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Abstract: This article establishes a thermodynamic model of a dual-fluidized bed biomass gasification
process based on the Aspen Plus software platform and studies the operational control characteristics
of the dual-fluidized bed. Firstly, the reliability of the model is verified by comparing it with the
existing experimental data, and then the influence of different process parameters on the operation
and gasification characteristics of the dual-fluidized bed system is investigated. The main param-
eters studied in the operational process include the fuel feed rate, steam/biomass ratio (S/B), air
equivalent ratio (ER), and circulating bed material amount, etc. Their influence on the gasification
product composition, reactor temperature, gas heat value (QV), gas production rate (GV), carbon
conversion rate (ηc), and gasification efficiency (η) is investigated. The study finds that fuel feed rate
and circulating bed material amount are positively correlated with QV, ηc, and η; ER is positively
correlated with GV and ηc but negatively correlated with QV and η; S/B is positively correlated with
GV, ηc, and η but negatively correlated with QV. The addition of CaO is beneficial for increasing
QV. In actual operation, a lower reaction temperature in the gasification bed can be achieved by
reducing the circulating bed material amount, and a larger temperature difference between the
combustion furnace and the gasification furnace helps to further improve the quality of the gas. At
the same time, GV, ηc, and η need to be considered to find the most optimized operating conditions
for maximizing the benefits. The model simulation results agree well with the experimental data,
providing a reference for the operation and design of dual-fluidized beds and chemical looping
technology based on dual-fluidized beds.

Keywords: gasification; herb residues; dual-fluidized bed; Aspen simulation; chemical looping

1. Introduction

The dual-fluidized bed (DFB) technology fits well with the two-step reaction process
in the traditional chemical loop, making the chemical loop reactor often adopt a circulat-
ing dual-bed structure. The dual-fluidized bed gasification technology can separate the
pyrolysis gasification and semi-coke combustion of solid fuels (such as coal and biomass)
using the high-temperature circulating bed material to provide heat for the gasifier and
obtain medium- to high-calorific-value gas without using pure oxygen or enriched oxygen
gasification agents. The dual-bed technology and chemical loop technology based on
dual-bed reactors have been widely studied [1–8].

The dual-fluidized bed system is an intricately coupled system where the processes
interact deeply and are difficult to regulate independently with a single parameter. Con-
ducting detailed experimental research and analysis of the influence of various factors on
the gasification characteristics is both time-consuming and challenging. Moreover, single
experiments are typically limited by the experimental conditions, making comprehensive
and accurate analysis difficult. The adoption of numerical simulation methods to simplify
the processes and focus on key factors for calculation and analysis has gradually gained
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acceptance. Among the numerous simulation studies, Aspen Plus 7.2 (Advanced System
for Process Engineering) is a worldwide standard process simulation software. It is widely
used in processes such as coal-to-synthetic natural gas [9], syngas to methanol [10], gasifica-
tion of coal, and partial gasification for hydrogen production [11], process simulation, and
system performance evaluation due to its extensive reserves of physical property data, rich
process unit models, and precise and effective model calculation and analysis capabilities.

This paper investigates the operational control characteristics of the dual-fluidized
bed, providing a reference for the operation and design of dual-fluidized bed technology
and chemical loop technology based on dual-fluidized beds. Firstly, the reliability of the
model is verified through a comparison with the existing experimental data, and then the
influence of different process parameters on the operation of the dual-fluidized bed system
and its gasification characteristics is examined. The main research focuses on the influence
of important parameters such as the steam/biomass ratio (S/B), air equivalent ratio (ER),
and circulating bed material mass on the composition of the gasification products, reactor
temperature, gas heating value (QV), gas production rate (GV), carbon conversion rate (ηc),
and gasification efficiency (η) during the operational process.

2. Materials and Methods
2.1. Experimental Device

The dual-fluidized bed gasification system diagram and physical image are shown
in Figure 1. Relevant research data using quartz sand as bed material have been pub-
lished [12,13] and will not be elaborated upon here. This paper will directly reference
literature data to validate the rationality of the Aspen dual-fluidized bed reactor model.
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Figure 1. (a) Schematic layout of dual-fluidized bed system; (b) the physical image [13].

The annual emissions of traditional Chinese medicine residues in China reach up to
30 million tons. Traditional Chinese medicine residue has a high water content and certain
nutritional components, making it prone to spoilage and causing serious environmental
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pollution. The biomass raw materials used in this study were traditional Chinese medicine
residues provided by a pharmaceutical company in Shandong Province, with an initial
water content of about 70%. The raw material is a mixture, and there is no fixed molecular
structure in the simulation software that can accurately describe it. Here, the definition of
coal in Aspen Plus [14] is used for reference. After natural drying, crushing, and screening,
the particle size of about 5 mm with about 5% water content of material was selected as
the experimental raw materials. The data of its air-dried basis properties are shown in
Table 1. The research results of the dual-fluidized bed gasification experiment using this
raw material have been published [12].

Table 1. Ultimate and proximate analyses of the CHR (air-dried basis) [12].

Ultimate Analysis
(wt%)

Proximate Analysis
(wt%)

LHV
(kJ/kg)

C H N S O M A V Fc
15,30042.31 6.01 3.23 0.25 32.61 5.45 10.14 67.34 17.07

2.2. Physical Model

The dual-fluidized bed gasification process generally consists of three processes:
pyrolysis, gasification, and combustion. According to the main reaction, the entire dual-
fluidized bed system can be divided into four regions: I, II, III, and IV (see Figure 2) [13].
Ideally, each region should complete the following corresponding reactions.
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Zone I is the raw material layer, located in the middle layer of the gasification furnace
reaction zone. The biomass raw materials are heated and dried by high-temperature
circulating bed materials. At the same time, the biomass undergoes pyrolysis reactions to
produce pyrolysis gas, semi-coke, and tar.
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The reaction equation is as follows:

Biomass → Char + Tar + Gases (CO, H2, CH4, CO2, H2O, CnHm) (1)

Zone II is located at the lower part of the raw material layer, and the semi-coke reacts
with the gasification agent (air or water vapor) as follows:

2C + O2 → 2CO (2)

C + H2O → CO + H2 (3)

Zone III is located above the raw material layer. The main reactions that occur include
gas component transformation and tar cracking as follows:

CO + H2O → CO2 + H2 (4)

Tar → CO + H2 + CO2 + CH4 + CnHm (5)

Under the condition of steam gasification agent, the volume content of CnHm in the
generated gas of biomass is generally less than 3%. Therefore, in this study, the presence of
CnHm was ignored to simplify the model and calculation.

Zone IV is located in the combustion furnace, where semi-coke and air undergo
combustion reactions:

C + O2 → CO2 (6)

2.3. Aspen Plus Dual-Fluidized Bed Gasification Model

Based on the division of the biomass gasification reaction zones in a dual-fluidized bed
and the operational characteristics of the system, the entire gasification process is divided
into four parts for simulation: pyrolysis, gasification, shift reaction, and combustion zones.
The following assumptions and settings are relevant:

(1) The tar components are complex and have a low target yield, so the influence of tar is
ignored in the simulation;

(2) All components of the biomass, except for char (fixed carbon and ash), are converted
into gas;

(3) Char consists only of fixed carbon and ash;
(4) The ash is an inert component that does not participate in the reaction, and it is

assumed that all the ash is contained in the char in the solid products [15];
(5) The heat loss of the entire system is a fixed value independent of the amount of

feedstock added;
(6) The cycled ash entering the gasifier is defined as the tearing stream (Tear).

The simulation process of the biomass dual-fluidized bed gasification reaction model
is shown in Figure 3. This model includes modules for pyrolysis (Pyrolysis), transformation
reaction (Transformation Reaction), semi-char gasification (Gasification), combustion (Com-
bustion), and five separation modules (Sep1–5). The corresponding Aspen Plus models
and their main functions in the simulation are shown in Table 2.

Pyrolysis reactions are based on the Ryield module, which only calculates yield equi-
librium. In terms of property selection, the Aspen Plus software user guide recommends
property methods for syngas applications, including PR–BM (Peng–Robinson with Boston–
Mathias) and RKS–BM (Redlich–Kwong–Soave with Boston–Mathias) [16–18]. Through
literature research and analysis, this paper selects the PR–BM equation as the global prop-
erty method [19,20]. Considering the reactivity and complexity of the reduction and
oxidation processes, the transformation reaction module, semi-coke gasification module,
and combustion module in this paper all adopt the Rgibbs equilibrium reactor for sim-
ulation [21,22]. Currently, there is no universally accepted explanation for the specific
chemical reactions and kinetic characteristics of the biomass gasification process. Using the
Gibbs free energy minimization method to simulate actual chemical processes is a common
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approach. However, since complete chemical equilibrium is not reached in actual reactions,
the results obtained from the Gibbs free energy minimization method may differ from
experimental results. Through embedded Fortran subroutines, the functional relationships
between various parameters in the system are adjusted, including five Fortran subroutines
(Flow sheeting Options | Calculator). During the simulation, biomass and ash are input
as unconventional substances, while conventional substances include H2O, O2, N2, C, H2,
CaO, CaCO3, S, CO, CO2, CH4, and H2S, among others.
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Table 2. The selected Aspen Plus models for united operations in the simulations and main functions.

Module Name Corresponding Module Main Functions

Pyrolysis Module Ryield Converting unconventional components in biomass into conventional
simple components and semi-coke.

Transformation Reaction
Module Rgibbs

The components such as C, H2, O2, N2, S, and CaO from the pyrolysis
module and CO, CO2, H2O, H2, and N2 from the semi-coke gasification
module are converted, based on the principle of minimizing Gibbs free

energy, into compounds including CO, CO2, CH4, H2, N2, H2O, H2S, and
CaCO3. Tar components are not considered.

Semi-coke Gasification
Module Rgibbs

The semi-coke from the pyrolysis module is reacted with air or steam, etc.,
according to the principle of minimizing Gibbs free energy, to produce CO,

H2, etc. The bed material also includes SiO2.

Combustion Module Rgibbs

The semi-coke from the semi-coke gasification module and certain
components such as C, H2, O2, N2, and S from the pyrolysis module are

mixed with air and reacted according to the principle of minimizing Gibbs
free energy, releasing heat to heat the circulating bed material. Calcium

carbonate (CaCO3) from Sep5 also decomposes into CaO and CO2 under
high-temperature conditions.

Separation Module Sep1 Sep2

The simple components such as C, H2, O2, N2, S, etc. from the pyrolysis
module and the semi-coke are separated, and a portion of these

components, including C, H2, O2, N2, S, etc., is transported to the
combustion module for reaction according to the Fortran subroutine.

Separation Module Sep2 Sep2 The separation of the gaseous and solid products from the semi-coke
gasification module is achieved.

Separation Module Sep3 Sep2 The separation of the gaseous and solid products from the combustion
module is achieved.

Separation Module Sep4 Ssplit

The real-time slag disposal function is implemented. According to Fortran
subroutine, the circulating bed material from separation module 3 is

separated, with a portion being discharged as slag and another portion
being recycled back to the pyrolysis module to provide energy for the

thermal decomposition of biomass feedstock.

Separation Module Sep5 Sep2 The gas is separated from CaO and CaCO3. CaO and CaCO3 are
transported to the combustion module for reaction.

3. Results and Discussion
3.1. Comparison of Numerical Simulation and Experimental Data

To verify the accuracy and reliability of the model, a comparison experiment was
conducted by comparing a portion of the calculated results with existing experimental
data. The experimental data were obtained from the aforementioned experimental setup,
and the related articles have been published [12,13]. Subsequently, the sensitivity analysis
function of the Aspen Plus software was utilized to simulate the influence of different
process parameters on the pyrolysis and gasification characteristics. The simulated curves
of the gas composition varying with the gasifier temperature, as well as the comparison
with the experimental data, are shown in Figure 4. In the dual-fluidized bed biomass
pyrolysis and gasification system, the temperatures in each region are variables of the
control parameters, such as feed rate and air flow rate. Figure 5 presents the simulated
curves of the gas composition varying with the air-to-fuel equivalent ratio (ER), along with
a comparison of the simulated data with the experimental measurements.
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From Figure 4, it can be observed that, as the temperature increases, ϕH2 and ϕCO
gradually increase while ϕCO2 and ϕCH4 gradually decrease. In the Aspen Plus simulation
process, the composition of the gas is determined by both the gas reaction temperature
and the distribution of the elements. The experimental values agree closely with the
simulated values and exhibit the same change trend. In Figure 4, in the low-temperature
range, the calculated hydrogen is approximately 2 times less (16% versus 30%) than the
experimental one, and the calculated methane is 3.5 times lower than the experimental
one (2% versus 7%). This may be because the calculated data are based on the Gibbs free
energy minimization principle for the C, H, and O elements and H2O molecules, without
considering the actual kinetic mechanism of the biomass during pyrolysis. In the actual
biomass gasification process, the formation and cracking of tar are important mechanisms
for the formation of H2 and CH4, especially in the low-temperature stage, which can
seriously affect the composition of the gasification products. As shown in Figure 4, the
higher the temperature, the more the calculated and experimental values tend to converge.
This should be because, the higher the temperature, the more in line with the chemical
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thermodynamic equilibrium state. From Figures 4 and 5, it can be seen that the results of
the model’s simulation calculations are close to the experimental measured values, which
verifies the model’s rationality to some extent.

3.2. Simulation Results and Analysis under Different Influencing Factors

The main factors influencing the dual-fluidized bed biomass gasification process and
the quality of the produced gas include the feedstock feed rate, circulating bed material flow
rate, air-to-fuel ratio (ER), and the steam-to-biomass mass ratio (S/B), among others. During
the Aspen Plus simulation, the Model Analysis Tools | Sensitivity (sensitivity analysis)
feature was used to adjust the variable ranges of the different influencing parameters,
analyzing the regularities of their effects on the gasification characteristics. The main
simulated influencing factors and their parameter ranges are shown in Table 3. The flow
rate and composition of the streams leaving the major processing units are listed in Table 4.

Table 3. Main influencing factors of gasification process.

Parameter Numerical Unit Variable Adjustment Range for
Sensitivity Analysis

Biomass Feed Rate 8 kg/h 4~20
Circulating Bed

Material Flow Rate 1800 kg/h 300~2900

ER 0.1 / 0.02~0.32
S/B 0 / 0~0.28

Table 4. Process streams’ composition and flow rates.

MATERIAL CALCIUM C-CYC GAS-PROD

Material Mass Flow kg/h 8.00 - - -
H2O mol/h - - - 6.43
CO mol/h - - - 20.52
CO2 mol/h - - - 4.72
N2 mol/h - - - 3.21
H2 mol/h - - - 75.02

CH4 mol/h - - - 6.24
Total Mole Flow mol/h - 4223.05 21.42 116.14
Total Mass Flow kg/h 8.00 237.42 0.26 -

CaO mol/h - 4201.95 - -
CaCO3 mol/h - 21.11 - -

C mol/h - - 21.42 -

3.2.1. The Impact of Biomass Feed Rate

Under the conditions of a circulating bed material flow rate of 1800 kg/h, an air-to-fuel
equivalent ratio (ER) of 0.1, and no steam input (0 kg/h), the sensitivity of changing the
biomass feed rate on the reactor temperature, heating value QV, gas yield GV, carbon
conversion rate ηc, and gasification efficiency η was simulated using the sensitivity analysis
feature of the Aspen Plus software. The simulation results are presented in Figures 6–9.

Under stable operating conditions, the dual-fluidized bed gasifier maintains a stable
surface temperature, with the surface heat loss remaining at a relatively constant value.
Therefore, the smaller the biomass feed rate, the larger the proportion of the surface heat
loss. As can be seen from Figure 6, with the increase in biomass feed rate, the temperatures
of the combustion furnace and gasification furnace gradually rise and tend to stabilize. A
larger proportion of surface heat loss implies that a higher proportion of combustion air
and more biomass feedstock are required to undergo combustion reactions to maintain
the operating temperature of the gasifier reactor. This means that, the lower the feedstock
gasification (pyrolysis) ratio, the higher the proportion of N2 in the gasification (pyrolysis)
gas products, resulting in an increase in GV but a decrease in QV. It can be observed that,
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with the increase in biomass feed rate, QV gradually increases, GV gradually decreases, and
both trends tend to level off and reach a stable state, with the η trend becoming increasingly
higher and stabilizing.
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Figure 6. The temperature trend with biomass feeding.
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Figure 7. The gas fraction trend with biomass feeding.
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Figure 8. The QV and GV trends with biomass feeding.
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Figure 9. The ηc and η trends with biomass feeding.

3.2.2. The Impact of Circulating Bed Material Flow Rate

Under the conditions of a biomass feed rate of 8 kg/h, an air-to-fuel equivalent ratio
(ER) of 0.1, and no steam addition (0 kg/h), the sensitivity of changing the circulating
bed material flow rate on the reactor temperature, QV, GV, and η was simulated using the
sensitivity analysis feature of the Aspen Plus software. The simulation results are presented
in Figures 10–13.

As shown in Figure 10, the temperature difference between the combustion furnace
and the gasification furnace gradually decreases with the increase in the circulating bed
material flow rate. Meanwhile, QV, GV, ηc, and η all gradually increase, as depicted in
Figures 12 and 13. This is because, the greater the circulating bed material flow rate, the
higher the temperature of the gasification furnace, leading to more thorough pyrolysis of
the biomass feedstock and the production of more gaseous components. Consequently, the
fuel fraction entering the combustion furnace is reduced. However, after the circulating bed
material flow rate exceeds 1300 kg/h, the trends of the various curves become increasingly
stable, and the impact of the bed material flow rate decreases.
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Figure 10. The temperature trend with circulating bed material quantity.
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Figure 11. The gas fraction trend with circulating bed material quantity.
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Figure 12. The QV and GV trends with circulating bed material quantity.
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3.2.3. The Impact of Air-to-Fuel Equivalent Ratio (ER)

Under the conditions where the biomass feed rate is 8 kg/h, the circulating bed
material flow rate is 1800 kg/h, and the S/B ratio is 0, the impact of changing the air-to-fuel
equivalent ratio (ER) on the reactor temperature, QV, GV, and η was simulated using the
sensitivity analysis feature of the Aspen Plus software. The change in the ER was achieved
by adjusting the primary air flow rate to the gasification furnace. The simulation results are
presented in Figures 14–17.
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Figure 16. The QV and GV trends with ER.
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Figure 17. The ηc and η trends with ER.

In a dual-fluidized bed gasification system, it is necessary to introduce a fluidizing
medium from the bottom of the gasifier, which is usually air (or steam). On the one
hand, it serves as a loosening medium to enhance the mobility of the bed materials. On
the other hand, it can provide O2 or steam for a reaction with carbon in the semi-coke,
thereby increasing the carbon conversion efficiency (ηc). As can be seen from Figure 14, the
temperatures of both the combustor and the gasifier decrease with increasing ER. This is
because, as the air flow rate at the bottom of the gasifier increases, the amount of semi-coke
entering the combustor decreases, leading to an increase in ηc (as shown in Figure 17) and
a reduction in the share of biomass used for combustion, resulting in a decrease in the
overall furnace temperature. Meanwhile, the increase in the air flow rate at the bottom of
the gasifier leads to an increase in the nitrogen content in the gas (as shown in Figure 15),
which, although it improves GV, significantly reduces QV, as shown in Figure 16. Overall,
the efficiency η still decreases, as shown in Figure 17.
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3.2.4. The Impact of Steam-to-Biomass Ratio (S/B)

Under the conditions where the biomass feed rate is 8 kg/h and the circulating bed
material flow rate is 1800 kg/h, the impact of changing the steam-to-biomass ratio (S/B) on
the reactor temperature, QV, GV, and η was simulated using the sensitivity analysis feature
of the Aspen Plus software. The simulation results are presented in Figures 18–21.

Changing the primary air at the bottom of the gasifier to steam has a relatively small
impact on the furnace temperature, gas composition, and QV. The dual-fluidized bed
gasifier operates stably, and the gas quality is consistent, as shown in Figures 18–20.
However, due to the reaction between steam and semi-coke according to Equation (3) in
the semi-coke gasification module, there is a significant increase in GV, ηc, and η, as shown
in Figures 20 and 21.
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Figure 21. The ηc and η trends with S/B.

3.2.5. The Impact of Adding a Catalyst

Due to the assumption in the simulation calculation that all the tar is converted, only
the influence of CaO in the catalyst on the gasification characteristics is considered. Under
the conditions of a biomass feed rate of 8 kg/h, the addition of quicklime at 5 kg/h, a
convergence tolerance of 0.005, and a primary air flow of 0 for the gasifier, the rules of
variation for the gas composition and QV, GV, ηc, and η with the addition of CaO at
different reactor temperatures were investigated. The flow and reaction of the CaO within
the dual-bed system are primarily influenced by the temperature difference between the
combustion furnace and the gasification furnace, including the conversion between CaO
and CaCO3 as well as the accompanying endothermic and exothermic reactions. This
section creates different temperature differences (different gasifier temperatures) between
the combustion furnace and the gasification furnace by varying the circulating bed material
flow in order to study the cyclic characteristics of CaCO3 and the rules of variation for
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gas quality under different temperature differences (different gasifier temperatures). The
results are shown in Figures 22–27.
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Figure 22. The change trend of ϕCH4.
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Figure 26. The change trends of QV and GV.

As shown in Figures 22–26, after the addition of CaO, both the ϕCO and ϕCO2 levels
are reduced compared to when CaO is not added, with a significant decrease in ϕCO2; the
contents of ϕCH4 and ϕH2 are both significantly increased, and the QV is higher when
CaO is added. Furthermore, as can be seen from Figure 26, after the addition of CaO,
the QV gradually decreases with the increase in the circulating bed material flow and
eventually becomes consistent with the results without the CaO addition. This is because
the reaction of CaO converting to CaCO3 is an exothermic reaction, and the increase in the
circulating bed material flow leads to a higher gasification furnace temperature (as detailed
in Figure 27), which thereby hinders the progress of the CaO and CO2 reaction.

As shown in Figure 27, as the amount of circulating bed material increases, the
temperature of the combustion furnace gradually decreases while the temperature of
the gasification furnace gradually increases. Under the conditions with CaO added, the
temperature difference between the combustion furnace and the gasification furnace is
greater. As the temperature difference between the combustion furnace and the gasification
furnace decreases (the temperature of the gasification furnace increases), the proportion
of CaCO3 formed by the reaction in the gasification furnace out of the total moles of
calcium decreases gradually. This indicates that a larger temperature difference between
the combustion furnace and the gasification furnace (lower temperature in the gasification
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furnace) is favorable for the progress of the CaO and CO2 reaction. It is beneficial for
obtaining gas with a higher calorific value, but the gas production rate GV decreases, as
shown in Figure 26. At the same time, as shown in Figure 28, the carbon conversion
efficiency ηc and the gasification efficiency η are also lower when CaO is added compared
to when it is not added. This requires achieving the optimal operating conditions between
the gas calorific value (QV), gas yield (GV), carbon conversion rate (ηc), and gasification
efficiency (η) through the control of the process parameters during the actual engineering
operation of the dual-fluidized bed gasification system in order to maximize the benefits.
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Figure 27. The temperature and CaCO3 trends with circulating bed material quantity.
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After all, the dual-fluidized bed reactor has two high-temperature exhaust channels, so
the low thermal efficiency and carbon conversion rate of the dual-fluidized bed reactor itself
lead to its low economic efficiency. The reactor itself should be placed in specific application
scenarios to form a comprehensive system for more rational energy utilization. In recent
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years, the field of the green chemical industry using biomass as a raw material has received
a great deal of attention [23,24]. When CaO is used as the circulating bed material, the
dual-fluidized bed gasification process of biomass can form a calcium cycle chemical chain
system, which has broad prospects in the application fields of producing hydrogen-rich gas
and synthesizing green methanol from biomass as raw material: preparing hydrogen-rich
synthesis gas in the gasifier, and adjusting the operating parameters to make the hydrogen
carbon ratio of the synthesis gas reach a level suitable for methanol preparation. The
energy consumption of the compressor required by the downstream methanol synthesis
unit can be driven by the steam turbine on the combustion side, forming a reasonable green
chemical production and energy cascade utilization system as a whole.

4. Conclusions

A thermodynamic calculation model of the dual-fluidized bed biomass gasification
process was established using the Aspen Plus software, incorporating modules such as
the RGibbs reactor, yield reactor RYield, component separator Sep, and SSSplit. The
model comprehensively reflects the variations and characteristics regarding the furnace
temperature and gas quality during the bed material circulation process. It examines
the influence of different process parameters on the operation of the dual-fluidized bed
gasification system and the quality of the produced gas. Additionally, the model studies
the regularity of the impact of adding CaO on the gas quality of the dual-fluidized bed
system.

(1) The fuel feed rate and circulating bed material quantity are positively correlated
with QV, ηc, and η; ER is positively correlated with GV and ηc and negatively correlated
with QV and η; S/B is positively correlated with GV, ηc, and η and negatively correlated
with QV.

(2) The addition of CaO is beneficial for increasing QV. In the actual operation process,
a lower reaction temperature in the gasification bed can be achieved by reducing the
circulating bed material quantity, which increases the temperature difference between the
combustion furnace and the gasification furnace, contributing to the improved quality of
the produced gas. At the same time, it is necessary to consider GV, ηc, and η in seeking the
optimal operating conditions to maximize the benefits.

(3) The simulation results of this model, when compared with the experimental
measured data, show numerical values and trends that are similar, which validates the
reliability of the model. Through the sensitivity analysis, the model investigates the
influence of different process parameters on the operational characteristics and gas quality,
providing certain guidance for engineering practice. In this study, the fluctuation trends of
parameters such as reaction temperature, gas production components, calorific value QV,
gasification efficiency η, and carbon conversion rate ηc tended to stabilize after the feed rate
exceeded 15 kg/h and tended to stabilize after the bed material circulation rate exceeded
1100 kg/h. A too-small feeding rate and bed material circulation rate are not conducive to
the stability of the system’s operating parameters. An increase in the ER has a negative
impact on key indicators such as temperature, H2 and CO volume content, calorific value
QV, and gasification efficiency η. Therefore, while maintaining the normal fluidization of
the gasification reactor, it is important to try to reduce the ER value as much as possible. An
increase in the S/B can increase the volume content of CO and CH4, gasification efficiency
η, and carbon conversion rate ηc. However, an excessively high S/B will increase the CO2
content, reduce the calorific value QV, and consume more energy. The most suitable S/B in
this study should be around 0.08.

(4) This model uses the RGIBBS reactor, which is a thermodynamic equilibrium
calculation model, to study the ideal steady-state conditions after a complete reaction. Due
to the limitations of the dynamics in actual operation and the neglect of tar in this model,
there is a certain degree of difference between the simulation results and actual operation
results. The future work directions include fully considering the important impact of tar on
fuel gas generation, investigating the coupling of the gas–solid reaction kinetics and solid
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particle fluid dynamics in the reactor, achieving a more detailed description of the internal
operating characteristics of the reactor, and improving the accuracy of the simulation results,
as well as conducting simulation calculations on the energy flow, logistics, and carbon
footprint for large-scale dual-fluidized bed chemical chain hydrogen production systems.
It is important to explore the feasibility of combining dual-fluidized bed equipment with
waste heat recovery systems, power generation systems, carbon capture and recycling
systems, etc., to further improve the overall energy utilization efficiency of the system and
reduce the production cost of the overall process. Integrating chemical chain hydrogen
production systems with chemical energy storage systems such as green methanol and
green ammonia, as well as downstream hydrogen utilization end systems such as fuel
cells, will be beneficial in terms of exploring the application scenarios of dual-fluidized bed
biomass gasification in the hydrogen energy industry.
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