonstrate that natural SIV hosts,
including sooty mangabeys and African green monkeys, exhibit mechanisms regulating
chronic inflammation. This immune control translates to the absence of microbial transloca-
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tion, immune activation, exhaustion, AIDS development, and accelerated aging observed
in non-natural hosts [76]. While persistent chronic inflammation is linked to HIV infection
and aging, the intracellular mechanisms responsible for driving this process, however, are
largely unknown. Elucidating and targeting these pathways holds promise in mitigating
inflammation and immune activation markers, potentially leading to a reduced risk of
comorbidities in HIV infection and the aging population. The inflammasome pathway of
the innate immune system is one of the major contributors to inflammation, initiating a
proinflammatory response to HIV infection and during aging (Figure 1).
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Figure 1. HIV infection and treatment, as well as aging, drive inflammasome activation that is
associated with chronic immune activation and inflammation driven in part by inflammasome-
mediated cytokine production. This low-grade chronic inflammation accelerates biological aging and
increases vulnerability to comorbidities (shown in green) in both people with HIV and the elderly.

5. Inflammasomes

Inflammasomes are cytosolic multiprotein oligomers, functioning as key sensors
within the innate immune system. Inflammasome protein machinery is expressed in
macrophages, dendritic cells (DCs), neutrophils, and epithelial cells [77]. Upon the recogni-
tion of pathogen-associated molecular patterns (PAMPs) or damage-associated molecular
patterns (DAMPs) within the cell cytoplasm, these complexes initiate and orchestrate a po-
tent innate immune response. The recognition of inflammatory ligands by inflammasomes
leads to the release of proinflammatory cytokines, which recruit and activate cells of the
innate and adaptive immune system at the site of infection or stress.

Cytoplasmic pattern recognition receptors (PRRs), including nucleotide-binding
oligomerization domain (NOD); leucine-rich repeat (LRR)-containing protein (NLR) fam-
ily members NLRP1, NLRP3, and NLRC4; and absent in melanoma 2 (AIM2) and pyrin
proteins can be involved in the assembly of inflammasomes [78]. The major classes of the
sensory family include nucleotide-binding domain (NBD) and leucine-rich repeat (LRR)-
containing proteins (NLRs) as well as the PYHIN protein family [78]. Based on N-terminal
domain architecture, the NLR family is further classified based on recognizable N-terminal
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domains, including the acidic transactivation domain, pyrin domain, caspase recruitment
domain (CARD), and baculoviral inhibitory repeat (BIR)-like domains [79]. The PYHIN
protein family, which includes absent in melanoma 2 (AIM2) and interferon (IFN)-inducible
factors, consists of HIN200 and pyrin domains but lacks NLR sensors [80].

Following activation, NOD-like receptors (NLRs) and other PYRIN domain (PYD)-
containing proteins initiate the assembly of higher-order inflammasome complexes. These
supramolecular signaling platforms comprise at least a sensor NLR and a caspase, and fre-
quently incorporate the adaptor protein apoptosis-associated speck-like protein containing
a CARD (ASC) [81,82]. The recognition of exogenous ligands, such as double-stranded DNA
(dsDNA) and specific bacterial/viral proteins, by inflammasome PRRs triggers oligomer-
ization for complex assembly. This process involves either the homo-oligomerization of the
CARD domain or ASC. This assembly platform facilitates caspase-1 activation, leading to
the proteolytic processing and the maturation of proinflammatory cytokines interleukin-1β
(IL-1β) and interleukin-18 (IL-18) and additionally triggers the secretion of other proteins
like IL-1α and fibroblast growth factor-2 (FGF-2) through an unconventional protein secre-
tion pathway [83]. While NLRP3, AIM2, and others represent the canonical inflammasome
pathway leading to caspase-1 activation and IL-1β/IL-18 maturation, receptors like NLRP3,
NLRP6, NLRP12, and IFI16 exhibit functional diversity beyond caspase-1 activation. These
receptors can also engage other cellular pathways, such as NF-κB, MAP3K, and STING sig-
naling, highlighting their role in regulating inflammatory responses outside the canonical
inflammasome pathway, known as the non-canonical inflammasome pathway [84–86].

The activation of inflammasomes leads to the release of mature proinflammatory
cytokines triggered by caspase-1, as well as the induction of pyroptosis and caspase-8-
driven apoptosis. The proteolytic cleavage of pro-IL-1β by caspases results in the rapid
secretion of IL-1β from the cells [87]. The secreted IL-1β then induces the expression
of proinflammatory genes such as human β-defensin-2 (HBD-2), TNF-α, IL-6, and GM-
CSF [88]. Another cytokine, IL-18, processed by caspase-1, induces the production of IFN-γ
and IL-17, along with other proinflammatory cytokines and chemokines, and activates IL-18
receptor alpha chain abundant γδ T cells to produce IL-17 [89,90]. Besides facilitating the
maturation of IL-1β and IL-18, the initiation of an inflammatory form of cell death known
as pyroptosis is another significant physiological consequence of caspase activation [91].
Canonical inflammasome complex employ caspase-1 while noncanonical inflammasome
pathways involve caspase-4, caspase-5 (in humans), caspase-8, and caspase-11 (in mice)
to cleave gasdermin D along with pro-IL-1β and pro-IL-18 [92,93]. The caspase-mediated
cleavage of gasdermin D results in the generation of an N-terminal pore-forming domain,
which oligomerizes and forms non-selective pores in the plasma membrane. This process
leads to cell swelling, pyroptosis, and potentially cytokine release [93,94]. In addition
to pyroptosis, the activation of inflammasomes is also involved in other forms of cell
death, including apoptosis, necroptosis, and ferroptosis [95]. Caspase-8 serves as a pivotal
regulator of cell death, playing a role in apoptosis, necroptosis, or pyroptosis depending
on its post-translational modifications and the specific cell type [96]. Ferroptosis, an iron-
dependent programmed cell death process, is influenced by proteins involved in pyroptosis
pathways, with blocking gasdermin D suppressing both forms of cell death [96,97]. Thus,
as inflammasome activation is closely linked to cell death pathways, the tight control of
inflammasome activity is essential for a balanced immune system functioning. Conversely,
uncontrolled inflammasome activation can trigger unrestrained inflammatory responses,
potentially paving the way for a spectrum of inflammatory disorders.

5.1. Inflammasomes and HIV

NLRP1 (NOD-like receptor containing a pyrin domain 1) was the first discovered
PRR with the capacity to form the inflammasome complex. It possesses a unique domain
architecture consisting of an N-terminal pyrin domain, a central NACHT and LRR, and a
C-terminal CARD domain. Notably, NLRP1 also harbors a function-to-find domain (FIIND)
that is not present in the other NLRP family members. This unique domain architecture of
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NLRP1 empowers it to directly recruit pro-caspase-1 through its CARD domain, bypassing
the need for the adaptor molecule ASC. However, NLRP1 retains the ability to utilize
ASC for the proteolytic activation and autoproteolysis of caspase 1 (Figure 2). NLRP1
activation leads to IL1β/IL18 processing, and pyroptosis using and apoptosis via caspase-2
and -9 [15]. A positive correlation exists between the increased expression of NLRP1, IL-1β,
and IL-18 in the gut-associated lymphoid tissue (GALT) and peripheral blood, potentially
contributing to the depletion of CD4+ T cells and high viral load, the hallmarks of rapid
HIV progression [98]. NLPR1’s shared activation pathways with CARD8, an HIV-1 protease
sensor, suggest it as a potential candidate for detecting HIV-1 infection via HIV-1 protease-
mediated inflammasome assembly and triggering cell death [99]. NLRP1 can act as a
viral “tripwire” by undergoing protease-mediated cleavage, triggering structural change
and inflammasome activation independent of ligand binding [100]. In humanized mice,
the elevated levels of NLRP1 in the lymph nodes suggest an early host inflammasome
activation response to HIV-1 infection [101]. Despite being the prominent inflammasome
in barrier cells like epithelial cells, deciphering NLRP1’s role in HIV infection remains
challenging due to both the substantial divergence between human and murine NLRP1,
limiting the applicability of disease models, and the current lack of specific NLRP1 agonists
and antagonists to dissect its function in inflammation [102].
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Figure 2. HIV infection initiates the inflammasome pathway by interacting with CD4 and coreceptors
like CCR5, facilitating entry into host cells. Viral-cell membrane fusion releases viral particles into
the cell, where viral RNA is reverse-transcribed into DNA. In the cytoplasm, incomplete proviral
DNA of HIV is recognized by the HIN-200 family of inflammasomes AIM2 and IFI6 via the HIN
domain, leading to ASC recruitment followed by caspase-1 activation and inflammasome assembly.
This process activates STING and caspase 1. STING activation triggers cell signaling pathways like
NF-κB and MAP3K. HIV viral proteins and ssRNA induce ROS production, activating NLR family
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inflammasomes such as NLRP1 and NLRP3, which recruit ASC and assemble inflammasomes, ul-
timately activating caspase-1. Caspase-1 cleaves pro-IL-1β and pro-IL-18 into their mature forms.
Additionally, GSDMs are activated by caspase-1 cleavage, forming cell membrane pores that trig-
ger pyroptosis and facilitate IL-1β/IL-18 secretion. Abbreviations: Pyrin domain (PYD); adaptor
molecule apoptosis-associated speck-like protein containing a CARD (ASC); Caspase recruitment
domain (CARD); function-to-find domain (FIIND); Leucine-rich repeat (LRR); nucleotide-binding
and oligomerization domain (NBD); stimulator of interferon genes (STING); Gasdermin (GSDM).

The NLRP3 inflammasome has been extensively studied among these inflammasomes,
primarily because of its protective function in host defense against various infections and
its involvement in several inflammatory disorders. NLRP3 requires exogenous activators
to interact with ASC, facilitate the binding of ASC to CARD and the subsequent maturation
of caspase 1, which then cleaves proinflammatory cytokines into their active forms. An
investigation into single nucleotide polymorphisms (SNPs) within NLRP1, NLRP3, NLRC4,
CARD8, CASP1, and IL1B genes revealed a significant association between two SNPs
residing in NLRP3 and IL1B with increased susceptibility to HIV-1 infection [103,104].
Monocyte-derived dendritic cells (MDDCs) from PWH exhibited a dampened NLRP3
inflammasome response to HIV-1 compared to healthy donors (HDs), suggesting the
potential exhaustion of this pathway during chronic infection. Conversely, HD MDDCs
displayed a robust initial NLRP3 upregulation, highlighting its potential role in the early
immune response against HIV-1 [105]. In addition, another evidence showed that NLRP3
proteins are modulated through post-translational modifications such as ubiquitination
during HIV entry into the cells [106]. When the HIV envelope binds to its host cell receptor,
it recruits the E3 ubiquitin ligase CBL to NLRP3, ultimately leading to NLRP3 degradation,
thereby overcoming NLRP3 resistance in HIV-infected cells.

HIV-1 infection prompts inflammasome activation in microglia, leading to the release
of IL-1β, which could contribute to inflammation and neuronal death, potentially leading
to complex neurobehavioral deficits [107]. HIV Tat, cocaine, and cART can activate NLRP3
inflammasome signaling, leading to the generation of proinflammatory cytokines in mi-
croglial cells and iTat mice, potentially contributing to the dysregulated neuroinflammation
observed in NeuroHIV in PWH on cART with cocaine addiction [108]. HIV-1 infection
induces pro-IL-1β production in monocytes by activating TLR8 and subsequently activates
caspase-1 through the NLRP3 inflammasome, leading to the cleavage of pro-IL-1β into
its bioactive form, IL-1β, underscoring the essential roles of both TLR8 and NLRP3 in
HIV-1-induced inflammation. Moreover, HIV infection in macrophages and peripheral
blood mononuclear cells (PBMCs) from PWH showed increased expression levels of NLRP3
inflammasome components and downstream cytokines (including caspase-1, IL-1β, and
IL-18), which correlated with various genes linked to cardiovascular disease. This study
suggests that HIV infection may exacerbate the risk of cardiovascular disease in PWH by
activating NLRP3 [109].

IFI16 (IFN-γ-inducible protein-16) is a nuclear pathogen sensor that contains one N-
terminal PYD domain and one C-terminal HIN-200 domain, separated by an inter-domain
linker region [110,111]. When IFI16 senses the foreign DNA, it recruits ASC to induce
the activation of caspase-1 and inflammasome. After infection, the expression of IFI16
increases significantly but decreases during cART and it is positively associated with viral
count [112]. IFI16 was shown to be sensing dsDNA but not RNA: DNA duplexes during the
replication cycle of HIV in macrophages and controls the early HIV infection by hampering
HIV-1 transduction and replication [27]. Sensing HIV DNA produced during reverse
transcriptions by IFI16 induces a STING-dependent ISD pathway to trigger type I and
III IFN responses [113]. IFI16 has been shown to play a crucial role in activating caspase-
1 within inflammasomes, leading to pyroptosis in CD4+ T cells during HIV infection.
Consequently, instead of protecting the host, the innate response driven by IFI16 results
in debilitating CD4+ T-cell depletion, which is a key factor in the progression to AIDS in
people living with HIV [114]. Additionally, another study identified a negative correlation
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between IFI16 expression and CD4+ T cell levels in cART-naive patients [28]. Studies in
non-human primates have also shown that SIV-infected animals exhibit reduced CD4+ T
cell counts alongside the elevated levels of IFI16, caspase-1, and IL-1β, with the decrease
in CD4 count attributed to pyroptosis [115]. IFI16 is also capable of HIV restriction by
suppressing host transcription factor Sp1 in CD4+ T cells and macrophages [116].

Like IFI16, AIM2, another member of the AIM2-like receptor family, functions as a
sensor by detecting cytoplasmic and nuclear DNA from pathogens and damaged cells,
thereby triggering an inflammatory response [117]. While IFI16 recognizes intracellular
HIV single-stranded DNA (ssDNA), AIM2 senses and binds to double-stranded DNA.
Subsequently, it recruits ASC to activate caspase 1, initiating acute inflammation and
pyroptosis [118]. AIM2-mediated inflammasomes are initiated through the generation
of reactive oxygen species (ROS) and the transcriptional activation of IL-1β when HIV-
infected macrophages are exposed to cocaine, ultimately resulting in caspase 1-mediated
apoptosis [119]. In PWH, particularly those with higher viral loads, a decrease in high-
density lipoprotein (HDL) levels is associated with the upregulation of AIM2, NLRP3, ASC,
IL-1β, and IL-18. This observation suggests that an increased activation of inflammasomes
may lead to lower HDL levels, thereby reducing its anti-inflammatory effect, which could
potentially contribute to the increased pyroptosis of CD4+ T cells [120].

Caspase recruitment domain-containing protein 8 (CARD8) is the only other protein
besides NLRP1 that possesses a FIIND domain. However, unlike NLRP1, CARD8 lacks
N-terminal pyrin domain (PYD)—NACHT (NAIP, CIITA, HET-E, and TP-1) and LRRs [121].
CARD8 and NLRP1 inflammasomes, despite lacking identical N-termini, share a similar
activation pathway involving microbial protease cleavage and the proteasome-dependent
release of a C-terminal fragment for inflammasome assembly and caspase-1 activation.
CARD8 directly senses the activity of HIV protease, a viral enzyme, by being cleaved at
a specific site within its unstructured N-terminus [99]. This cleavage activates CARD8,
initiating a cascade of events that culminates in the assembly of the inflammasome complex
and the subsequent inflammasome-mediated pyroptosis of HIV-1-infected cells. Recent
studies by the same group suggest that a loss-of-function mutation in CARD8, rendering it
uncleavable by SIV in sooty mangabeys, might explain why they do not experience CD4+
T cell depletion after infection. This implies that the HIV/SIV activation of CARD8 could
play an indispensable role in CD4+ T cell depletion [122].

NLRC4 lacks a PYD domain, and inflammasome assembly is formed by recruiting
ASC directly through their CARD like NLRP1. Patients undergoing cART displayed ele-
vated expression levels of various inflammasome components (NLRP1, NLRP3, NLRC4,
AIM2, ASC, and caspase 1), which were correlated with triglyceride and VLDL levels.
This suggests that inflammasome activation may contribute to elevated cardiovascular risk
in individuals on ART. Research conducted on primary monocyte-derived macrophages
(MDMs) revealed that IL-1β induced by HIV primarily relies on the NLRP3 inflammasome
for regulation, whereas IL-18 production is primarily governed by the NAIP/NLRC4 inflam-
masome [123]. HIV-1 viroporin (pore-forming viral protein) glycoprotein 41 (gp41) activates
the NAIP/NLRC4 by binding directly with NAIP and triggers mainly IL-18 production.

5.2. Inflammasomes and Inflammaging

In attempts to identify the key drivers and mechanisms of inflammaging, recent
research highlights the critical role of inflammasomes in the sustained activation of inflam-
matory pathways in elderly individuals. These cellular complexes trigger in response to
pathogens like HIV, exogenous factors such as certain cART drugs, or immune dysfunction
due to aging. Studies have revealed a potential link between the persistently elevated
expression of NLRC4 and NLRC5 inflammasome components and a cluster of age-related
pathologies [124]. Individuals with this expression pattern exhibit increased blood pressure,
arterial stiffness, chronic inflammatory cytokine levels, metabolic dysfunction, oxidative
stress, and a shortened lifespan. Notably, the research suggests a potential mechanism: reac-
tive oxygen species (ROS) can activate NLRC4. This suggests that increased oxidative stress,
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a hallmark of aging, might trigger higher tRNA degradation, consequently upregulating
NLRC4 gene expression. This persistent oxidative stress triggers an inflammatory response
through inflammasome proteins. These proteins induce the production of IL-1β, IL-6, and
IL-23 by dendritic cells and IFN-γ and IL-17 by T cells, which, in turn, infiltrate the kidneys
and vessels, causing sustained hypertension. When overactivated in mice, the NLRC4
inflammasome triggers an inflammasome-dependent cell death pathway, resulting in either
pyroptosis or apoptosis, leading to tissue/organ damage and lethality in animals [125].

In the aged brain, research indicates an age-dependent association between NLRP1,
ASC, and caspase-8, forming a complex that may contribute to neuroinflammation and
neurodegenerative diseases [126]. Elevated levels of NLRP1, ASC, caspase-1, and caspase-8
were observed in the cortex of aged mice, and treatment with anti-ASC decreased the
expression of these proteins, resulting in lower levels of IL-1β. This finding underscores
the potential link between increased inflammatory activity and age-related changes in
brain function. The studies of hippocampal tissue from aged rats, a brain region vital for
memory, revealed a link between the elevated levels of NLRP1 inflammasome components,
including caspase-1, caspase-11, the P2X7 receptor, pannexin-1, and XIAP, and cognitive
decline [127]. However, treatment with the gout anti-inflammatory drug probenecid re-
duced inflammasome activity, resulting in lower levels of IL-1β and IL-18, and improved
spatial learning performance in aged rats. Older mice show elevated senescence-associated
activity of β-galactosidase (β-gal), along with increased levels of ROS and IL-1β, NLRP1,
ASC, caspase-1, NOX2, p47phox, and p22phox in the cortex and hippocampus. The in-
volvement of NOX2-NLRP1 inflammasome signaling in aging-related neuronal damage
suggests its potential as a target for modulating brain aging [128]. Another study showed
that the NLRP1/CXCL1/CXCR2-BNDF signaling pathway contributes to the effect of age
on chronic stress-induced depressive-like behavior in aged mice and Nlrp1a knockdown
reduced the levels of proinflammatory cytokines [129]. HIV proteins can induce high
NLRP3 expression in astrocytes and brain tissue, potentially contributing to memory and
motor decline in patients with HIV. These effects may be similar to the neuropathologi-
cal changes observed during aging, including increased astrocyte activation and altered
synaptic plasticity. The presence of HIV-1 Tat protein in PWH undergoing cART treatment
might therefore increase the risk of accelerated brain aging in this population [15]. These
results demonstrate that inflammasomes play a critical role in regulating the inflammag-
ing response in the central nervous system, not only in microglia but also in astrocytes
and neurons.

Studies involving PWH have identified a positive correlation between the expression of
NLRP3 and IL-1β genes with the progression of neurocognitive impairment [130]. NLRP3
inflammasome increased in the hippocampus of natural aging rats which contributed to the
impairment of synaptic plasticity and cognition [131]. Studies investigating inflammasome
function found that inhibiting Nlrp3 inflammasome activation yielded multiple benefits
in aging mice. These included protection from age-related increases in innate immune
activation, improved glycemic control, reduced bone loss, and preservation of thymus
function. Interestingly, only Nlrp3 inflammasome inhibition improved cognitive function
and motor performance in aged mice, suggesting a specific role for Nlrp3 in these age-
related declines [132].

Autophagy, a cellular recycling process, normally eliminates damaged components
like dysfunctional mitochondria, and can suppress NLRP3 inflammasome activation and
promote cellular health. Proteins associated with autophagy have been found to inhibit
the components of the NLRP3 inflammasome, including ASC and NLRP3 [133,134]. Fur-
thermore, the inhibition of autophagy associated with TLR3 or TLR4 signaling leads to
the activation of the NLRP3 inflammasome and the secretion of IL-1β and IL-18 [135].
However, chronic HIV infection can trigger inflammasome activation, leading to a proin-
flammatory environment that impairs autophagy, potentially accelerating the aging pro-
cess [130,136]. Another study suggests that inhibiting NLRP1 inflammasome activation
corrects AMPK/mTOR-mediated autophagy dysfunction, resulting in improved learning
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and memory [137]. Thus, a feedback loop exists between inflammasomes and autophagy,
wherein autophagy components can impair inflammasome proteins, while inflammation
itself hampers autophagy’s efficiency. Age-associated decline in autophagy and the subse-
quent defects in mitochondrial uptake and degradation lead to heightened inflammasome
activity mediated by reactive oxygen species (ROS) [138,139]. This dysregulation wors-
ens with age and contributes to chronic inflammation and the pathogenesis of various
age-related diseases.

5.3. Inflammasomes as Therapeutic Targets

Given the role of inflammasomes in age-related diseases and HIV infection, the poten-
tial of inflammasomes as therapeutic targets for inflammatory diseases in older individuals
and PWH is promising (Figure 3). Recent studies have identified several compounds
with the potential to modulate dysfunctional inflammasome pathways. The compound
J114, also referred to as N-(3-hydroxyphenyl)-2-(1H-indol-6-yl) acetamide, exhibited the
inhibition of caspase-1 activation and IL-1β release by directly disturbing the interaction
of NLRP3 or AIM2 with the adaptor protein ASC and inhibited ASC oligomerization in
human THP-1 macrophages [140]. This compound prevented acute corneal inflammation
and cell injury by inhibiting the noncanonical pyroptosis signaling pathway in mice [141].
Compounds like 4-sulfonic calix [6]arene, 4-sulfonic calix [8]arene, and suramin have been
identified as the inhibitors of dsDNA-triggered inflammatory responses mediated by the
AIM2 inflammasome. They target the dsDNA-binding site located in the HIN domain of
AIM2, thereby blocking dsDNA binding and hindering AIM2 inflammasome formation. At
higher concentrations, 4-sulfonic calixarenes can also disrupt the activity of other dsDNA
sensors like cGAS-STING and TLR9. Additionally, suramin has been shown to inhibit the
processing of caspase-1 and IL-1β by blocking AIM2-dependent ASC oligomerization [142].

The naturally occurring isothiocyanate sulforaphane, found in broccoli sprout extracts
and consumed as a dietary supplement, inhibits caspase-1 autoproteolytic activation and
IL-1β maturation and secretion downstream of the NLRP1, NLRP3, NAIP5–NLRC4, and
AIM2 inflammasomes [143]. Glycyrrhiza, commonly used in traditional Chinese medicine,
contains various active compounds like Licochalcone A, echinatin, and Glycyrrhizin,
which have been found to inhibit the activity of the NLRP3 inflammasome [144]. An-
other traditional Chinese medicinal herb Saussurea lappa contains the bioactive compound
costunolide which covalently binds to cysteine 598 within the NLRP3 inflammasome’s
NACHT domain, disrupting its ATPase activity and hindering inflammasome assem-
bly [145]. Saussurea lappa also contains dehydrocostus lactone (DCL), which suppresses
NLRP3 inflammasome activation in primary mouse macrophages and human peripheral
blood mononuclear cells [146]. DCL inhibits caspase-1 activation and IL-1β production,
thereby exerting an anti-inflammatory effect by targeting the NLRP3 pathway. Panax gin-
seng’s major constituent, ginsenoside Rg3, disrupts interactions between NEK7 and NLRP3,
as well as NLRP3 and ASC. This hinders ASC oligomerization, thereby reducing IL-1β
secretion and caspase-1 activation, ultimately inhibiting the NLRP3 inflammasome [147].

OLT1177, an orally active β-sulfonyl nitrile molecule, effectively inhibits both the
canonical and noncanonical pathways of the NLRP3 inflammasome, thereby reducing the
secretion of IL-1β and IL-18. Additionally, OLT1177 decreases the interactions between
NLRP3 and ASC, as well as NLRP3 and caspase-1, by impeding the oligomerization of
the NLRP3 inflammasome and subsequent caspase-1 activity [148]. Colchicine, a widely
used gout medication with anti-inflammatory properties, disrupts the NLRP3 inflamma-
some pathway through a multi-faceted mechanism. It disrupts microtubule function,
thereby hindering the critical interaction between ASC and NLRP3, which is essential for
inflammasome assembly [149]. Additionally, colchicine may suppress caspase-1 activa-
tion by reducing its mRNA transcript levels, leading to the decreased protein expression
of caspase-1 [150]. Pralnacasan, an orally administered small molecule inhibitor of the
interleukin-1β converting enzyme (ICE), demonstrates the potential for treating osteoarthri-
tis in mice models by reducing caspase activity [151].
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Figure 3. Inhibitors of inflammasome pathway. Various inhibitors target different components
of the inflammasome pathways, including NLRP3, AIM2, ASC, caspase-1, IL-1β, pro-IL-18, and
Gasdermin-D (GSDMD). These inhibitors prevent inflammasome activation, subsequently inhibiting
pyroptosis and the release of proinflammatory cytokines.

In preclinical trials, MCC950, a small-molecule NLRP3 pathway inhibitor, was found
to directly interact with the NACHT domain of NLRP3. This interaction prevents ATP
hydrolysis, thereby inhibiting NLRP3 activation and the formation of inflammasomes [152].
Beta-carotene, a plant-derived provitamin A, directly binds to the PYD of NLRP3, thereby
inhibiting its interaction with ASC and suppressing NLRP3 activation [153]. The orally
bioavailable proteasome inhibitor NIC-0102 disturbs the NLRP3-ASC interaction, prevent-
ing ASC oligomerization and ultimately leading to the inhibition of NLRP3 inflammasome
activation and the production of pro-IL-1β [154]. The anticancer agent tivantinib is an
inhibitor of NLRP3 which acts by interfering with NLRP3 ATPase activity and subse-
quent inflammasome complex assembly [155]. There are several other compounds that
are under investigation in preclinical and clinical studies [156]. While these studies of-
fer promising prospects for the development of drugs targeting inflammatory responses
mediated by inflammasomes, their clinical efficacy and long-term safety remain largely
unproven and await validation through randomized controlled trials involving human
subjects. Additionally, further research is needed to assess their potential therapeutic
benefits, optimal dosages, potential adverse effects, and potential drug interaction with
cART in human populations.
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6. Conclusions

Inflammasomes are an important arm of the innate immune system, sensing pathogens
and responding with the synthesis and release of immune defense molecules. However,
the dysregulation of the inflammasome pathway leads to immune senescence and inflam-
maging in both treated and untreated PWH as well as the elderly population. Moreover,
uncontrolled inflammasome activation is closely connected to the onset and progression
of diverse age-related comorbidities, including cardiovascular diseases, arthritis, type 2
diabetes, hypertension, metabolic, and neurodegenerative diseases.

As our understanding of inflammasome assembly solidifies, future research will
delve deeper into the structural intricacies of ligand–sensor binding, interactions between
various inflammasome sensors, and the formation of noncanonical inflammasomes. Addi-
tionally, exploring the functional outcomes of inflammasome activation on other cellular
processes, such as intestinal and mucosal barrier function, transcription, alternative cell
death pathways, and more, presents enticing prospects. Deciphering the intricate details
of inflammasome interactions with other cellular proteins and ligand–sensor interactions
during HIV/aging will be a crucial aspect to focus on. Targeting these pivotal inflamma-
some pathways carries immense therapeutic potential, thereby paving the way for novel
treatments and preventive strategies for a broad spectrum of diseases associated with
HIV/aging.

Ultimately, our comprehension of the involvement of inflammasome dysregulation
in aging and HIV infection is hindered by the restricted conservation of inflammasome
proteins across human and rodent species. Therefore, advancing inflammasome research
necessitates the creation of more clinically relevant models that can bridge the gap between
preclinical studies and human therapeutic applications. It is essential to broaden inflamma-
some investigation by leveraging non-human primates, humanized mice, organ-on-a-chip
technology, or other innovative methodologies that offer a more accurate representation of
the human inflammasome physiology.
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